Show simple item record

dc.contributor.authorChermain, Xavieren_US
dc.contributor.authorClaux, Frédéricen_US
dc.contributor.authorMérillou, Stéphaneen_US
dc.contributor.editorBoubekeur, Tamy and Sen, Pradeepen_US
dc.description.abstractRendering materials such as metallic paints, scratched metals and rough plastics requires glint integrators that can capture all micro-specular highlights falling into a pixel footprint, faithfully replicating surface appearance. Specular normal maps can be used to represent a wide range of arbitrary micro-structures. The use of normal maps comes with important drawbacks though: the appearance is dark overall due to back-facing normals and importance sampling is suboptimal, especially when the micro-surface is very rough. We propose a new glint integrator relying on a multiple-scattering patch-based BRDF addressing these issues. To do so, our method uses a modified version of microfacet-based normal mapping [SHHD17] designed for glint rendering, leveraging symmetric microfacets. To model multiple-scattering, we re-introduce the lost energy caused by a perfectly specular, single-scattering formulation instead of using expensive random walks. This reflectance model is the basis of our patch-based BRDF, enabling robust sampling and artifact-free rendering with a natural appearance. Additional calculation costs amount to about 40% in the worst cases compared to previous methods [YHMR16,CCM18].en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectReflectance modeling
dc.titleGlint Rendering based on a Multiple-Scattering Patch BRDFen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMaterials and Reflectance

Files in this item


This item appears in the following Collection(s)

  • 38-Issue 4
    Rendering 2019 - Symposium Proceedings

Show simple item record