30 results
Search Results
Now showing 1 - 10 of 30
Item Learning-Based Animation of Clothing for Virtual Try-On(The Eurographics Association and John Wiley & Sons Ltd., 2019) Santesteban, Igor; Otaduy, Miguel A.; Casas, Dan; Alliez, Pierre and Pellacini, FabioThis paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results.Item Simulation of Dendritic Painting(The Eurographics Association and John Wiley & Sons Ltd., 2020) Canabal, José A.; Otaduy, Miguel A.; Kim, Byungmoon; Echevarria, Jose; Panozzo, Daniele and Assarsson, UlfWe present a new system for interactive dendritic painting. Dendritic painting is characterized by the unique and intricate branching patterns that grow from the interaction of inks, solvents and medium. Painting sessions thus become very dynamic and experimental. To achieve a compelling simulation of this painting technique we introduce a new Reaction-Diffusion model with carefully designed terms to allow natural interactions in a painting context. We include additional user control not possible in the real world to guide and constrain the growth of the patterns in expressive ways. Our multi-field model is able to capture and simulate all these complex phenomena efficiently in real time, expanding the tools available to the digital artist, while producing compelling animations for motion graphics.Item Data-Driven Simulation Methods in Computer Graphics: Cloth, Tissue and Faces(The Eurographics Association, 2013) Otaduy, Miguel A.; Bickel, Bernd; Bradley, Derek; Diego Gutierrez and Karol MyszkowskiIn recent years, the field of computer animation has witnessed the invention of multiple simulation methods that exploit pre-recorded data to improve the performance and/or realism of dynamic deformations. Various methods have been presented concurrently, and they present differences, but also similarities, that have not yet been analyzed or discussed. This course focuses on the application of data-driven methods to three areas of computer animation, namely dynamic deformation of faces, soft volumetric tissue, and cloth. The course describes the particular challenges tackled in a data-driven manner, classifies the various methods, and also shares insights for the application to other settings. The explosion of data-driven animation methods and the success of their resultsmake this course extremely timely. Up till now, the proposed methods have remained familiar only at the research context, and have not made their way through computer graphics industry. This course aims to fit two main purposes. First, present a common theory and understanding of data-driven methods for dynamic deformations that may inspire the development of novel solutions, and second, bridge the gap with industry, by making data-driven approaches accessible. The course targets an audience consisting of both researchers and programmers in computer animation.Item Linear-Time Dynamics of Characters with Stiff Joints(The Eurographics Association, 2021) Hernández, Fernando; Garre, Carlos; Casillas, Rubén; Otaduy, Miguel A.; Silva, F. and Gutierrez, D. and Rodríguez, J. and Figueiredo, M.Characters, like other articulated objects and structures, are typically simulated using articulated dynamics algorithms. There are efficient linear-time algorithms for the simulation of open-chain articulated bodies, but complexity grows notably under additional constraints such as joint limits, loops or contact, or if the bodies undergo stiff joint forces. This paper presents a linear-time algorithm for the simulation of open-chain articulated bodies with joint limits and stiff joint forces. This novel algorithm uses implicit integration to simulate stiff forces in a stable manner, and avoids drift by formulating joint constraints implicitly. One additional interesting feature of the algorithm is that its practical implementation entails only small modifications to a popular algorithm.Item DYVERSO: A Versatile Multi‐Phase Position‐Based Fluids Solution for VFX(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Alduán, Iván; Tena, Angel; Otaduy, Miguel A.; Chen, Min and Zhang, Hao (Richard)Many impressive fluid simulation methods have been presented in research papers before. These papers typically focus on demonstrating particular innovative features, but they do not meet in a comprehensive manner the production demands of actual VFX pipelines. VFX artists seek methods that are flexible, efficient, robust and scalable, and these goals often conflict with each other. In this paper, we present a multi‐phase particle‐based fluid simulation framework, based on the well‐known Position‐Based Fluids (PBF) method, designed to address VFX production demands. Our simulation framework handles multi‐phase interactions robustly thanks to a modified constraint formulation for density contrast PBF. And, it also supports the interaction of fluids sampled at different resolutions. We put special care on data structure design and implementation details. Our framework highlights cache‐efficient GPU‐friendly data structures, an improved spatial voxelization technique based on Z‐index sorting, tuned‐up simulation algorithms and two‐way‐coupled collision handling based on VDB fields. Altogether, our fluid simulation framework empowers artists with the efficiency, scalability and versatility needed for simulating very diverse scenes and effects.Many impressive fluid simulation methods have been presented in research papers before. These papers typically focus on demonstrating particular innovative features, but they do not meet in a comprehensive manner the production demands of actual VFX pipelines. VFX artists seek methods that are flexible, efficient, robust and scalable, and these goals often conflict with each other. In this paper, we present a multi‐phase