Search Results

Now showing 1 - 10 of 345
  • Item
    Interactive Projective Texturing for Non-Photorealistic Shading of Technical 3D Models
    (The Eurographics Association, 2013) Lux, Roland; Trapp, Matthias; Semmo, Amir; Döllner, Jürgen; Silvester Czanner and Wen Tang
    This paper presents a novel interactive rendering technique for creating and editing shadings for man-made objects in technical 3D visualizations. In contrast to shading approaches that use intensities computed based on surface normals (e.g., Phong, Gooch, Toon shading), the presented approach uses one-dimensional gradient textures, which can be parametrized and interactively manipulated based on per-object bounding volume approximations. The fully hardware-accelerated rendering technique is based on projective texture mapping and customizable intensity transfer functions. A provided performance evaluation shows comparable results to traditional normal-based shading approaches. The work also introduce simple direct-manipulation metaphors that enables interactive user control of the gradient texture alignment and intensity transfer functions.
  • Item
    Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Dupuy, Jonathan; Heitz, Eric; Iehl, Jean-Claude; Poulin, Pierre; Ostromoukhov, Victor; Jaakko Lehtinen and Derek Nowrouzezahrai
    We introduce a novel fitting procedure that takes as input an arbitrary material, possibly anisotropic, and automatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples. We show that the eigenvector associated to the largest eigenvalue is always the only solution to this problem, and compute it using the power iteration method. This approach is straightforward to implement, much faster to compute, and considerably more robust than solutions based on nonlinear optimizations. In addition, we provide simple conversion procedures of our fits into both Beckmann and GGX roughness parameters, and discuss the advantages of microfacet slope space to make our fits editable. We apply our method to measured materials from two large databases that include anisotropic materials, and demonstrate the benefits of spatially varying roughness on texture mapped geometric models.
  • Item
    Environment-aware Real-Time Crowd Control
    (The Eurographics Association, 2012) Henry, Joseph; Shum, Hubert P. H.; Komura, Taku; Jehee Lee and Paul Kry
    Real-time crowd control has become an important research topic due to the recent advancement in console game quality and hardware processing capability. The degrees of freedom of a crowd is much higher than that provided by a standard user input device. As a result most crowd control systems require the user to design the crowd move- ments through multiple passes, such as first specifying the crowd's start and goal points, then providing the agent trajectories with streamlines. Such a multi-pass control would spoil the responsiveness and excitement of real- time games. In this paper, we propose a new, single-pass algorithm to control crowds using a deformable mesh. When controlling crowds, we observe that most of the low level details are related to passive interactions between the crowd and the environment, such as obstacle avoidance and diverging/merging at cross points. Therefore, we simplify the crowd control problem by representing the crowd with a deformable mesh that passively reacts to the environment. As a result, the user can focus on high level control that is more important for context delivery. Our algorithm provides an efficient crowd control framework while maintaining the quality of the simulation, which is useful for real-time applications such as strategy games.
  • Item
    Real-time Inextensible Hair with Volume and Shape
    (The Eurographics Association, 2015) Sánchez-Banderas, Rosa María; Barreiro, Héctor; García-Fernández, Ignacio; Pérez, Mariano; Mateu Sbert and Jorge Lopez-Moreno
    Hair simulation is a common topic extensively studied in computer graphics. One of the many challenges in this field is simulating realistic hair in a real-time environment. In this paper, we propose a unified simulation scheme to consider three of the key features in hair simulation; inextensibility, shape preservation and hair-hair interaction. We use an extension to the Dynamic Follow the Leader (DFTL) method to include shape preservation. Our implementation is also coupled with a Lagrangian approach to address the hair-hair interaction dynamics. A GPU-friendly scheme is proposed that is able to exploit the massive parallelism these devices offer, being able to simulate thousands of strands in real-time. The method has been integrated in a game development platform with a shading model for rendering and several test applications have been developed using this implementation.
  • Item
    Stereo from Shading
    (The Eurographics Association, 2015) Chapiro, Alexandre; O'Sullivan, Carol; Jarosz, Wojciech; Gross, Markus; Smolic, Aljoscha; Jaakko Lehtinen and Derek Nowrouzezahrai
    We present a new method for creating and enhancing the stereoscopic 3D (S3D) sensation without using the parallax disparity between an image pair. S3D relies on a combination of cues to generate a feeling of depth, but only a few of these cues can easily be modified within a rendering pipeline without significantly changing the content. We explore one such cue-shading stereopsis-which to date has not been exploited for 3D rendering. By changing only the shading of objects between the left and right eye renders, we generate a noticeable increase in perceived depth. This effect can be used to create depth when applied to flat images, and to enhance depth when applied to shallow depth S3D images. Our method modifies the shading normals of objects or materials, such that it can be flexibly and selectively applied in complex scenes with arbitrary numbers and types of lights and indirect illumination. Our results show examples of rendered stills and video, as well as live action footage.
