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Abstract
We propose a fully monolithic two-way coupling framework that couples incompressible fluids to reduced deformable bodies.
Notably, the resulting linear system matrix is both symmetric and positive-definite. Our method allows for the simulation of
interesting free-surface as well as underwater phenomena, enabling the use of reduced deformable bodies as full-fledged sim-
ulation primitives alongside rigid bodies and deformable bodies. Momentum conservation is crucial to obtaining physically
correct and realistic-looking motion in a fluid environment, and we achieve this by following previous work to describe reduced
deformable bodies using both a rigid frame and a reduced space deformation component. Our approach partitions forces and
impulses between the reduced space and the rigid frame of the reduced deformable bodies using a projection scheme that cleanly
accounts for momentum losses in the reduced space via corrections in the rigid frame, resulting in a new theoretical formulation
for the momentum-conserving reduced deformable body. We demonstrate that robust and stable contact, collision, articulation,
and two-way coupling with fluids are all attainable in a straightforward way using this new formulation. Compared with fully
deformable objects, our framework consumes less memory and scales better in large scenes, while still nicely approximating
the deformation effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animaion

1. Introduction

For solid/fluid coupling, one could employ fully deformable bodies,
see for example [GSLF05,CGFO06,RMSG∗08], but quite often the
modes are highly damped, especially by liquids, and therefore the
deformable objects do not typically exhibit much non-rigid motion.
Thus, many authors instead use rigid body approximations, see
e.g. [CMT04, GSLF05, KFCO06, BBB07, RMSG∗08]. However,
the rigid approximation, while simple and fast, sometimes appears
overly dull since it does not allow for any deformations. In this
sense, reduced deformable bodies seem to be good intermediaries
between rigid bodies and fully deformable bodies. Moreover, many
deformable underwater creatures such as jellyfish generate motions
with non-local actuation modes making reduced models particu-
larly well suited for simulating these features. In addition, if a sim-
ulation contains many copies of the same creature, for instance the
starfish in Figure 10, then rigid bodies only need one copy of the
triangulated surface and implicit surface shared amongst all ob-
jects (see [GBF03]), whereas deformable bodies would require full
copies of all relevant data structures for every object. In this sce-
nario, reduced deformable bodies also scale like rigid bodies, ben-
efiting from the cheap representation where only the rigid mode
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and the small reduced mode vector need to be stored independently
for each individual object.

Solid/fluid coupling algorithms focus on the balance of momen-
tum between the solid and the fluid, and often prefer symmetry
in regards to their associated linear systems so that solvers con-
verge efficiently. Thus, we utilize the recent momentum preserv-
ing work of [SLYF15] which leverages the rigid frame proposed in
[TW88]. See also [MT92, WMW15]. Unfortunately, the method in
[SLYF15], while momentum conserving, does not provide a clean
set of equations that can be used for solid/fluid coupling. Therefore,
we begin by reconsidering their approach from the standpoint of
projection matrices where one projects various forces onto the re-
duced space as well as the rigid frame and looks at potential losses
in momentum as well as corrections to remedy these losses. This
leads us directly to a novel retreatment of the approach in [SLYF15]
based on a theoretically sound projection formulation with equa-
tions that are readily foldable into a monolithic solid/fluid coupling
framework, fully preserving the associated momentum. The result-
ing linear system matrix is symmetric and positive-definite.

Notably, while more theoretically formal, our treatment still al-
lows for extensions for all the interesting features considered in
[SLYF15]. For example, it is more straightforward to incorporate
collision and contact algorithms as well as the required impulses
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Figure 1: Examples of reduced deformable bodies in our monolithic solid/fluid coupling framework. (Left) Fifty tori are dropped into a pool
colliding with each other and making splashes. (Right) Three articulated and skinned jellyfish swim in deep water.

using our projection formulation, e.g., see Figure 10. In addition,
we also propose a fully implicitly coupled treatment for articulation
between sub-components of reduced deformable bodies. In partic-
ular, our new framework incorporates the ability to skin the articu-
lated sub-bodies as well. See Figures 8 and 9.

