EGPGV20: Eurographics Symposium on Parallel Graphics and Visualization
Permanent URI for this collection
Browse
Browsing EGPGV20: Eurographics Symposium on Parallel Graphics and Visualization by Author "Ahrens, James"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Approaches for In Situ Computation of Moments in a Data-Parallel Environment(The Eurographics Association, 2020) Tsai, Karen C.; Bujack, Roxana; Geveci, Berk; Ayachit, Utkarsh; Ahrens, James; Frey, Steffen and Huang, Jian and Sadlo, FilipFeature-driven in situ data reduction can overcome the I/O bottleneck that large simulations face in modern supercomputer architectures in a semantically meaningful way. In this work, we make use of pattern detection as a black box detector of arbitrary feature templates of interest. In particular, we use moment invariants because they allow pattern detection independent of the specific orientation of a feature. We provide two open source implementations of a rotation invariant pattern detection algorithm for high performance computing (HPC) clusters with a distributed memory environment. The first one is a straightforward integration approach. The second one makes use of the Fourier transform and the Cross-Correlation Theorem. In this paper, we will compare the two approaches with respect to performance and flexibility and showcase results of the in situ integration with real world simulation code.