3 results
Search Results
Now showing 1 - 3 of 3
Item Cube-4 Implementations on the Teramac Custom Computing Machine(The Eurographics Association, 1996) Kanus, Urs; Meißner, Michael; Straßer, Wolfgang; Pfister, Hanspeter; Kaufman, Arie; Amerson, Rick; Carter, Richard J.; Culbertson, Bruce; Kuekes, Phil; Snider, Greg; Bengt-Olaf Schneider and Andreas SchillingWe present two implementations of the Cube-4 volume rendering architecture on the Teramac custom computing machine. Cube-4 uses a slice parallel ray-casting algorithm that allows for a paral lel and pipelined implementation of ray-casting with tri-linear interpolation and surface normal estimation from interpolated samples. Shading, classification and compositing are part of rendering pipeline. With the partitioning schemes introduced in this paper, Cube-4 is capable of rendering large datasets with a limited number of pipelines. The Teramac hardware simulator at the Hewlett-Packard research laboratories, Palo Alto, CA, on which Cube-4 was implemented, belongs to the new class of custom computing machines. Teramac combines the speed of special-purpose hardware with the flexibility of general-purpose computel's. With Teramac as a development tool we were able to implement in just five weeks working Cube-4 prototypes, capable of rendering for example datasets of 1283 voxels in 0.65 seconds at 0,96 MHz processing frequency. The performance results from these implementations indicate real-time performance for high-resolution data-sets.Item TENTH EUROGRAPHICS WORKSHOP ON GRAPHICS HARDWARE(Eurographics Association, 1995-08-28) Straßer, WolfgangPreface and Table of ContentsItem Fast Footprint MlPmapping(The Eurographics Association, 1999) Hüttner, Tobias; Straßer, Wolfgang; A. Kaufmann and W. Strasser and S. Molnar and B.- O. SchneiderMapping textures onto surfaces of computer-generated objects is a technique which greatly improves the realism of their appearance. In this paper, we describe a new method for efficient and fast texture filtering to prevent aliasing during texture mapping. This method, called Fast Footprint MIPmapping, is very flexible and can be adapted to the internal bandwrdth of a graphrcs system. It adopts the prefiltered MIPmap data structure of currently available trilinear MIPmapping implementatrons, but exploits the texels fetched from texture memory in a more optimal manner. Furthermore, like trilinear MIPmapping, fast footprint MIPmapping can easily be realized in hardware. It is sufficient to fetch only eight texels per textured pixel to achieve a significant improvement over classical trilinear MIPmapping.