Search Results

Now showing 1 - 10 of 100
  • Item
    Edge-Friend: Fast and Deterministic Catmull-Clark Subdivision Surfaces
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Kuth, Bastian; Oberberger, Max; Chajdas, Matthäus; Meyer, Quirin; Bikker, Jacco; Gribble, Christiaan
    We present edge-friend, a data structure for quad meshes with access to neighborhood information required for Catmull-Clark subdivision surface refinement. Edge-friend enables efficient real-time subdivision surface rendering. In particular, the resulting algorithm is deterministic, does not require hardware support for atomic floating-point arithmetic, and is optimized for efficient rendering on GPUs. Edge-friend exploits that after one subdivision step, two edges can be uniquely and implicitly assigned to each quad. Additionally, edge-friend is a compact data structure, adding little overhead. Our algorithm is simple to implement in a single compute shader kernel, and requires minimal synchronization which makes it particularly suited for asynchronous execution. We easily extend our kernel to support relevant Catmull-Clark subdivision surface features, including semi-smooth creases, boundaries, animation and attribute interpolation. In case of topology changes, our data structure requires little preprocessing, making it amendable for a variety of applications, including real-time editing and animations. Our method can process and render billions of triangles per second on modern GPUs. For a sample mesh, our algorithm generates and renders 2.9 million triangles in 0.58ms on an AMD Radeon RX 7900 XTX GPU.
  • Item
    Dense 3D Gaussian Splatting Initialization for Sparse Image Data
    (The Eurographics Association, 2024) Seibt, Simon; Chang, Thomas Vincent Siu-Lung; von Rymon Lipinski, Bartosz ; Latoschik, Marc Erich; Liu, Lingjie; Averkiou, Melinos
    This paper presents advancements in novel-view synthesis with 3D Gaussian Splatting (3DGS) using a dense and accurate SfM point cloud initialization approach. We address the challenge of achieving photorealistic renderings from sparse image data, where basic 3DGS training may result in suboptimal convergence, thus leading to visual artifacts. The proposed method enhances precision and density of initially reconstructed point clouds by refining 3D positions and extrapolating additional points, even for difficult image regions, e.g. with repeating patterns and suboptimal visual coverage. Our contributions focus on improving ''Dense Feature Matching for Structure-from-Motion'' (DFM4SfM) based on a homographic decomposition of the image space to support 3DGS training: First, a grid-based feature detection method is introduced for DFM4SfM to ensure a welldistributed 3D Gaussian initialization uniformly over all depth planes. Second, the SfM feature matching is complemented by a geometric plausibility check, priming the homography estimation and thereby improving the initial placement of 3D Gaussians. Experimental results on the NeRF-LLFF dataset demonstrate that this approach achieves superior qualitative and quantitative results, even for fewer views, and the potential for a significantly accelerated 3DGS training with faster convergence.
  • Item
    Single-Image SVBRDF Estimation with Learned Gradient Descent
    (The Eurographics Association and John Wiley & Sons Ltd., 2024) Luo, Xuejiao; Scandolo, Leonardo; Bousseau, Adrien; Eisemann, Elmar; Bermano, Amit H.; Kalogerakis, Evangelos
    Recovering spatially-varying materials from a single photograph of a surface is inherently ill-posed, making the direct application of a gradient descent on the reflectance parameters prone to poor minima. Recent methods leverage deep learning either by directly regressing reflectance parameters using feed-forward neural networks or by learning a latent space of SVBRDFs using encoder-decoder or generative adversarial networks followed by a gradient-based optimization in latent space. The former is fast but does not account for the likelihood of the prediction, i.e., how well the resulting reflectance explains the input image. The latter provides a strong prior on the space of spatially-varying materials, but this prior can hinder the reconstruction of images that are too different from the training data. Our method combines the strengths of both approaches. We optimize reflectance parameters to best reconstruct the input image using a recurrent neural network, which iteratively predicts how to update the reflectance parameters given the gradient of the reconstruction likelihood. By combining a learned prior with a likelihood measure, our approach provides a maximum a posteriori estimate of the SVBRDF. Our evaluation shows that this learned gradient-descent method achieves state-of-the-art performance for SVBRDF estimation on synthetic and real images.
  • Item
    Video-Driven Animation of Neural Head Avatars
    (The Eurographics Association, 2023) Paier, Wolfgang; Hinzer, Paul; Hilsmann, Anna; Eisert, Peter; Guthe, Michael; Grosch, Thorsten
    We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture.We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.
  • Item
    World-Space Spatiotemporal Path Resampling for Path Tracing
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhang, Hangyu; Wang, Beibei; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.
    With the advent of hardware-accelerated ray tracing, more and more real-time rendering applications tend to render images with ray-traced global illumination (GI). However, the low sample counts at real-time framerates bring enormous challenges to existing path sampling methods. Recent work (ReSTIR GI) samples indirect illumination effectively with a dramatic bias reduction. However, as a screen-space based path resampling approach, it can only reuse the path at the first bounce and brings subtle benefits for complex scenes. To this end, we propose a world-space based spatiotemporal path resampling approach. Our approach caches more path samples into a world-space grid, which allows reusing sub-path starting from non-primary path vertices. Furthermore, we introduce a practical normal-aware hash grid construction approach, providing more efficient candidate samples for path resampling. Eventually, our method achieves improvements ranging from 16.6% to 41.9% in terms of mean squared errors (MSE) compared against the previous method with only 4.4% ~ 8.4% extra time cost.
