EG 2019 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2019 - Short Papers by Author "Cheema, Noshaba"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Stylistic Locomotion Modeling with Conditional Variational Autoencoder(The Eurographics Association, 2019) Du, Han; Herrmann, Erik; Sprenger, Janis; Cheema, Noshaba; hosseini, somayeh; Fischer, Klaus; Slusallek, Philipp; Cignoni, Paolo and Miguel, EderWe propose a novel approach to create generative models for distinctive stylistic locomotion synthesis. The approach is inspired by the observation that human styles can be easily distinguished from a few examples. However, learning a generative model for natural human motions which display huge amounts of variations and randomness would require a lot of training data. Furthermore, it would require considerable efforts to create such a large motion database for each style. We propose a generative model to combine the large variation in a neutral motion database and style information from a limited number of examples. We formulate the stylistic motion modeling task as a conditional distribution learning problem. Style transfer is implicitly applied during the model learning process. A conditional variational autoencoder (CVAE) is applied to learn the distribution and stylistic examples are used as constraints. We demonstrate that our approach can generate any number of natural-looking human motions with a similar style to the target given a few style examples and a neutral motion database.