Search Results

Now showing 1 - 4 of 4
  • Item
    Reconstruction of Deforming Geometry from Time-Varying Point Clouds
    (The Eurographics Association, 2007) Wand, Michael; Jenke, Philipp; Huang, Qixing; Bokeloh, Martin; Guibas, Leonidas; Schilling, Andreas; Alexander Belyaev and Michael Garland
    In this paper, we describe a system for the reconstruction of deforming geometry from a time sequence of unstructured, noisy point clouds, as produced by recent real-time range scanning devices. Our technique reconstructs both the geometry and dense correspondences over time. Using the correspondences, holes due to occlusion are filled in from other frames. Our reconstruction technique is based on a statistical framework: The reconstruction should both match the measured data points and maximize prior probability densities that prefer smoothness, rigid deformation and smooth movements over time. The optimization procedure consists of an inner loop that optimizes the 4D shape using continuous numerical optimization and an outer loop that infers the discrete 4D topology of the data set using an iterative model assembly algorithm. We apply the technique to a variety of data sets, demonstrating that the new approach is capable of robustly retrieving animated models with correspondences from data sets suffering from significant noise, outliers and acquisition holes.
  • Item
    Meshless Modeling of Deformable Shapes and their Motion
    (The Eurographics Association, 2008) Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.; Markus Gross and Doug James
    We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object's volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes.
  • Item
    Bayesian Surface Reconstruction via Iterative Scan Alignment to an Optimized Prototype
    (The Eurographics Association, 2007) Huang, Qi-Xing; Adams, Bart; Wand, Michael; Alexander Belyaev and Michael Garland
    This paper introduces a novel technique for joint surface reconstruction and registration. Given a set of roughly aligned noisy point clouds, it outputs a noise-free and watertight solid model. The basic idea of the new technique is to reconstruct a prototype surface at increasing resolution levels, according to the registration accuracy obtained so far, and to register all parts with this surface. We derive a non-linear optimization problem from a Bayesian formulation of the joint estimation problem. The prototype surface is represented as a partition of unity implicit surface, which is constructed from piecewise quadratic functions defined on octree cells and blended together using B-spline basis functions, allowing the representation of objects with arbitrary topology with high accuracy. We apply the new technique to a set of standard data sets as well as especially challenging real-world cases. In practice, the novel prototype surface based joint reconstruction-registration algorithm avoids typical convergence problems in registering noisy range scans and substantially improves the accuracy of the final output.
  • Item
    Interactive Editing of Large Point Clouds
    (The Eurographics Association, 2007) Wand, Michael; Berner, Alexander; Bokeloh, Martin; Fleck, Arno; Hoffmann, Mark; Jenke, Philipp; Maier, Benjamin; Staneker, Dirk; Schilling, Andreas; M. Botsch and R. Pajarola and B. Chen and M. Zwicker
    This paper describes a new out-of-core multi-resolution data structure for real-time visualization and interactive editing of large point clouds. In addition, an editing system is discussed that makes use of the novel data structure to provide interactive editing tools for large scanner data sets. The new data structure provides efficient rendering and allows for handling very large data sets using out-of-core storage. Unlike related previous approaches, it also provides dynamic operations for online insertion, deletion and modification of points with time mostly independent of scene complexity. This permits local editing of huge models in real time while maintaining a full multi-resolution representation for visualization. The data structure is used to implement a prototypical editing system for large point clouds. It provides real-time local editing tools for huge data sets as well as a two-resolution scripting mode for planning large, non-local changes which are subsequently performed in an externally efficient offline computation. We evaluate our implementation on several synthetic and real-world examples of sizes up to 63GB.