Search Results

Now showing 1 - 10 of 203
  • Item
    Interactive Low-Cost Wind Simulation For Cities
    (The Eurographics Association, 2016) Rando, Eduard; Muñoz, Imanol; Patow, Gustavo; Vincent Tourre and Filip Biljecki
    Wind is an ubiquitous phenomenon on earth, and its behavior is well studied in many fields. However, its study inside a urban landscape remains an elusive target for large areas given the high complexity of the interactions between wind and buildings. In this paper we propose a lightweight 2D wind simulation in cities that is efficient enough to run at interactive frame-rates, but also accurate enough to provide some prediction capabilities. The proposed algorithm is based on the Lattice-Boltzmann Method (LBM), which consists of a regular lattice that represents the fluid in discrete locations, and a set of equations to simulate its flow. We perform all the computations of the LBM in CUDA on graphics processors for accelerating the calculations.
  • Item
    Geometry and Attribute Compression for Voxel Scenes
    (The Eurographics Association and John Wiley & Sons Ltd., 2016) Dado, Bas; Kol, Timothy R.; Bauszat, Pablo; Thiery, Jean-Marc; Eisemann, Elmar; Joaquim Jorge and Ming Lin
    Voxel-based approaches are today's standard to encode volume data. Recently, directed acyclic graphs (DAGs) were successfully used for compressing sparse voxel scenes as well, but they are restricted to a single bit of (geometry) information per voxel. We present a method to compress arbitrary data, such as colors, normals, or reflectance information. By decoupling geometry and voxel data via a novel mapping scheme, we are able to apply the DAG principle to encode the topology, while using a palette-based compression for the voxel attributes, leading to a drastic memory reduction. Our method outperforms existing state-of-the-art techniques and is well-suited for GPU architectures. We achieve real-time performance on commodity hardware for colored scenes with up to 17 hierarchical levels (a 128K3 voxel resolution), which are stored fully in core.
  • Item
    Elasticity-based Clustering for Haptic Interaction with Heterogeneous Deformable Objects
    (The Eurographics Association, 2017) Gouis, Benoît Le; Marchal, Maud; Lécuyer, Anatole; Arnaldi, Bruno; Fabrice Jaillet and Florence Zara
    Physically-based simulation of heterogeneous objects remains computationally-demanding for many applications, especially when involving haptic interaction with virtual environments. In this paper, we introduce a novel multiresolution approach for haptic interaction with heterogeneous deformable objects. Our method called "Elasticity-based Clustering" is based on the clustering and aggregation of elasticity inside an object, in order to create large homogeneous volumes preserving important features of the initial distribution. The design of such large and homogeneous volumes improves the attribution of elasticity to the elements of the coarser geometry. We could successfully implement and test our approach within a complete and real-time haptic interaction pipeline compatible with consumer-grade haptic devices. We evaluated the performance of our approach on a large set of elasticity configurations using a perception-based quality criterion. Our results show that for 90% of studied cases our method can achieve a 6 times speedup in the simulation time with no theoretical perceptual difference.
  • Item
    MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields
    (The Eurographics Association and John Wiley & Sons Ltd., 2016) Günther, Tobias; Kuhn, Alexander; Theisel, Holger; Kwan-Liu Ma and Giuseppe Santucci and Jarke van Wijk
    Traditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE) are precomputed on a discrete grid and are ray casted afterwards. This, however, introduces both grid discretization errors and sampling errors during ray marching. In this work, we apply a progressive, view-dependent Monte Carlo-based approach for the visualization of such Lagrangian fields in time-dependent flows. Our approach avoids grid discretization and ray marching errors completely, is consistent, and has a low memory consumption. The system provides noisy previews that converge over time to an accurate high-quality visualization. Compared to traditional approaches, the proposed system avoids explicitly predefined fieldline seeding structures, and uses a Monte Carlo sampling strategy named Woodcock tracking to distribute samples along the view ray. An acceleration of this sampling strategy requires local upper bounds for the FTLE values, which we progressively acquire during the rendering. Our approach is tailored for high-quality visualizations of complex FTLE fields and is guaranteed to faithfully represent detailed ridge surface structures as indicators for Lagrangian coherent structures (LCS). We demonstrate the effectiveness of our approach by using a set of analytic test cases and real-world numerical simulations.
