305 results
Search Results
Now showing 1 - 10 of 305
Item Interactive Projective Texturing for Non-Photorealistic Shading of Technical 3D Models(The Eurographics Association, 2013) Lux, Roland; Trapp, Matthias; Semmo, Amir; Döllner, Jürgen; Silvester Czanner and Wen TangThis paper presents a novel interactive rendering technique for creating and editing shadings for man-made objects in technical 3D visualizations. In contrast to shading approaches that use intensities computed based on surface normals (e.g., Phong, Gooch, Toon shading), the presented approach uses one-dimensional gradient textures, which can be parametrized and interactively manipulated based on per-object bounding volume approximations. The fully hardware-accelerated rendering technique is based on projective texture mapping and customizable intensity transfer functions. A provided performance evaluation shows comparable results to traditional normal-based shading approaches. The work also introduce simple direct-manipulation metaphors that enables interactive user control of the gradient texture alignment and intensity transfer functions.Item Environment-aware Real-Time Crowd Control(The Eurographics Association, 2012) Henry, Joseph; Shum, Hubert P. H.; Komura, Taku; Jehee Lee and Paul KryReal-time crowd control has become an important research topic due to the recent advancement in console game quality and hardware processing capability. The degrees of freedom of a crowd is much higher than that provided by a standard user input device. As a result most crowd control systems require the user to design the crowd move- ments through multiple passes, such as first specifying the crowd's start and goal points, then providing the agent trajectories with streamlines. Such a multi-pass control would spoil the responsiveness and excitement of real- time games. In this paper, we propose a new, single-pass algorithm to control crowds using a deformable mesh. When controlling crowds, we observe that most of the low level details are related to passive interactions between the crowd and the environment, such as obstacle avoidance and diverging/merging at cross points. Therefore, we simplify the crowd control problem by representing the crowd with a deformable mesh that passively reacts to the environment. As a result, the user can focus on high level control that is more important for context delivery. Our algorithm provides an efficient crowd control framework while maintaining the quality of the simulation, which is useful for real-time applications such as strategy games.Item Example-based Interpolation and Synthesis of Bidirectional Texture Functions(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ruiters, Roland; Schwartz, Christopher; Klein, Reinhard; I. Navazo, P. PoulinBidirectional Texture Functions (BTF) have proven to be a well-suited representation for the reproduction of measured real-world surface appearance and provide a high degree of realism. We present an approach for designing novel materials by interpolating between several measured BTFs. For this purpose, we transfer concepts from existing texture interpolation methods to the much more complex case of material interpolation. We employ a separation of the BTF into a heightmap and a parallax compensated BTF to cope with problems induced by parallax, masking and shadowing within the material. By working only on the factorized representation of the parallax compensated BTF and the heightmap, it is possible to efficiently perform the material interpolation. By this novel method to mix existing BTFs, we are able to design plausible and realistic intermediate materials for a large range of different opaque material classes. Furthermore, it allows for the synthesis of tileable and seamless BTFs and finally even the generation of gradually changing materials following user specified material distribution maps.Item Multi-Domain Real-time Planning in Dynamic Environments(ACM SIGGRAPH / Eurographics Association, 2013) Kapadia, Mubbasir; Beacco, Alejandro; Garcia, Francisco; Reddy, Vivek; Pelechano, Nuria; Badler, Norman I.; Theodore Kim and Robert SumnerThis paper presents a real-time planning framework for multicharacter navigation that enables the use of multiple heterogeneous problem domains of differing complexities for navigation in large, complex, dynamic virtual environments. The original navigation problem is decomposed into a set of smaller problems that are distributed across planning tasks working in these different domains. An anytime dynamic planner is used to efficiently compute and repair plans for each of these tasks, while using plans in one domain to focus and accelerate searches in more complex domains. We demonstrate the benefits of our framework by solving many challenging multi-agent scenarios in complex dynamic environments requiring space-time precision and explicit coordination between interacting agents, by accounting for dynamic information at all stages of the decision-making process.Item Perceptually Motivated Real-Time Compression of Motion Data Enhanced by Incremental Encoding and Parameter Tuning(The Eurographics Association, 2013) Firouzmanesh, Amirhossein; Cheng, Irene; Basu, Anup; M.