Search Results

Now showing 1 - 4 of 4
  • Item
    Real-Time Bump Map Synthesis
    (The Eurographics Association, 2001) Kautz, Jan; Heidrich, Wolfgang; Seidel, Hans-Peter; Kurt Akeley and Ulrich Neumann
    In this paper we present a method that automatically synthesizes bump maps at arbitrary levels of detail in real-time. The only input data we require is a normal density function; the bump map is generated according to that function. It is also used to shade the generated bump map. The technique allows to infinitely zoom into the surface, because more (consistent) detail can be created on the fly. The shading of such a surface is consistent when displayed at different distances to the viewer (assuming that the surface structure is self-similar). The bump map generation and the shading algorithm can also be used separately.
  • Item
    Interleaved Sampling
    (The Eurographics Association, 2001) Keller, Alexander; Heidrich, Wolfgang; S. J. Gortle and K. Myszkowski
    The known sampling methods can roughly be grouped into regular and irregular sampling. While regular sampling can be realized efficiently in graphics hardware, it is prone to inter-pixel aliasing. On the other hand these artifacts can easily be masked by noise using irregular sampling which, however, is more expensive to evaluate as it lacks the high coherence of a regular approach. We bridge this gap by introducing a generalized sampling scheme that smoothly blends between regular and irregular sampling. By interleaving the samples of regular grids in an irregular way, we preserve the high coherence and efficiently reduce inter-pixel aliasing thus significantly improving the rendering quality as compared to previous approaches.
  • Item
    Image-Based Reconstruction of Spatially Varying Materials
    (The Eurographics Association, 2001) Lensch, Hendrik P. A.; Kautz, Jan; Goesele, Michael; Heidrich, Wolfgang; Seidel, Hans-Peter; S. J. Gortle and K. Myszkowski
    The measurement of accurate material properties is an important step towards photorealistic rendering. Many real-world objects are composed of a number of materials that often show subtle changes even within a single material. Thus, for photorealistic rendering both the general surface properties as well as the spatially varying effects of the object are needed. We present an image-based measuring method that robustly detects the different materials of real objects and fits an average bidirectional reflectance distribution function (BRDF) to each of them. In order to model the local changes as well, we project the measured data for each surface point into a basis formed by the recovered BRDFs leading to a truly spatially varying BRDF representation. A high quality model of a real object can be generated with relatively few input data. The generated model allows for rendering under arbitrary viewing and lighting conditions and realistically reproduces the appearance of the original object.
  • Item
    Efficient Cloth Modeling and Rendering
    (The Eurographics Association, 2001) Daubert, Katja; Lensch, Hendrik P. A.; Heidrich, Wolfgang; Seidel, Hans-Peter; S. J. Gortle and K. Myszkowski
    Realistic modeling and high-performance rendering of cloth and clothing is a challenging problem. Often these materials are seen at distances where individual stitches and knits can be made out and need to be accounted for. Modeling of the geometry at this level of detail fails due to sheer complexity, while simple texture mapping techniques do not produce the desired quality. In this paper, we describe an efficient and realistic approach that takes into account view-dependent effects such as small displacements causing occlusion and shadows, as well as illumination effects. The method is efficient in terms of memory consumption, and uses a combination of hardware and software rendering to achieve high performance. It is conceivable that future graphics hardware will be flexible enough for full hardware rendering of the proposed method.