22 results
Search Results
Now showing 1 - 10 of 22
Item MTV-Player: Interactive Spatio-Temporal Exploration of Compressed Large-Scale Time-Varying Rectilinar Scalar Volumes(The Eurographics Association, 2019) Díaz, Jose; Marton, Fabio; Gobbetti, Enrico; Agus, Marco and Corsini, Massimiliano and Pintus, RuggeroWe present an approach for supporting fully interactive exploration of massive time-varying rectilinear scalar volumes on commodity platforms. We decompose each frame into a forest of bricked octrees. Each brick is further subdivided into smaller blocks, which are compactly approximated by quantized variable-length sparse linear combinations of prototype blocks stored in a data-dependent dictionary learned from the input sequence. This variable bit-rate compact representation, obtained through a tolerance-driven learning and approximation process, is stored in a GPU-friendly format that supports direct adaptive streaming to the GPU with spatial and temporal random access. An adaptive compression-domain renderer closely coordinates off-line data selection, streaming, decompression, and rendering. The resulting system provides total control over the spatial and temporal dimensions of the data, supporting the same exploration metaphor as traditional video players. Since we employ a highly compressed representation, the bandwidth provided by current commodity platforms proves sufficient to fully stream and render dynamic representations without relying on partial updates, thus avoiding any unwanted dynamic effects introduced by current incremental loading approaches. Moreover, our variable-rate encoding based on sparse representations provides high-quality approximations, while offering real-time decoding and rendering performance. The quality and performance of our approach is demonstrated on massive time-varying datasets at the terascale, which are nonlinearly explored at interactive rates on a commodity graphics PC.Item SynthPS: a Benchmark for Evaluation of Photometric Stereo Algorithms for Cultural Heritage Applications(The Eurographics Association, 2020) Dulecha, Tinsae Gebrechristos; Pintus, Ruggero; Gobbetti, Enrico; Giachetti, Andrea; Spagnuolo, Michela and Melero, Francisco JavierPhotometric Stereo (PS) is a technique for estimating surface normals from a collection of images captured from a fixed viewpoint and with variable lighting. Over the years, several methods have been proposed for the task, trying to cope with different materials, lights, and camera calibration issues. An accurate evaluation and selection of the best PS methods for different materials and acquisition setups is a fundamental step for the accurate quantitative reconstruction of objects' shapes. In particular, it would boost quantitative reconstruction in the Cultural Heritage domain, where a large amount of Multi-Light Image Collections are captured with light domes or handheld Reflectance Transformation Imaging protocols. However, the lack of benchmarks specifically designed for this goal makes it difficult to compare the available methods and choose the most suitable technique for practical applications. An ideal benchmark should enable the evaluation of the quality of the reconstructed normals on the kind of surfaces typically captured in real-world applications, possibly evaluating performance variability as a function of material properties, light distribution, and image quality. The evaluation should not depend on light and camera calibration issues. In this paper, we propose a benchmark of this kind, SynthPS, which includes synthetic, physically-based renderings of Cultural Heritage object models with different assigned materials. SynthPS allowed us to evaluate the performance of classical, robust and learning-based Photometric Stereo approaches on different materials with different light distributions, also analyzing their robustness against errors typically arising in practical acquisition settings, including robustness against gamma correction and light calibration errors.Item SPIDER: SPherical Indoor DEpth Renderer(The Eurographics Association, 2022) Tukur, Muhammad; Pintore, Giovanni; Gobbetti, Enrico; Schneider, Jens; Agus, Marco; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoToday's Extended Reality (XR) applications that call for specific Diminished Reality (DR) strategies to hide specific classes of objects are increasingly using 360? cameras, which can capture entire areas in a single picture. In this work, we present an interactive-based image editing and rendering system named SPIDER, that takes a spherical 360? indoor scene as input. The system incorporates the output of deep learning models to abstract the segmentation and depth images of full and empty rooms to allow users to perform interactive exploration and basic editing operations on the reconstructed indoor scene, namely: i) rendering of the scene in various modalities (point cloud, polygonal, wireframe) ii) refurnishing (transferring portions of rooms) iii) deferred shading through the usage of precomputed normal maps. These kinds of scene editing and manipulations can be used for assessing the inference from deep learning models and enable several Mixed Reality (XR) applications in areas such as furniture retails, interior designs, and real estates. Moreover, it can also be useful in data augmentation, arts, designs, and paintings.Item A Novel Approach for Exploring Annotated Data With Interactive