136 results
Search Results
Now showing 1 - 10 of 136
Item DASH: Visual Analytics for Debiasing Image Classification via User-Driven Synthetic Data Augmentation(The Eurographics Association, 2022) Kwon, Bum Chul; Lee, Jungsoo; Chung, Chaeyeon; Lee, Nyoungwoo; Choi, Ho-Jin; Choo, Jaegul; Agus, Marco; Aigner, Wolfgang; Hoellt, ThomasImage classification models often learn to predict a class based on irrelevant co-occurrences between input features and an output class in training data. We call the unwanted correlations ''data biases,'' and the visual features causing data biases ''bias factors.'' It is challenging to identify and mitigate biases automatically without human intervention. Therefore, we conducted a design study to find a human-in-the-loop solution. First, we identified user tasks that capture the bias mitigation process for image classification models with three experts. Then, to support the tasks, we developed a visual analytics system called DASH that allows users to visually identify bias factors, to iteratively generate synthetic images using a state-of-the-art image-toimage translation model, and to supervise the model training process for improving the classification accuracy. Our quantitative evaluation and qualitative study with ten participants demonstrate the usefulness of DASH and provide lessons for future work.Item PerSleep: A Visual Analytics Approach for Performance Assessment of Sleep Staging Models(The Eurographics Association, 2021) Garcia Caballero, Humberto S.; Corvò, Alberto; Meulen, Fokke van; Fonseca, Pedro; Overeem, Sebasitaan; Wijk, Jarke J. van; Westenberg, Michel A.; Oeltze-Jafra, Steffen and Smit, Noeska N. and Sommer, Björn and Nieselt, Kay and Schultz, ThomasMachine learning is becoming increasingly popular in the medical domain. In the near future, clinicians expect predictive models to support daily tasks such as diagnosis and prognostic analysis. For this reason, it is utterly important to evaluate and compare the performance of such models so that clinicians can safely rely on them. In this paper, we focus on sleep staging wherein machine learning models can be used to automate or support sleep scoring. Evaluation of these models is complex because sleep is a natural process, which varies among patients. For adoption in clinical routine, it is important to understand how the models perform for different groups of patients. Moreover, models can be trained to recognize different characteristics in the data, and model developers need to understand why and how performance of the different models varies. To address these challenges, we present a visual analytics approach to evaluate the performance of predictive models on sleep staging and to help experts better understand these models with respect to patient data (e.g., conditions, medication, etc.). We illustrate the effectiveness of our approach by comparing multiple models trained on real-world sleep staging data with experts.Item Interactions for Seamlessly Coupled Exploration of High-Dimensional Images and Hierarchical Embeddings(The Eurographics Association, 2023) Vieth, Alexander; Lelieveldt, Boudewijn; Eisemann, Elmar; Vilanova, Anna; Höllt, Thomas; Guthe, Michael; Grosch, ThorstenHigh-dimensional images (i.e., with many attributes per pixel) are commonly acquired in many domains, such as geosciences or systems biology. The spatial and attribute information of such data are typically explored separately, e.g., by using coordinated views of an image representation and a low-dimensional embedding of the high-dimensional attribute data. Facing ever growing image data sets, hierarchical dimensionality reduction techniques lend themselves to overcome scalability issues. However, current embedding methods do not provide suitable interactions to reflect image space exploration. Specifically, it is not possible to adjust the level of detail in the embedding hierarchy to reflect changing level of detail in image space stemming from navigation such as zooming and panning. In this paper, we propose such a mapping from image navigation interactions to embedding space adjustments. We show how our mapping applies the "overview first, details-on-demand" characteristic inherent to image exploration in the high-dimensional attribute space. We compare our strategy with regular hierarchical embedding technique interactions and demonstrate the advantages of linking image and embedding interactions through a representative use case.Item KidCAD: An Interactive Cohort Analysis Dashboard of Patients with Chronic Kidney Diseases(The Eurographics Association, 2023) Höhn, Markus; Schwindt, Sarah; Hahn, Sara; Patyna, Sammy; Büttner, Stefan; Kohlhammer, Jörn; Angelini, Marco; El-Assady, MennatallahChronic Kidney Diseases (CKD) are a prominent health problem. With an ongoing process, CKD leads to impaired kindey function with decreased ability to filter the patients' blood, concluding in multiple complications, like heart disease and finally death. We developed a prototype to support nephrologists to gain an overview of their CKD patients. The prototype visualizes the patients in cohorts according to their pairwise similarity. The user can interactively modify the similarity by changing the underlying weights of the included features. The prototype was developed in response to the needs of physicians due to a context of use analysis. A qualitative user study shows the need and suitability of our new approach.Item Peeking at Visualization Research on Information Diffusion(The Eurographics Association, 2024) Usul, Mert; Arleo, Alessio; Kucher, Kostiantyn; Diehl, Alexandra; Gillmann, ChristinaDiffusion Processes are a widely researched topic of interest to different scientific domains. One of the most popular research directions is Information Diffusion, pertaining how information spreads over a tightly connected network. From the modeling perspective, many different approaches are known in the literature; however, in the visualization community, this still represents an under-investigated problem. In this work, we present a succinct overview of the current state-of-the-art in Visual Analytics techniques employed in representing and understanding diffusion processes happening over networks. We consider different application domains and introduce a taxonomy that categorizes and provides structure to our