2. Related Work

Besides the works mentioned throughout the paper, we comment
on a few other related works here. [PW89] introduced the modal
analysis framework to approximate non-rigid behaviors with a sub-
set of vibrational modes. To more accurately simulate larger defor-
mations, [CK05] extended modal analysis to track local rotations
and warp the modal basis. Nonlinear model reduction approaches
such as the modal derivative method proposed in [IC85] have also
been widely employed. For example, [BJ05] precomputed the coef-
ficients of high order polynomials to achieve real-time simulations
for the St. Venant-Kirchhoff materials. In addition to Euclidean
space methods, an alternative rotation-strain subspace formulation
was presented in [HTZ∗11], and was adopted in [SvTSH14] for
simulating deformation in keyframe animation. [PBH15] further
corrected kinetic energy for the rotation-strain subspace simulation.
A different class of methods that are not based on reduced basis
construction have also been studied, for example, shape matching
in [MHTG05] and its fast lattice version in [RJ07].

Hybrid representations for deformable objects have been intro-
duced in [TW88] where a reference component is used to track
rigid motion and a displacement component is used for deforma-
tion. Similarly, [MT92] partitioned a deformable body into a rigid
part, a global deformation part, and a local deformation part, with
applications in constrained dynamics of multibody objects. This
idea is further adopted in the momentum conserving reduced de-
formable body framework in [SLYF15]. We also refer the read-
ers to [FLLP13], which presented a hybrid Eulerian-on-Lagrangian
framework where the Lagrangian modes describe rigid motion and
global deformation along with the Eulerian representation of the
local high frequency deformation. The idea of embeding deforma-

tion within a rigid frame is also widely used in the finite element
methods for multibody simulation, where it is often referenced as
the floating frame of reference formulation [SS98, BCS01, Sha05].
Articulation and skinning for reduced deformable bodies have been
addressed in [KJP02, Sha05, KJ11, SLYF15].

The solid/fluid coupling framework used in this paper is developed
based on [RMSF11]. See also [GSLF05, CGFO06, RMSG∗08] for
reference. For readers who are interested in reduced fluid simula-
tion (although this is not within the scope of this paper), please re-
fer to [Oha04, TLP06, WST09, KD13, LMH∗15, ATW15] for more
details.

3. Reduced Deformable Body Model

Similar to [TW88] and [SLYF15], we embed our reduced de-
formable model into a rigid frame

~x = R(S~q+~x0)+~T, (1)

where R is a block diagonal matrix of rotations R, ~T is a vector of
translations~t, S consists of the reduced modes, ~q are the reduced
displacements, ~x0 are the rest positions. The mass-weighted col-
umn sums of S are 0 so that S~q+~x0 contains no center of mass
translation. Differentiating Equation 1 gives us

~v = RS~̇q+ Ṙ(S~q+~x0)+~̇T, (2)

where the last two terms represent the angular and linear velocity
of the rigid frame. The velocity of the rigid frame can be written
as vrigid =

(
vcom,ωR

)T , where vcom is the velocity of the center of
mass, and ωR is the angular velocity defined via Ṙ = ω

∗
RR, where

∗ represents the skew-symmetric cross product matrix for a given
vector. Defining~r = R(S~q+~x0) as column vector of moment arms
allows us to rewrite Equation 2 as

~v = RS~̇q+ω
∗
R~r+~̇T = RS~̇q+ Jrigidvrigid, (3)

where Jrigid is an n by 2 block matrix where the first column con-
sists of identity matrices δ3×3 and the second column consists of 3
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Figure 2: A reduced deformable starfish (20 modes) deforms as
it falls into the water and rests on the rocks (192×192×192 fluid
grid).

by 3 matrices of the form~r ∗Ti :

Jrigid =


δ3×3 ~r ∗T1
δ3×3 ~r ∗T2

...
...

δ3×3 ~r ∗Tn

 . (4)

Differentiating Equation 3 gives us

~̈x = RS~̈q+~Ffict, (5)

where ~Ffict are the so-called fictitious forces, which should be
treated as acceleration. Using Newton’s second law

MR−1~̈x = ~F int +R−1~Fext, (6)

where M is either a consistent or a diagonal mass matrix, we obtain

Mr~̈q = ST ~F int +ST R−1~Fext−ST MR−1~Ffict, (7)

where Mr = ST MS is the reduced mass matrix. We define a com-
bined external and fictitious forces as ~Fef = ~Fext−RMR−1~Ffict,
and rewrite Equation 7 as

Mr~̈q = ST ~F int +ST R−1~Fef. (8)

A simple linearized finite element model is used for the internal
forces,

~F int
r = ST ~F int =−ST KS~q−STCS~̇q =−Kr~q−Cr~̇q, (9)

with Rayleigh damping, i.e., C = αM + βK. Note that in all our
examples we set α = 0.