Lenses(The Eurographics Association and John Wiley & Sons Ltd., 2021) Bettio, Fabio; Ahsan, Moonisa; Marton, Fabio; Gobbetti, Enrico; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe introduce a novel approach for assisting users in exploring 2D data representations with an interactive lens. Focus-andcontext exploration is supported by translating user actions to the joint adjustments in camera and lens parameters that ensure a good placement and sizing of the lens within the view. This general approach, implemented using standard device mappings, overcomes the limitations of current solutions, which force users to continuously switch from lens positioning and scaling to view panning and zooming. Navigation is further assisted by exploiting data annotations. In addition to traditional visual markups and information links, we associate to each annotation a lens configuration that highlights the region of interest. During interaction, an assisting controller determines the next best lens in the database based on the current view and lens parameters and the navigation history. Then, the controller interactively guides the user's lens towards the selected target and displays its annotation markup. As only one annotation markup is displayed at a time, clutter is reduced. Moreover, in addition to guidance, the navigation can also be automated to create a tour through the data. While our methods are generally applicable to general 2D visualization, we have implemented them for the exploration of stratigraphic relightable models. The capabilities of our approach are demonstrated in cultural heritage use cases. A user study has been performed in order to validate our approach.Item Aging Prediction of Cultural Heritage Samples Based on Surface Microgeometry(The Eurographics Association, 2018) Ciortan, Irina Mihaela; Marchioro, Giacomo; Daffara, Claudia; Pintus, Ruggero; Gobbetti, Enrico; Giachetti, Andrea; Sablatnig, Robert and Wimmer, MichaelA critical and challenging aspect for the study of Cultural Heritage (CH) assets is related to the characterization of the materials that compose them and to the variation of these materials with time. In this paper, we exploit a realistic dataset of artificially aged metallic samples treated with different coatings commonly used for artworks' protection in order to evaluate different approaches to extract material features from high-resolution depth maps. In particular, we estimated, on microprofilometric surface acquisitions of the samples, performed at different aging steps, standard roughness descriptors used in materials science as well as classical and recent image texture descriptors. We analyzed the ability of the features to discriminate different aging steps and performed supervised classification tests showing the feasibility of a texture-based aging analysis and the effectiveness of coatings in reducing the surfaces' change with time.Item Objective and Subjective Evaluation of Virtual Relighting from Reflectance Transformation Imaging Data(The Eurographics Association, 2018) Pintus, Ruggero; Dulecha, Tinsae; Jaspe, Alberto; Giachetti, Andrea; Ciortan, Irina; Gobbetti, Enrico; Sablatnig, Robert and Wimmer, MichaelReflectance Transformation Imaging (RTI) is widely used to produce relightable models from multi-light image collections. These models are used for a variety of tasks in the Cultural Heritage field. In this work, we carry out an objective and subjective evaluation of RTI data visualization. We start from the acquisition of a series of objects with different geometry and appearance characteristics using a common dome-based configuration. We then transform the acquired data into relightable representations using different approaches: PTM, HSH, and RBF. We then perform an objective error estimation by comparing ground truth images with relighted ones in a leave-one-out framework using PSNR and SSIM error metrics. Moreover, we carry out a subjective investigation through perceptual experiments involving end users with a variety of backgrounds. Objective and subjective tests are shown to behave consistently, and significant differences are found between the various methods. While the proposed analysis has been performed on three common and state-of-the-art RTI visualization methods, our approach is general enough to be extended and applied in the future to new developed multi-light processing pipelines and rendering solutions, to assess their numerical precision and accuracy, and their perceptual visual quality.Item Web-based Multi-layered Exploration of Annotated Image-based Shape and Material Models(The Eurographics Association, 2019) Villanueva, Alberto Jaspe; Pintus, Ruggero; Giachetti, Andrea; Gobbetti, Enrico; Rizvic, Selma and Rodriguez Echavarria, KarinaWe introduce a novel versatile approach for letting users explore detailed image-based shape and material models integrated with structured, spatially-associated descriptive information. We represent the objects of interest as a series of registered layers of image-based shape and material information. These layers are represented at multiple scales, and can come out of a variety of pipelines and include both RTI representations and spatially-varying normal and BRDF fields, eventually as a result of fusing multi-spectral data. An overlay image pyramid associates visual annotations to the various scales. The overlay pyramid of each layer can be easily authored