42-Issue 7
Permanent URI for this collection
Browse
Browsing 42-Issue 7 by Author "Gain, James"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Interactive Authoring of Terrain using Diffusion Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Lochner, Joshua; Gain, James; Perche, Simon; Peytavie, Adrien; Galin, Eric; Guérin, Eric; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Generating heightfield terrains is a necessary precursor to the depiction of computer-generated natural scenes in a variety of applications. Authoring such terrains is made challenging by the need for interactive feedback, effective user control, and perceptually realistic output encompassing a range of landforms.We address these challenges by developing a terrain-authoring framework underpinned by an adaptation of diffusion models for conditional image synthesis, trained on real-world elevation data. This framework supports automated cleaning of the training set; authoring control through style selection and feature sketches; the ability to import and freely edit pre-existing terrains, and resolution amplification up to the limits of the source data. Our framework improves on previous machine-learning approaches by: expanding landform variety beyond mountainous terrain to encompass cliffs, canyons, and plains; providing a better balance between terseness and specificity in user control, and improving the fidelity of global terrain structure and perceptual realism. This is demonstrated through drainage simulations and a user study testing the perceived realism for different classes of terrain. The full source code, blender add-on, and pretrained models are available.