  • Item
    Minimal Convolutional Neural Networks for Temporal Anti Aliasing
    (The Eurographics Association, 2023) Herveau, Killian; Piochowiak, Max; Dachsbacher, Carsten; Bikker, Jacco; Gribble, Christiaan
    Existing deep learning methods for performing temporal anti aliasing (TAA) in rendering are either closed source or rely on upsampling networks with a large operation count which are expensive to evaluate. We propose a simple deep learning architecture for TAA combining only a few common primitives, easy to assemble and to change for application needs. We use a fully-convolutional neural network architecture with recurrent temporal feedback, motion vectors and depth values as input and show that a simple network can produce satisfactory results. Our architecture template, for which we provide code, introduces a method that adapts to different temporal subpixel offsets for accumulation without increasing the operation count. To this end, convolutional layers cycle through a set of different weights per temporal subpixel offset while their operations remain fixed. We analyze the effect of this method on image quality and present different tradeoffs for adapting the architecture. We show that our simple network performs remarkably better than variance clipping TAA, eliminating both flickering and ghosting without performing upsampling.
  • Item
    Spectral Upsampling Approaches for RGB Illumination
    (The Eurographics Association, 2022) Guarnera, Giuseppe Claudio; Gitlina, Yuliya; Deschaintre, Valentin; Ghosh, Abhijeet; Ghosh, Abhijeet; Wei, Li-Yi
    We present two practical approaches for high fidelity spectral upsampling of previously recorded RGB illumination in the form of an image-based representation such as an RGB light probe. Unlike previous approaches that require multiple measurements with a spectrometer or a reference color chart under a target illumination environment, our method requires no additional information for the spectral upsampling step. Instead, we construct a data-driven basis of spectral distributions for incident illumination from a set of six RGBW LEDs (three narrowband and three broadband) that we employ to represent a given RGB color using a convex combination of the six basis spectra. We propose two different approaches for estimating the weights of the convex combination using – (a) genetic algorithm, and (b) neural networks. We additionally propose a theoretical basis consisting of a set of narrow and broad Gaussians as a generalization of the approach, and also evaluate an alternate LED basis for spectral upsampling. We achieve good qualitative matches of the predicted illumination spectrum using our spectral upsampling approach to ground truth illumination spectrum while achieving near perfect matching of the RGB color of the given illumination in the vast majority of cases. We demonstrate that the spectrally upsampled RGB illumination can be employed for various applications including improved lighting reproduction as well as more accurate spectral rendering.
  • Item
    Efficient High-Quality Rendering of Ribbons and Twisted Lines
    (The Eurographics Association, 2022) Neuhauser, Christoph; Wang, Junpeng; Kern, Michael; Westermann, Rüdiger; Bender, Jan; Botsch, Mario; Keim, Daniel A.
    Flat twisting ribbons are often used for visualizing twists along lines in 3D space. Flat ribbons can disappear when looking at them under oblique angles, and they introduce flickering due to aliasing during animations. We demonstrate that this limitation can be overcome by procedurally rendering generalized cylinders with elliptic profiles. By adjusting the length of the cylinder's semi-minor axis, the ribbon thickness can be controlled so that it always remains visible. The proposed rendering approach further enables the visualization of twists via the projection of a line spiralling around the cylinder's center line. In contrast to texture mapping, this keeps the line width fixed, regardless of the strength of the twist, and provides efficient control over the spiralling frequency and coloring between the twisting lines. The proposed rendering approach can be performed efficiently on recent GPUs by exploiting programmable pulling, mesh shaders and hardware-accelerated ray tracing.
  • Item
    Ray-aligned Occupancy Map Array for Fast Approximate Ray Tracing
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Zeng, Zheng; Xu, Zilin; Wang, Lu; Wu, Lifan; Yan, Ling-Qi; Ritschel, Tobias; Weidlich, Andrea
    We present a new software ray tracing solution that efficiently computes visibilities in dynamic scenes. We first introduce a novel scene representation: ray-aligned occupancy map array (ROMA) that is generated by rasterizing the dynamic scene once per frame. Our key contribution is a fast and low-divergence tracing method computing visibilities in constant time, without constructing and traversing the traditional intersection acceleration data structures such as BVH. To further improve accuracy and alleviate aliasing, we use a spatiotemporal scheme to stochastically distribute the candidate ray samples. We demonstrate the practicality of our method by integrating it into a modern real-time renderer and showing better performance compared to existing techniques based on distance fields (DFs). Our method is free of the typical artifacts caused by incomplete scene information, and is about 2.5×-10× faster than generating and tracing DFs at the same resolution and equal storage.
  • Item
    Hand Shadow Art: A Differentiable Rendering Perspective
    (The Eurographics Association, 2023) Gangopadhyay, Aalok; Singh, Prajwal; Tiwari, Ashish; Raman, Shanmuganathan; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.
    Shadow art is an exciting form of sculptural art that produces captivating artistic effects through the 2D shadows cast by 3D shapes. Hand shadows, also known as shadow puppetry or shadowgraphy, involve creating various shapes and figures using your hands and fingers to cast meaningful shadows on a wall. In this work, we propose a differentiable rendering-based approach to deform hand models such that they cast a shadow consistent with a desired target image and the associated lighting configuration. We showcase the results of shadows cast by a pair of two hands and the interpolation of hand poses between two desired shadow images. We believe that this work will be a useful tool for the graphics community.