7 results
Search Results
Now showing 1 - 7 of 7
Item Multi-attribute Visualization and Improved Depth Perception for the Interactive Analysis of 3D Truss Structures(The Eurographics Association, 2023) Becher, Michael; Groß, Anja; Werner, Peter; Maierhofer, Mathias; Reina, Guido; Ertl, Thomas; Menges, Achim; Weiskopf, Daniel; Hoellt, Thomas; Aigner, Wolfgang; Wang, BeiIn architecture, engineering, and construction (AEC), load-bearing truss structures are commonly modeled as a set of connected beam elements. For complex 3D structures, rendering beam elements as line segments presents several challenges due densely overlapping elements, including visual clutter, and general depth perception issues. Furthermore, line segments provide very little area for displaying additional element attributes. In this paper, we investigate the effectiveness of rendering effects for reducing visual clutter and improving depth perception for truss structures specifically, such as distance-based brightness attenuation and screen-space ambient occlusion (SSAO). Additionally, we provide multiple options for multi-attribute visualization directly on the structure and evaluate both aspects with two expert interviews.Item Visual Analysis of Multivariate Intensive Care Surveillance Data(The Eurographics Association, 2020) Brich, Nicolas; Schulz, Christoph; Peter, Jörg; Klingert, Wilfried; Schenk, Martin; Weiskopf, Daniel; Krone, Michael; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe present an approach for visual analysis of high-dimensional measurement data with varying sampling rates in the context of an experimental post-surgery study performed on a porcine surrogate model. The study aimed at identifying parameters suitable for diagnosing and prognosticating the volume state-a crucial and difficult task in intensive care medicine. In intensive care, most assessments not only depend on a single measurement but a plethora of mixed measurements over time. Even for trained experts, efficient and accurate analysis of such multivariate time-dependent data remains a challenging task. We present a linked-view post hoc visual analysis application that reduces data complexity by combining projection-based time curves for overview with small multiples for details on demand. Our approach supports not only the analysis of individual patients but also the analysis of ensembles by adapting existing techniques using non-parametric statistics. We evaluated the effectiveness and acceptance of our application through expert feedback with domain scientists from the surgical department using real-world data: the results show that our approach allows for detailed analysis of changes in patient state while also summarizing the temporal development of the overall condition. Furthermore, the medical experts believe that our method can be transferred from medical research to the clinical context, for example, to identify the early onset of a sepsis.Item Interactive Selection on Calculated Attributes of Large-Scale Particle Data(The Eurographics Association, 2021) Wollet, Benjamin; Reinhardt, Stefan; Weiskopf, Daniel; Eberhardt, Bernhard; Larsen, Matthew and Sadlo, FilipWe present a GPU-based technique for efficient selection in interactive visualizations of large particle datasets. In particular, we address multiple attributes attached to particles, such as pressure, density, or surface tension. Unfortunately, such intermediate attributes are often available only during the simulation run. They are either not accessible during visualization or have to be saved as additional information along with the usual simulation data. The latter increases the size of the dataset significantly, and the required variables may not be known in advance. Therefore, we choose to compute intermediate attributes on the fly. In this way, we are even able to obtain attributes that were not calculated by the simulation but may be relevant for data analysis or debugging. We present an interactive selection technique designed for such attributes. It leverages spatial regions of the selection to efficiently compute attributes only where needed. This lazy evaluation also works for intelligent and data-driven selection, extending the region to include neighboring particles. Our technique is evaluated by measurements of performance scalability and case studies for typical usage examples.Item Been There, Seen That: Visualization of Movement and 3D Eye Tracking Data from Real-World Environments(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pathmanathan, Nelusa; Öney, Seyda; Becher, Michael; Sedlmair, Michael; Weiskopf, Daniel; Kurzhals, Kuno; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in realworld environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.Item Efficient 2D Simulation on Moving 3D Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2020) Morgenroth, Dieter; Reinhardt, Stefan; Weiskopf, Daniel; Eberhardt, Bernhard; Bender, Jan and Popa, TiberiuWe present a method to simulate fluid flow on evolving surfaces, e.g., an oil film on a water surface. Given an animated surface (e.g., extracted from a particle-based fluid simulation) in three-dimensional space, we add a second simulation on this base animation. In general, we solve a partial differential equation (PDE) on a level set surface obtained from the animated input surface. The properties of the input surface are transferred to a sparse volume data structure that is then used for the simulation. We introduce one-way coupling strategies from input properties to our simulation and we add conservation of mass and momentum to existing methods that solve a PDE in a narrow-band using the Closest Point Method. In this way, we efficiently compute high-resolution 2D simulations on coarse input surfaces. Our approach helps visual effects creators easily integrate a workflow to simulate material flow on evolving surfaces into their existing production pipeline.Item Visual Gaze Labeling for Augmented Reality Studies(The Eurographics Association and John Wiley & Sons Ltd., 2023) Öney, Seyda; Pathmanathan, Nelusa; Becher, Michael; Sedlmair, Michael; Weiskopf, Daniel; Kurzhals, Kuno; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAugmented Reality (AR) provides new ways for situated visualization and human-computer interaction in physical environments. Current evaluation procedures for AR applications rely primarily on questionnaires and interviews, providing qualitative means to assess usability and task solution strategies. Eye tracking extends these existing evaluation methodologies by providing indicators for visual attention to virtual and real elements in the environment. However, the analysis of viewing behavior, especially the comparison of multiple participants, is difficult to achieve in AR. Specifically, the definition of areas of interest (AOIs), which is often a prerequisite for such analysis, is cumbersome and tedious with existing approaches. To address this issue, we present a new visualization approach to define AOIs, label fixations, and investigate the resulting annotated scanpaths. Our approach utilizes automatic annotation of gaze on virtual objects and an image-based approach that also considers spatial context for the manual annotation of objects in the real world. Our results show, that with our approach, eye tracking data from AR scenes can be annotated and analyzed flexibly with respect to data aspects and annotation strategies.Item Pie Chart Glyph Visualization of Uncertain Connected Components(The Eurographics Association, 2025) Evers, Marina; Rasheed, Farhan; Masood, Talha Bin; Hotz, Ingrid; Weiskopf, Daniel; Diehl, Alexandra; Kucher, Kostiantyn; Médoc, NicolasEdges of graphs are often associated with uncertainty. The inherent uncertainty of the data also induces uncertainty in derived graph attributes such as connected components. Even for planar graphs, visualizing the connected components in the graph embedding while encoding their uncertainty imposes challenges due to overlap. We present a visual encoding for uncertain connected components in a planar graph embedding. The underlying model does not require matching or assumptions on the overlap of the components and emphasizes uncertain boundary regions. We discuss different design options and show the applicability of our approach based on synthetic data and real-world data on force networks in granular materials.