Search Results

Now showing 1 - 3 of 3
  • Item
    Beyond Tone Mapping: Enhanced Depiction of Tone Mapped HDR Images
    (The Eurographics Association and Blackwell Publishing, Inc, 2006) Smith, Kaleigh; Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter
    High Dynamic Range (HDR) images capture the full range of luminance present in real world scenes, and unlike Low Dynamic Range (LDR) images, can simultaneously contain detailed information in the deepest of shadows and the brightest of light sources. For display or aesthetic purposes, it is often necessary to perform tone mapping, which creates LDR depictions of HDR images at the cost of contrast information loss. The purpose of this work is two-fold: to analyze a displayed LDR image against its original HDR counterpart in terms of perceived contrast distortion, and to enhance the LDR depiction with perceptually driven colour adjustments to restore the original HDR contrast information. For analysis, we present a novel algorithm for the characterization of tone mapping distortion in terms of observed loss of global contrast, and loss of contour and texture details. We classify existing tone mapping operators accordingly. We measure both distortions with perceptual metrics that enable the automatic and meaningful enhancement of LDR depictions. For image enhancement, we identify artistic and photographic colour techniques from which we derive adjustments that create contrast with colour. The enhanced LDR image is an improved depiction of the original HDR image with restored contrast information.Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation I.4.0 [Image Processing and Computer Vision]: GeneralImage processing software
  • Item
    Apparent Greyscale: A Simple and Fast Conversion to Perceptually Accurate Images and Video
    (The Eurographics Association and Blackwell Publishing Ltd, 2008) Smith, Kaleigh; Landes, Pierre-Edouard; Thollot, Joelle; Myszkowski, Karol
    This paper presents a quick and simple method for converting complex images and video to perceptually accurate greyscale versions. We use a two-step approach first to globally assign grey values and determine colour ordering, then second, to locally enhance the greyscale to reproduce the original contrast. Our global mapping is image independent and incorporates the Helmholtz-Kohlrausch colour appearance effect for predicting differences between isoluminant colours. Our multiscale local contrast enhancement reintroduces lost discontinuities only in regions that insufficiently represent original chromatic contrast. All operations are restricted so that they preserve the overall image appearance, lightness range and differences, colour ordering, and spatial details, resulting in perceptually accurate achromatic reproductions of the colour original.
  • Item
    Contours and contrast
    (Smith, Kaleigh, 2008-12-11) Smith, Kaleigh;
    Contrast in photographic and computer-generated imagery communicates colour and lightness differences that would be perceived when viewing the represented scene. Due to depiction constraints, the amount of displayable contrast is limited, reducing the image's ability to accurately represent the scene. A local contrast enhancement technique called unsharp masking can overcome these constraints by adding high-frequency contours to an image that increase its apparent contrast. In three novel algorithms inspired by unsharp masking, specialized local contrast enhancements are shown to overcome constraints of a limited dynamic range, overcome an achromatic palette, and to improve the rendering of 3D shapes and scenes. The Beyond Tone Mapping approach restores original HDR contrast to its tone mapped LDR counterpart by adding highfrequency colour contours to the LDR image while preserving its luminance. Apparent Greyscale is a multi-scale two-step technique that first converts colour images and video to greyscale according to their chromatic lightness, then restores diminished colour contrast with high-frequency luminance contours. Finally, 3D Unsharp Masking performs scene coherent enhancement by introducing 3D high-frequency luminance contours to emphasize the details, shapes, tonal range and spatial organization of a 3D scene within the rendering pipeline. As a perceptual justification, it is argued that a local contrast enhancement made with unsharp masking is related to the Cornsweet illusion, and that this may explain its effect on apparent contrast.