  • Item
    Predictive Modeling of Material Appearance: From the Drawing Board to Interdisciplinary Applications
    (The Eurographics Association, 2024) Baranoski, Gladimir V. G.; Mania, Katerina; Artusi, Alessandro
    This tutorial addresses one of the fundamental and timely topics of computer graphics research, namely the predictive modeling of material appearance. Although this topic is deeply rooted in traditional areas like rendering and natural phenomena simulation, this tutorial is not limited to cover contents connected to these areas. It also closely looks into the scientific methodology employed in the development of predictive models of light and matter interactions. Given the widespread use of this methodology to find modeling solutions for problems within and outside computer graphics, its discussion from a ''behind the scenes'' perspective aims to underscore practical and far-reaching aspects of interdisciplinary research that are often overlooked in related publications. More specifically, this tutorial unveils constraints and pitfalls found in each of the key stages of the model development process, namely data collection, design and evaluation, and brings forward alternatives to tackle them effectively. Furthermore, besides being a central component of realistic image synthesis frameworks, predictive material appearance models have a scope of applications that can be extended far beyond the generation of believable images. For instance, they can be employed to accelerate the hypothesis generation and validation cycles of research across a wide range of fields, from biology and medicine to photonics and remote sensing, among others. These models can also be used to generate comprehensive in silico (computational) datasets to support the translation of knowledge advances in those fields to real-world applications (e.g., the noninvasive screening of medical conditions and the remote detection of environmental hazards). In fact, a number of them are already being used in physical and life sciences, notably to support investigations seeking to strengthen the current understanding about material appearance changes prompted by mechanisms which cannot be fully studied using standard ''wet'' experimental procedures. Accordingly, such interdisciplinary research initiatives are also discussed in this tutorial through selected case studies involving the use of predictive material appearance models to elucidate challenging scientific questions.
  • Item
    Minimal Sampling for Effective Acquisition of Anisotropic BRDFs
    (The Eurographics Association and John Wiley & Sons Ltd., 2016) Vávra, Radomir; Filip, Jiri; Eitan Grinspun and Bernd Bickel and Yoshinori Dobashi
    BRDFs are commonly used for material appearance representation in applications ranging from gaming and the movie industry, to product design and specification. Most applications rely on isotropic BRDFs due to their better availability as a result of their easier acquisition process. On the other hand, anisotropic BRDF due to their structure-dependent anisotropic highlights, are more challenging to measure and process. This paper thus leverages the measurement process of anisotropic BRDF by representing such BRDF by the collection of isotropic BRDFs. Our method relies on an anisotropic BRDF database decomposition into training isotropic slices forming a linear basis, where appropriate sparse samples are identified using numerical optimization. When an unknown anisotropic BRDF is measured, these samples are repeatably captured in a small set of azimuthal directions. All collected samples are then used for an entire measured BRDF reconstruction from a linear isotropic basis. Typically, below 100 samples are sufficient for the capturing of main visual features of complex anisotropic materials, and we provide a minimal directional samples to be regularly measured at each sample rotation. We conclude, that even simple setups relying on five bidirectional samples (maximum of five stationary sensors/lights) in combination with eight rotations (rotation stage for specimen) can yield a promising reconstruction of anisotropic behavior. Next, we outline extension of the proposed approach to adaptive sampling of anisotropic BRDF to gain even better performance. Finally, we show that our method allows using standard geometries, including industrial multi-angle reflectometers, for the fast measurement of anisotropic BRDFs.