at data preparation time using widely available image editing tools. At run-time, an annotated multi-layered dataset is made available to clients by a standard web server. Users can explore these datasets on a variety of devices, from mobile phones to large scale displays in museum installations, using JavaScript/WebGL2 clients capable to perform layer selection, interactive relighting and enhanced visualization, annotation display, and focus-and-context multiple-layer exploration using a lens metaphor. The capabilities of our approach are demonstrated on a variety of cultural heritage use cases involving different kinds of annotated surface and material models.Item Interactive Volumetric Visual Analysis of Glycogen-derived Energy Absorption in Nanometric Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2019) Agus, Marco; Calì, Corrado; Al-Awami, Ali K.; Gobbetti, Enrico; Magistretti, Pierre J.; Hadwiger, Markus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeDigital acquisition and processing techniques are changing the way neuroscience investigation is carried out. Emerging applications range from statistical analysis on image stacks to complex connectomics visual analysis tools targeted to develop and test hypotheses of brain development and activity. In this work, we focus on neuroenergetics, a field where neuroscientists analyze nanoscale brain morphology and relate energy consumption to glucose storage in form of glycogen granules. In order to facilitate the understanding of neuroenergetic mechanisms, we propose a novel customized pipeline for the visual analysis of nanometric-level reconstructions based on electron microscopy image data. Our framework supports analysis tasks by combining i) a scalable volume visualization architecture able to selectively render image stacks and corresponding labelled data, ii) a method for highlighting distance-based energy absorption probabilities in form of glow maps, and iii) a hybrid connectivitybased and absorption-based interactive layout representation able to support queries for selective analysis of areas of interest and potential activity within the segmented datasets. This working pipeline is currently used in a variety of studies in the neuroenergetics domain. Here, we discuss a test case in which the framework was successfully used by domain scientists for the analysis of aging effects on glycogen metabolism, extracting knowledge from a series of nanoscale brain stacks of rodents somatosensory cortex.Item InShaDe: Invariant Shape Descriptors for Visual Analysis of Histology 2D Cellular and Nuclear Shapes(The Eurographics Association, 2020) Agus, Marco; Al-Thelaya, Khaled; Cali, Corrado; Boido, Marina M.; Yang, Yin; Pintore, Giovanni; Gobbetti, Enrico; Schneider, Jens; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe present a shape processing framework for visual exploration of cellular nuclear envelopes extracted from histology images. The framework is based on a novel shape descriptor of closed contours relying on a geodesically uniform resampling of discrete curves to allow for discrete differential-geometry-based computation of unsigned curvature at vertices and edges. Our descriptor is, by design, invariant under translation, rotation and parameterization. Moreover, it additionally offers the option for uniform-scale-invariance. The optional scale-invariance is achieved by scaling features to z-scores, while invariance under parameterization shifts is achieved by using elliptic Fourier analysis (EFA) on the resulting curvature vectors. These invariant shape descriptors provide an embedding into a fixed-dimensional feature space that can be utilized for various applications: (i) as input features for deep and shallow learning techniques; (ii) as input for dimension reduction schemes for providing a visual reference for clustering collection of shapes. The capabilities of the proposed framework are demonstrated in the context of visual analysis and unsupervised classification of histology images.Item Automatic Surface Segmentation for Seamless Fabrication Using 4-axis Milling Machines(The Eurographics Association and John Wiley & Sons Ltd., 2021) Nuvoli, Stefano; Tola, Alessandro; Muntoni, Alessandro; Pietroni, Nico; Gobbetti, Enrico; Scateni, Riccardo; Mitra, Niloy and Viola, IvanWe introduce a novel geometry-processing pipeline to guide the fabrication of complex shapes from a single block of material using 4-axis CNC milling machines. This setup extends classical 3-axis CNC machining with an extra degree of freedom to rotate the object around a fixed axis. The first step of our pipeline identifies the rotation axis that maximizes the overall fabrication accuracy. Then we identify two height-field regions at the rotation axis's extremes used to secure the block on the rotation tool. We segment the remaining portion of the mesh into a set of height-fields whose principal directions are orthogonal to the rotation axis. The segmentation balances the approximation quality, the boundary smoothness, and the total number of patches. Additionally, the segmentation process takes into account the object's geometric features, as well as saliency information. The output is a set of meshes ready to be processed by off-the-shelf software for the 3-axis tool-path generation. We present several results to demonstrate the quality and efficiency of our approach to a range of inputs
- «
- 1 (current)
- 2
- 3
- »