  • Item
    Virtual Spherical Gaussian Lights for Real-time Glossy Indirect Illumination
    (The Eurographics Association and John Wiley & Sons Ltd., 2015) Tokuyoshi, Yusuke; Stam, Jos and Mitra, Niloy J. and Xu, Kun
    Virtual point lights (VPLs) are well established for real-time global illumination. However, this method suffers from spiky artifacts and flickering caused by singularities of VPLs, highly glossy materials, high-frequency textures, and discontinuous geometries. To avoid these artifacts, this paper introduces a virtual spherical Gaussian light (VSGL) which roughly represents a set of VPLs. For a VSGL, the total radiant intensity and positional distribution of VPLs are approximated using spherical Gaussians and a Gaussian distribution, respectively. Since this approximation can be computed using summations of VPL parameters, VSGLs can be dynamically generated using mipmapped reflective shadow maps. Our VSGL generation is simple and independent from any scene geometries. In addition, reflected radiance for a VSGL is calculated using an analytic formula. Hence, we are able to render one-bounce glossy interreflections at real-time frame rates with smaller artifacts.
  • Item
    Example-based Interpolation and Synthesis of Bidirectional Texture Functions
    (The Eurographics Association and Blackwell Publishing Ltd., 2013) Ruiters, Roland; Schwartz, Christopher; Klein, Reinhard; I. Navazo, P. Poulin
    Bidirectional Texture Functions (BTF) have proven to be a well-suited representation for the reproduction of measured real-world surface appearance and provide a high degree of realism. We present an approach for designing novel materials by interpolating between several measured BTFs. For this purpose, we transfer concepts from existing texture interpolation methods to the much more complex case of material interpolation. We employ a separation of the BTF into a heightmap and a parallax compensated BTF to cope with problems induced by parallax, masking and shadowing within the material. By working only on the factorized representation of the parallax compensated BTF and the heightmap, it is possible to efficiently perform the material interpolation. By this novel method to mix existing BTFs, we are able to design plausible and realistic intermediate materials for a large range of different opaque material classes. Furthermore, it allows for the synthesis of tileable and seamless BTFs and finally even the generation of gradually changing materials following user specified material distribution maps.
  • Item
    Multi-Domain Real-time Planning in Dynamic Environments
    (ACM SIGGRAPH / Eurographics Association, 2013) Kapadia, Mubbasir; Beacco, Alejandro; Garcia, Francisco; Reddy, Vivek; Pelechano, Nuria; Badler, Norman I.; Theodore Kim and Robert Sumner
    This paper presents a real-time planning framework for multicharacter navigation that enables the use of multiple heterogeneous problem domains of differing complexities for navigation in large, complex, dynamic virtual environments. The original navigation problem is decomposed into a set of smaller problems that are distributed across planning tasks working in these different domains. An anytime dynamic planner is used to efficiently compute and repair plans for each of these tasks, while using plans in one domain to focus and accelerate searches in more complex domains. We demonstrate the benefits of our framework by solving many challenging multi-agent scenarios in complex dynamic environments requiring space-time precision and explicit coordination between interacting agents, by accounting for dynamic information at all stages of the decision-making process.
  • Item
    Perceptually Motivated Real-Time Compression of Motion Data Enhanced by Incremental Encoding and Parameter Tuning
    (The Eurographics Association, 2013) Firouzmanesh, Amirhossein; Cheng, Irene; Basu, Anup; M.- A. Otaduy and O. Sorkine
    We address the problem of efficient real-time motion data compression considering human perception. Using incremental encoding plus a database of motion primitives for each key point, our method achieves a higher or competitive compression rate with less online overhead. Trade-off between visual quality and bandwidth usage can be tuned by varying a single threshold value. A user study was performed to measure the sensitivity of human subjects to reconstruction errors in key rotation angles. Based on these evaluations we are able to perform lossy compression on the motion data without noticeable degradation in rendered qualities. While achieving real-time performance, our technique outperforms other methods in our experiments by achieving a compression ratio exceeding 50 : 1 on regular sequences.
  • Item
    The Material Definition Language
    (The Eurographics Association, 2015) Kettner, L.; Raab, M.; Seibert, D.; Jordan, J.; Keller, A.; Reinhard Klein and Holly Rushmeier
    We introduce the physically-based Material Definition Language (MDL). Based on the principle of strictly separating material definition and rendering algorithms, each MDL material is applicable across different rendering paradigms ranging from realtime over interactive solutions to advanced light transport simulation.