4. External Impulses

For the rigid frame, we define the diagonal matrix Mrigid =

JT
rigidMJrigid whose upper left and lower right components are the

rigid body mass and inertia tensor. If M is a diagonal mass matrix,
one can verify that this gives the standard rigid mass m and iner-
tia tensor I for a set of rigidified particles. When M is a consistent
mass matrix, one obtains the standard rigid body mass, and we take
the resulting inertia tensor as our definition of the rigid body inertia
tensor for a consistent mass matrix. Given a set of impulses~λ on
the particles, the change in velocity of the particles is given by

∆~v = JrigidM−1
rigidJT

rigid
~λ. (10)

This expresses the change in velocity of every particle on the rigid
body given impulses simultaneously applied to every particle on
the rigid body. Notably, if only one particle has λi 6= 0, and we
only care about the change in velocity ∆vi of that particle, then
Equation 10 reduces to the usual ∆vi = (m−1

δ3×3+~r
∗T

i I−1~r ∗i )λi.
Equation 10 generalizes this to be from the impulses on all particles
to the velocity changes of all particles. Next we define

Prigid = MJrigidM−1
rigidJT

rigid, (11)

noting that Prigid is a true projection where P2
rigid =Prigid can be triv-

ially shown using the definition of Mrigid. A similar force projection
is also explored in [MGL∗15]. Thus, given any set of impulses~λ
on the particles, Prigid

~λ gives a new set of impulses on the particles
which conserves the momentum from~λ, and (δn×n−Prigid)~λ rep-
resents the remaining portion of the impulses that do not affect the
underlying motion of the rigid frame. Hence Equation 10 can also
be expressed as

∆~v = M−1Prigid
~λ. (12)

Similar to Prigid, PT
rigid defines a projection that filters the rigid com-

ponent out of the changes in particle velocities, i.e.,

∆~v = PT
rigidM−1~λ, (13)

which is an equivalent form of Equations 10 and 12. In fact, we
may also equivalently write

∆~v = PT
rigidM−1Prigid

~λ, (14)

where Prigid filters the impulses and PT
rigid filters the velocities.

For the reduced space, ~Fext in Equation 7 illustrates how impulses
affect the reduced degrees of freedom, i.e., they are first multiplied
by ST R−1 before being multiplied by M−1

r to obtain the changes in
reduced velocities ∆~̇q. Multiplying ∆~̇q by RS gives the equivalent
change in velocity of the particles, i.e.,

∆~v = RSM−1
r ST R−1~λ. (15)

Similar to Equation 11, we define

Pr = MRSM−1
r ST R−1, (16)

where P2
r = MRSM−1

r ST R−1MRSM−1
r ST R−1, and the term in

the middle ST R−1MRS can be viewed as an M-weighted inner
product that is not affected by the rotation of S by R. Therefore
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Figure 3: Comparison of a rigid starfish (left) and a reduced de-
formable starfish with 20 modes (right). The reduced deformable
starfish exhibits compelling motion whereas its rigid counterpart
appears stiff and boring.

ST R−1MRS = ST MS = Mr proving P2
r = Pr. Similar to Equa-

tion 14, we may rewrite Equation 15 as

∆~v = PT
r M−1Pr~λ. (17)

In the case of fully deformable objects with S = δn×n, we desig-
nate Pd

~λ = (δn×n−Prigid)~λ as the deformable component of the
impulses, where P2

d = Pd . Thus, we could decompose any vector of
impulses~λ into Prigid

~λ and Pd
~λ, applying Prigid

~λ to the rigid frame
and Pd

~λ to the non-rigid deformable degrees of freedom. This gives
the same result as applying the full~λ to all the particles, and sub-
sequently subtracting out the rigid frame. Unfortunately, due to Pr

and Prigid not being orthogonal, Pr~λ and Prigid
~λ do not partition the

impulses in the same way that Pd
~λ and Prigid

~λ do.

