Search Results

Now showing 1 - 10 of 25
  • Item
    Multiphase Viscoelastic Non-Newtonian Fluid Simulation
    (The Eurographics Association and John Wiley & Sons Ltd., 2024) Zhang, Yalan; Long, Shen; Xu, Yanrui; Wang, Xiaokun; Yao, Chao; Kosinka, Jiri; Frey, Steffen; Telea, Alexandru; Ban, Xiaojuan; Skouras, Melina; Wang, He
    We propose an SPH-based method for simulating viscoelastic non-Newtonian fluids within a multiphase framework. For this, we use mixture models to handle component transport and conformation tensor methods to handle the fluid's viscoelastic stresses. In addition, we consider a bonding effects network to handle the impact of microscopic chemical bonds on phase transport. Our method supports the simulation of both steady-state viscoelastic fluids and discontinuous shear behavior. Compared to previous work on single-phase viscous non-Newtonian fluids, our method can capture more complex behavior, including material mixing processes that generate non-Newtonian fluids. We adopt a uniform set of variables to describe shear thinning, shear thickening, and ordinary Newtonian fluids while automatically calculating local rheology in inhomogeneous solutions. In addition, our method can simulate large viscosity ranges under explicit integration schemes, which typically requires implicit viscosity solvers under earlier single-phase frameworks.
  • Item
    Visual Analysis of Two‐Phase Flow Displacement Processes in Porous Media
    (© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Frey, Steffen; Scheller, Stefan; Karadimitriou, Nikolaos; Lee, Dongwon; Reina, Guido; Steeb, Holger; Ertl, Thomas; Hauser, Helwig and Alliez, Pierre
    We developed a new visualization approach to gain a better understanding of the displacement of one fluid phase by another in porous media. This is based on a recent experimental parameter study with varying capillary numbers and viscosity ratios. We analyse the temporal evolution of characteristic values in this two‐phase flow scenario and discuss how to directly compare experiments across different temporal scales. To enable spatio‐temporal analysis, we introduce a new abstract visual representation showing which paths through the porous medium were occupied and for how long. These transport networks allow to assess the impact of different acting forces and they are designed to yield expressive comparability and linking to the experimental parameter space both supported by additional visual cues. This joint work of porous media experts and visualization researchers yields new insights regarding two‐phase flow on the microscale, and our visualization approach contributes towards the overarching goal of the domain scientists to characterize porous media flow based on capillary numbers and viscosity ratios.
  • Item
    Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Frey, Steffen; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    This paper introduces an optimization approach for generating grid layouts from large data collections such that they are amenable to level-of-detail presentation and exploration. Classic (flat) grid layouts visually do not scale to large collections, yielding overwhelming numbers of tiny member representations. The proposed local search-based progressive optimization scheme generates hierarchical grids: leaves correspond to one grid cell and represent one member, while inner nodes cover a quadratic range of cells and convey an aggregate of contained members. The scheme is solely based on pairwise distances and jointly optimizes for homogeneity within inner nodes and across grid neighbors. The generated grids allow to present and flexibly explore the whole data collection with arbitrary local granularity. Diverse use cases featuring large data collections exemplify the application: stock market predictions from a Black-Scholes model, channel structures in soil from Markov chain Monte Carlo, and image collections with feature vectors from neural network classification models. The paper presents feedback by a domain scientist, compares against previous approaches, and demonstrates visual and computational scalability to a million members, surpassing classic grid layout techniques by orders of magnitude.
  • Item
    Visual Analysis of Popping in Progressive Visualization
    (The Eurographics Association, 2021) Waterink, Ethan; Kosinka, Jiri; Frey, Steffen; Frosini, Patrizio and Giorgi, Daniela and Melzi, Simone and Rodolà, Emanuele
    Progressive visualization allows users to examine intermediate results while they are further refined in the background. This makes them increasingly popular when dealing with large data and computationally expensive tasks. The characteristics of how preliminary visualizations evolve over time are crucial for efficient analysis; in particular unexpected disruptive changes between iterations can significantly hamper the user experience. This paper proposes a visualization framework to analyze the refinement behavior of progressive visualization. We particularly focus on sudden significant changes between the iterations, which we denote as popping artifacts, in reference to undesirable visual effects in the context of level of detail representations in computer graphics. Our visualization approach conveys where in image space and when during the refinement popping artifacts occur. It allows to compare across different runs of stochastic processes, and supports parameter studies for gaining further insights and tuning the algorithms under consideration. We demonstrate the application of our framework and its effectiveness via two diverse use cases with underlying stochastic processes: adaptive image space sampling, and the generation of grid layouts.