- A. Otaduy and O. SorkineWe address the problem of efficient real-time motion data compression considering human perception. Using incremental encoding plus a database of motion primitives for each key point, our method achieves a higher or competitive compression rate with less online overhead. Trade-off between visual quality and bandwidth usage can be tuned by varying a single threshold value. A user study was performed to measure the sensitivity of human subjects to reconstruction errors in key rotation angles. Based on these evaluations we are able to perform lossy compression on the motion data without noticeable degradation in rendered qualities. While achieving real-time performance, our technique outperforms other methods in our experiments by achieving a compression ratio exceeding 50 : 1 on regular sequences.Item High Resolution Medical 3D Data Sets on Mobile Devices and WebGL(The Eurographics Association, 2012) Jimenez, Juan-Roberto; Noguera, Jose Maria; Isabel Navazo and Gustavo PatowNowadays, mobile devices and the web are being used to deliver 3D graphics to mass users. However, applications such as visualization of high resolution medical models are still impossible to handle in such platforms due to texture limitations, mainly the lack of 3D texture support. In this paper we propose a software architecture and a novel texture storage technique that overcome these limitations. In addition, our proposal allows us to adapt existing direct volume rendering techniques based on 3D textures to mobile devices and WebGL. Our experiments demonstrate the feasibility and validity of our proposal to render high resolution volumetric models on both platforms.Item An Effective Hardware Architecture for Bump Mapping Using Angular Operation(The Eurographics Association, 2003) Lee, S. G.; Park, W. C.; Lee, W. J.; Han, T. D.; Yang, S. B.; M. Doggett and W. Heidrich and W. Mark and A. SchillingIn this paper, we propose an effective bump mapping algorithm that utilizes the reference space with the polar coordinate system and also propose a new hardware architecture associated with the proposed bump mapping algorithm. The proposed architecture reduces the computations to transform the vectors from the object space into the reference space by using a new vector rotation method. It also reduces the computations for the illumination calculation by using the law of cosine. Compared with the previous approaches, the proposed architecture reduces multiplication operations up to 78%.Item Anatomy-Guided Multi-Level Exploration of Blood Flow in Cerebral Aneurysms(The Eurographics Association and Blackwell Publishing Ltd., 2011) Neugebauer, Mathias; Janiga, Gabor; Beuing, Oliver; Skalej, Martin; Preim, Bernhard; H. Hauser, H. Pfister, and J. J. van WijkFor cerebral aneurysms, the ostium, the area of inflow, is an important anatomic landmark, since it separates the pathological vessel deformation from the healthy parent vessel. A better understanding of the inflow characteristics, the flow inside the aneurysm and the overall change of pre- and post-aneurysm flow in the parent vessel provide insights for medical research and the development of new risk-reduced treatment options. We present an approach for a qualitative, visual flow exploration that incorporates the ostium and derived anatomical landmarks. It is divided into three scopes: a global scope for exploration of the in- and outflow, an ostium scope that provides characteristics of the flow profile close to the ostium and a local scope for a detailed exploration of the flow in the parent vessel and the aneurysm. The approach was applied to five representative datasets, including measured and simulated blood flow. Informal interviews with two board-certified radiologists confirmed the usefulness of the provided exploration tools and delivered input for the integration of the ostium-based flow analysis into the overall exploration workflow.Item Temporally Coherent Adaptive Sampling for Imperfect Shadow Maps(The Eurographics Association and Blackwell Publishing Ltd., 2013) Barák, Tomas; Bittner, Jiri; Havran, Vlastimil; Nicolas Holzschuch and Szymon RusinkiewiczWe propose a new adaptive algorithm for determining virtual point lights (VPL) in the scope of real-time instant radiosity methods, which use a limited number of VPLs. The proposed method is based on Metropolis-Hastings sampling and exhibits better temporal coherence of VPLs, which is particularly important for real-time applications dealing with dynamic scenes. We evaluate the properties of the proposed method in the context of the algorithm based on imperfect shadow maps and compare it with the commonly used inverse transform method. The results indicate that the proposed technique can significantly reduce the temporal flickering artifacts even for scenes with complex materials and textures. Further, we propose a novel splatting scheme for imperfect shadow maps using hardware tessellation. This scheme significantly improves the rendering performance particularly for complex and deformable scenes. We thoroughly analyze the performance of the proposed techniques on test scenes with detailed materials, moving camera, and deforming geometry.Item Quaternion Space Sparse Decomposition for Motion Compression and Retrieval(The Eurographics Association, 2012) Zhu, Mingyang; Sun, Huaijiang; Deng, Zhigang; Jehee Lee and Paul KryQuaternion has become one of the most widely used representations for rotational transformations in 3D graphics for decades. Due to the sparse nature of human motion in both the spatial domain and the temporal domain, an unexplored yet challenging research problem is how to directly represent intrinsically sparse human motion data in quaternion space. In this paper we propose a novel quaternion space sparse decomposition (QSSD) model that decomposes human rotational motion data into two meaningful parts (namely, the dictionary part and the weight part) with the sparseness constraint on the weight part. Specifically, a linear combination (addition) operation in Euclidean space is equivalently modeled as a quaternion multiplication operation, and the weight of linear combination is modeled as a power operation on quaternion. Besides validations of the robustness, convergence, and accuracy of the QSSD model, we also demonstrate its two selected applications: human motion data compression and content-based human motion retrieval. Through numerous experiments and quantitative comparisons, we demonstrate that the QSSD-based approaches can soundly outperform existing state-of-the-art human motion compression and retrieval approaches.