  • Item
    A General Micro-flake Model for Predicting the Appearance of Car Paint
    (The Eurographics Association, 2016) Ergun, Serkan; Önel, Sermet; Ozturk, Aydin; Elmar Eisemann and Eugene Fiume
    We present an approximate model for predicting the appearance of car paint from its paint composition. Representing the appearance of car paint is not trivial because of its layered structure which is composed of anisotropic scattering media. The Radiative Transfer Equation (RTE) is commonly used to represent the multiple scattering for the underlying structures. A number of techniques including the Monte Carlo approach, the discrete ordinates, the adding-doubling method, the Eddington approximation, as well as the 2-stream and diffusion approximations have been proposed so far to improve visualization accuracy. Each of these techniques hold advantages over the others when their appropriate conditions are met. The adding-doubling method, in particular, is recognized to be computationally simple and accurate. Jakob et al. [JAM 10] has generalized the RTE for anisotropic scattering structures and proposed to use a micro-flake model based on double-sided specularly reflecting flakes. They also developed an anisotropic diffusion approximation to solve the corresponding RTE. In this paper, considering the translucent micro-flakes we proposed to use a modified version of the model which was developed by Jakob et al. We utilized the adding-doubling method instead of the diffusion-approximation for the new micro-flake model. The proposed approach also provided a good ground for data compression used in the evaluation of RTE. Empirical comparisons have been made to assess the accuracy and computational efficiency of the proposed model. Based on the sample data, we showed that our model provides visually satisfactory results for the appearance of multi-layered car paint.
  • Item
    Spatial Matching of Animated Meshes
    (The Eurographics Association and John Wiley & Sons Ltd., 2016) Seo, Hyewon; Cordier, Frederic; Eitan Grinspun and Bernd Bickel and Yoshinori Dobashi
    This paper presents a new technique which makes use of deformation and motion properties between animated meshes for finding their spatial correspondences. Given a pair of animated meshes exhibiting a semantically similar motion, we compute a sparse set of feature points on each mesh and compute spatial correspondences among them so that points with similar motion behavior are put in correspondence. At the core of our technique is our new, dynamic feature descriptor named AnimHOG, which encodes local deformation characteristics. AnimHOG is ob-tained by computing the gradient of a scalar field inside the spatiotemporal neighborhood of a point of interest, where the scalar values are obtained from the deformation characteristic associated with each vertex and at each frame. The final matching has been formulated as a discreet optimization problem that finds the matching of each feature point on the source mesh so that the descriptor similarity between the corresponding feature pairs as well as compatibility and consistency as measured across the pairs of correspondences are maximized. Consequently, reliable correspondences can be found even among the meshes of very different shape, as long as their motions are similar. We demonstrate the performance of our technique by showing the good quality of matching results we obtained on a number of animated mesh pairs.
  • Item
    C++ Compile Time Polymorphism for Ray Tracing
    (The Eurographics Association, 2017) Zellmann, Stefan; Lang, Ulrich; Matthias Hullin and Reinhard Klein and Thomas Schultz and Angela Yao
    Reducing the amount of conditional branching instructions in innermost loops is crucial for high performance code on contemporary hardware architectures. In the context of ray tracing algorithms, typical examples for branching in inner loops are the decisions what type of primitive a ray should be tested against for intersection, or which BRDF implementation should be evaluated at a point of intersection. Runtime polymorphism, which is often used in those cases, can lead to highly expressive but poorly performing code. Optimization strategies often involve reduced feature sets (e.g. by simply supporting only a single geometric primitive type), or an upstream sorting step followed by multiple ray tracing kernel executions, which effectively places the branching instruction outside the inner loop. In this paper we propose C++ compile time polymorphism as an alternative optimization strategy that does on its own not reduce branching, but that can be used to write highly expressive code without sacrificing optimization potential such as early binding or inlining of tiny functions. We present an implementation with modern C++ that we integrate into a ray tracing template library. We evaluate our approach on CPU and GPU architectures.
  • Item
    Iso Photographic Rendering
    (The Eurographics Association, 2018) Porral, Philippe; Lucas, Laurent; Muller, Thomas; Randrianandrasana, Joël; Reinhard Klein and Holly Rushmeier
    In the field of computer graphics, the simulation of the visual appearance of materials requires an accurate computation of the light transport equation. Consequently, material models need to take into account various factors which may influence the spectral radiance perceived by the human eye. Though numerous relevant studies on the reflectance properties of materials have been conducted to date, environment maps used to simulate visual behaviors remain chiefly trichromatic. Whereas questions regarding the accurate characterization of natural lighting have been raised for some time, there are still no real sky environment maps that include both spectral radiance and polarization data. Under these conditions the simulations carried out are approximate and therefore insufficient for the industrial world where investment-sensitive decisions are often made based on these very calculations.