  • Item
    Voronoi-Based Foveated Volume Rendering
    (The Eurographics Association, 2019) Bruder, Valentin; Schulz, Christoph; Bauer, Ruben; Frey, Steffen; Weiskopf, Daniel; Ertl, Thomas; Johansson, Jimmy and Sadlo, Filip and Marai, G. Elisabeta
    Foveal vision is located in the center of the field of view with a rich impression of detail and color, whereas peripheral vision occurs on the side with more fuzzy and colorless perception. This visual acuity fall-off can be used to achieve higher frame rates by adapting rendering quality to the human visual system. Volume raycasting has unique characteristics, preventing a direct transfer of many traditional foveated rendering techniques. We present an approach that utilizes the visual acuity fall-off to accelerate volume rendering based on Linde-Buzo-Gray sampling and natural neighbor interpolation. First, we measure gaze using a stationary 1200 Hz eye-tracking system. Then, we adapt our sampling and reconstruction strategy to that gaze. Finally, we apply a temporal smoothing filter to attenuate undersampling artifacts since peripheral vision is particularly sensitive to contrast changes and movement. Our approach substantially improves rendering performance with barely perceptible changes in visual quality. We demonstrate the usefulness of our approach through performance measurements on various data sets.
  • Item
    PGV 2019: Frontmatter
    (The Eurographics Association, 2019) Childs, Hank; Frey, Steffen; Childs, Hank and Frey, Steffen
  • Item
    Virtual Ray Tracer
    (The Eurographics Association, 2022) Verschoore de la Houssaije, Willard A.; Wezel, Chris S. van; Frey, Steffen; Kosinka, Jiri; Bourdin, Jean-Jacques; Paquette, Eric
    Ray tracing is one of the more complicated techniques commonly taught in (introductory) Computer Graphics courses. Visualizations can help with understanding complex ray paths and interactions, but currently there are no openly accessible applications that focus on education. We present Virtual Ray Tracer, an interactive application that allows students/users to view and explore the ray tracing process in real-time. The application shows a scene containing a camera casting rays which interact with objects in the scene. Users are able to modify and explore ray properties such as their animation speed, the number of rays as well as the material properties of the objects in the scene. The goal of the application is to help the users-students of Computer Graphics and the general public-to better understand the ray tracing process and its characteristics. To invite users to learn and explore, various explanations and scenes are provided by the application at different levels of complexity. A user study showed the effectiveness of Virtual Ray Tracer in supporting the understanding and teaching of ray tracing. Our educational tool is built with the cross-platform engine Unity, and we make it fully available to be extended and/or adjusted to fit the requirements of courses at other institutions or of educational tutorials.
  • Item
    Interactive High-Quality Visualization of Higher-Order Finite Elements
    (The Eurographics Association and Blackwell Publishing Ltd, 2010) Ueffinger, Markus; Frey, Steffen; Ertl, Thomas
    Higher-order finite element methods have emerged as an important discretization scheme for simulation. They are increasingly used in contemporary numerical solvers, generating a new class of data that must be analyzed by scientists and engineers. Currently available visualization tools for this type of data are either batch oriented or limited to certain cell types and polynomial degrees. Other approaches approximate higher-order data by resampling resulting in trade-offs in interactivity and quality. To overcome these limitations, we have developed a distributed visualization system which allows for interactive exploration of non-conforming unstructured grids, resulting from space-time discontinuous Galerkin simulations, in which each cell has its own higher-order polynomial solution. Our system employs GPU-based raycasting for direct volume rendering of complex grids which feature non-convex, curvilinear cells with varying polynomial degree. Frequency-based adaptive sampling accounts for the high variations along rays. For distribution across a GPU cluster, the initial object-space partitioning is determined by cell characteristics like the polynomial degree and is adapted at runtime by a load balancing mechanism. The performance and utility of our system is evaluated for different aeroacoustic simulations involving the propagation of shock fronts.
  • Item
    Parallel Compositing of Volumetric Depth Images for Interactive Visualization of Distributed Volumes at High Frame Rates
    (The Eurographics Association, 2023) Gupta, Aryaman; Incardona, Pietro; Brock, Anton; Reina, Guido; Frey, Steffen; Gumhold, Stefan; Günther, Ulrik; Sbalzarini, Ivo F.; Bujack, Roxana; Pugmire, David; Reina, Guido
    We present a parallel compositing algorithm for Volumetric Depth Images (VDIs) of large three-dimensional volume data. Large distributed volume data are routinely produced in both numerical simulations and experiments, yet it remains challenging to visualize them at smooth, interactive frame rates. VDIs are view-dependent piecewise constant representations of volume data that offer a potential solution. They are more compact and less expensive to render than the original data. So far, however, there is no method for generating VDIs from distributed data. We propose an algorithm that enables this by sort-last parallel generation and compositing of VDIs with automatically chosen content-adaptive parameters. The resulting composited VDI can then be streamed for remote display, providing responsive visualization of large, distributed volume data.
  • Item
    PGV 2020: Frontmatter
    (The Eurographics Association, 2020) Frey, Steffen; Huang, Jian; Sadlo, Filip; Frey, Steffen and Huang, Jian and Sadlo, Filip