selection of papers, fostering further research in the field of Visual Analytics of Information Diffusion processes.Item Immersive Analytics of Heterogeneous Biological Data Informed through Need-finding Interviews(The Eurographics Association, 2021) Ripken, Christine; Tusk, Sebastian; Tominski, Christian; Vrotsou, Katerina and Bernard, JürgenThe goal of this work is to improve existing biological analysis processes by means of immersive analytics. In a first step, we conducted need-finding interviews with 12 expert biologists to understand the limits of current practices and identify the requirements for an enhanced immersive analysis. Based on the gained insights, a novel immersive analytics solution is being developed that enables biologists to explore highly interrelated biological data, including genomes, transcriptomes, and phenomes. We use an abstract tabular representation of heterogeneous data projected onto a curved virtual wall. Several visual and interactive mechanisms are offered to allow biologists to get an overview of large data, to access details and additional information on the fly, to compare selected parts of the data, and to navigate up to about 5 million data values in real-time. Although a formal user evaluation is still pending, initial feedback indicates that our solution can be useful to expert biologists.Item TourVis: Narrative Visualization of Multi-Stage Bicycle Races(The Eurographics Association and John Wiley & Sons Ltd., 2021) DÃaz, Jose; Fort, Marta; Vázquez, Pere-Pau; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonThere are many multiple-stage racing competitions in various sports such as swimming, running, or cycling. The wide availability of affordable tracking devices facilitates monitoring the position along with the race of all participants, even for non-professional contests. Getting real-time information of contenders is useful but also unleashes the possibility of creating more complex visualization systems that ease the understanding of the behavior of all participants during a simple stage or throughout the whole competition. In this paper we focus on bicycle races, which are highly popular, especially in Europe, being the Tour de France its greatest exponent. Current visualizations from TV broadcasting or real-time tracking websites are useful to understand the current stage status, up to a certain extent. Unfortunately, still no current system exists that visualizes a whole multi-stage contest in such a way that users can interactively explore the relevant events of a single stage (e.g. breakaways, groups, virtual leadership: : :), as well as the full competition. In this paper, we present an interactive system that is useful both for aficionados and professionals to visually analyze the development of multi-stage cycling competitions.Item Scaling Up the Explanation of Multidimensional Projections(The Eurographics Association, 2023) Thijssen, Julian; Tian, Zonglin; Telea, Alexandru; Angelini, Marco; El-Assady, MennatallahWe present a set of interactive visual analysis techniques aiming at explaining data patterns in multidimensional projections. Our novel techniques include a global value-based encoding that highlights point groups having outlier values in any dimension as well as several local tools that provide details on the statistics of all dimensions for a user-selected projection area. Our techniques generically apply to any projection algorithm and scale computationally well to hundreds of thousands of points and hundreds of dimensions. We describe a user study that shows that our visual tools can be quickly learned and applied by users to obtain non-trivial insights in real-world multidimensional datasets.Item Progressive Multidimensional Projections: A Process Model based on Vector Quantization(The Eurographics Association, 2020) Ventocilla, Elio Alejandro; Martins, Rafael M.; Paulovich, Fernando V.; Riveiro, Maria; Archambault, Daniel and Nabney, Ian and Peltonen, JaakkoAs large datasets become more common, so becomes the necessity for exploratory approaches that allow iterative, trial-anderror analysis. Without such solutions, hypothesis testing and exploratory data analysis may become cumbersome due to long waiting times for feedback from computationally-intensive algorithms. This work presents a process model for progressive multidimensional projections (P-MDPs) that enables early feedback and user involvement in the process, complementing previous work by providing a lower level of abstraction and describing the specific elements that can be used to provide early system feedback, and those which can be enabled for user interaction. Additionally, we outline a set of design constraints that must be taken into account to ensure the usability of a solution regarding feedback time, visual cluttering, and the interactivity of the view. To address these constraints, we propose the use of incremental vector quantization (iVQ) as a core step within the process. To illustrate the feasibility of the model, and the usefulness of the proposed iVQ-based solution, we present a prototype that demonstrates how the different usability constraints can be accounted for, regardless of the size of a dataset.Item Interweaving Data and Stories: A Case Study on Unveiling the Human Dimension of U.S. Refugee Movements through Narrative Visualisation(The Eurographics Association, 2023) Ogbonda, Ebube Glory; Roberts, Jonathan C.; Butcher, Peter W. S.; Vangorp, Peter; Hunter, DavidIn response to the escalating global refugee crisis, we present a case-study of developing an advanced tool for interpreting high-dimensional refugee data. Developed using Mapbox and D3.js, our interactive visualisation harmonises geographical and temporal dimensions of U.S. refugee data from the State Department's Refugee Processing Center. Our modular approach and robust data preprocessing enable seamless interactions among diverse visual components. The result is a narrative-driven visualisation that reveals broad immigration trends and individual refugee movements, fostering a nuanced and empathetic understanding of refugee dynamics. This work highlights the power of narrative visualisations in shaping policy decisions and promoting global discourse on the refugee crisis, marking a significant leap in data visualisation for refugee and immigration challenges.