particle‐based fluid simulation framework, based on the well‐known Position‐Based Fluids (PBF) method, designed to address VFX production demands.Item Efficient Collision Detection for Brittle Fracture(The Eurographics Association, 2012) Glondu, Loeiz; Schvartzman, Sara C.; Marchal, Maud; Dumont, Georges; Otaduy, Miguel A.; Jehee Lee and Paul KryIn complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly true for fracture simulation, where multiple new objects are dynamically created. In this paper, we present novel algorithms and data structures for collision detection in real-time brittle fracture simulations. We build on a combination of well-known efficient data structures, namely distance fields and sphere trees, making our algorithm easy to integrate on existing simulation engines. We propose novel methods to construct these data structures, such that they can be efficiently updated upon fracture events and integrated in a simple yet effective self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both collision detection and collision response. We have evaluated our global solution for collision detection on challenging scenarios, achieving high frame rates suited for hard real-time applications such as video games or haptics. Our solution opens promising perspectives for complex brittle fracture simulations involving many dynamically created objects.Item Efficient Simulation of Knitted Cloth Using Persistent Contacts(ACM Siggraph, 2015) Cirio, Gabriel; Lopez-Moreno, Jorge; Otaduy, Miguel A.; Florence Bertails-Descoubes and Stelian Coros and Shinjiro SuedaKnitted cloth is made of yarns that are stitched in regular patterns, and its macroscopic behavior is dictated by the contact interactions between such yarns. We propose an efficient representation of knitted cloth at the yarn level that treats yarn-yarn contacts as persistent, thereby avoiding expensive contact handling altogether. We introduce a compact representation of yarn geometry and kinematics, capturing the essential deformation modes of yarn loops and stitches with a minimum cost. Based on this representation, we design force models that reproduce the characteristic macroscopic behavior of knitted fabrics. We demonstrate the efficiency of our method on simulations with millions of degrees of freedom (hundreds of thousands of yarn loops), almost one order of magnitude faster than previous techniques.Item A Bending Model for Nodal Discretizations of Yarn-Level Cloth(The Eurographics Association and John Wiley & Sons Ltd., 2020) Pizana, José María; Rodríguez, Alejandro; Cirio, Gabriel; Otaduy, Miguel A.; Bender, Jan and Popa, TiberiuTo deploy yarn-level cloth simulations in production environments, it is paramount to design very efficient implementations, which mitigate the cost of the extremely high resolution. To this end, nodal discretizations aligned with the regularity of the fabric structure provide an optimal setting for efficient GPU implementations. However, nodal discretizations complicate the design of robust and controllable bending. In this paper, we address this challenge, and propose a model of bending that is both robust and controllable, and employs only nodal degrees of freedom. We extract information of yarn and fabric orientation implicitly from the nodal degrees of freedom, with no need to augment the model explicitly. But most importantly, and unlike previous formulations that use implicit orientations, the computation of bending forces bears no overhead with respect to other nodal forces such as stretch. This is possible by tracking optimal orientations efficiently. We demonstrate the impact of our bending model in examples with controllable anisotropy, as well as ironing, wrinkling, and plasticity.Item High-Order Elasticity Interpolants for Microstructure Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Chan-Lock, Antoine; Pérez, Jesús; Otaduy, Miguel A.; Dominik L. Michels; Soeren PirkWe propose a novel formulation of elastic materials based on high-order interpolants, which fits accurately complex elastic behaviors, but remains conservative. The proposed high-order interpolants can be regarded as a high-dimensional extension of radial basis functions, and they allow the interpolation of derivatives of elastic energy, in particular stress and stiffness. Given the proposed parameterization of elasticity models, we devise an algorithm to find optimal model parameters based on training data. We have tested our methodology for the homogenization of 2D microstructures, and we show that it succeeds to match complex behaviors with high accuracy.Item Fast Deformation of Volume Data Using Tetrahedral Mesh Rasterization(ACM SIGGRAPH / Eurographics Association, 2013) Gascon, Jorge; Espadero, Jose M.; Perez, Alvaro G.; Torres, Rosell; Otaduy, Miguel A.; Theodore Kim and Robert SumnerMany inherently deformable structures, such as human anatomy, are often represented using a regular volumetric discretization, e.g., in medical imaging. While deformation algorithms employ discretizations that deform themselves along with the material, visualization algorithms are optimized for regular undeformed discretizations. In this paper, we propose a method to transform highresolution volume data embedded in a deformable tetrahedral mesh. We cast volume deformation as a problem of tetrahedral rasterization with 3D texture mapping. Then, the core of our solution to volume data deformation is a very fast algorithm for tetrahedral rasterization. We perform rasterization as a massively parallel operation on target voxels, and we minimize the number of voxels to be handled using a multi-resolution culling approach. Our method allows the deformation of volume data with over 20 million voxels at interactive rates.
- «
- 1 (current)
- 2
- 3
- »