To have a momentum conserving partition scheme for the reduced
deformable objects, we begin by mimicking the ideal setting apply-
ing Prigid

~λ to the rigid frame and Pd
~λ to the reduced space. How-

ever, the reduced deformable body being lossy only applies PrPd
~λ

as illustrated in Equation 17, leaving (δn×n−Pr)Pd
~λ unapplied not

conserving momentum. Thus, we need to apply (δn×n − Pr)Pd
~λ

to the rigid frame as a momentum correction. This turns out to
be identical to the method proposed in [SLYF15]. Hence the net
impulse applied to the rigid frame should be (Prigid + (δn×n −
Pr)Pd)~λ = (δn×n−PrPd)~λ. Note that as the number of modes of
the reduced deformable model increases, the correction (δn×n −
Pr)Pd

~λ goes to 0 and we smoothly approach the fully deformable
case.

Consider the net change in velocity obtained by applying PrPd
~λ via

Equation 17 and the correction (δn×n− Pr)Pd
~λ via Equation 14,

i.e.,

∆~v = PT
r M−1PrPrPd

~λ+PT
rigidM−1Prigid(δn×n−Pr)Pd

~λ, (18)

which can be rewritten as

∆~v = (δn×n−PT
rigid)M

−1PrPd
~λ = PT

d M−1PrPd
~λ, (19)

where we have used P2
r = Pr, PrigidPd = 0, PT

r M−1Pr = M−1Pr,
and PT

rigidM−1Prigid = PT
rigidM−1. Again using M−1Pr = PT

r M−1Pr

finally gives

∆~v = PT
d PT

r M−1PrPd
~λ. (20)

Notably, if only one particle has λi 6= 0 and we only care about
the change in velocity of that particle, then Equation 20 reduces to
the impulse factor (K2) in [SLYF15]. Moreover, one can see that
the optional external forces projection in their paper (our Pd) is not
optional at all, and omission of this would lead to asymmetry in
their impulses, i.e., one cannot maintain symmetry by applying Pr~λ

via Equation 17 and (δn×n−Pr)~λ via Equation 14.

Note that Equation 20 can be rewritten as

∆~v = PT
d RSM−1

r ST R−1Pd
~λ (21)

using Equation 16. We will refer back to this later at the end of
Section 5.3.

5. Solid/Fluid Coupling

5.1. Fluid Equations

We use a standard MAC grid to discretize the incompressible fluid,
and split the Navier-Stokes equations into two steps. First, we com-
pute an intermediate fluid velocity ignoring pressure

~u ∗ =~u n−∆t(~u n ·∇)~u n +
∆t
ρ
~f . (22)

Then we solve the Poisson equation

∇· (∆t
ρ
∇p) =∇·~u ∗, (23)

and apply the resulting pressure to impose incompressibility

~u n+1 =~u ∗− ∆t
ρ
∇p. (24)

We use the particle level set method of [EMF02] for our liquid
simulations.

5.2. Solid Equations

First, we apply the same projection to the combined external and
fictitious forces that we applied for impulses in Section 4, giving
PrPd∆t~Fef to the reduced space and (δn×n−PrPd)∆t~Fef to the rigid
frame:

Mr~̇q ef = Mr~̇q n +ST R−1PrPd∆t~Fef, (25)

Mrigidvef
rigid = Mrigidvn

rigid + JT
rigid(δn×n−PrPd)∆t~Fef. (26)

Then, we apply the same treatment to internal forces R~F int to ob-
tain

Mr~̇q n+1 = Mr~̇q ef +ST R−1PrPd∆tR~F int, (27)

Mrigidvn+1
rigid = Mrigidv ef

rigid + JT
rigid(δn×n−PrPd)∆tR~F int. (28)

Equations 27 and 28 reduce to

Mr~̇q n+1 = Mr~̇q ef−∆tKr~q n+1−∆tCr~̇q n+1, (29)

Mrigidvn+1
rigid = Mrigidv ef

rigid− JT
rigidMRSM−1

r ∆t~F int
r . (30)
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Figure 4: A reduced deformable torus (10 modes) is dropped into a tub (192×192×192 fluid grid). The torus deforms as it goes into the
water, and eventually reaches an equilibrium floating in the tub.

Figure 5: Five reduced deformable spheres (each with 10 modes)
with increasing densities from left to right are released in a water
tank (320×64×176 fluid grid) and achieve equilibrium at different
depths, illustrating that our method treats buoyancy properly.

Using~q n+1 =~q n +∆t~̇q n+1 allows us to rewrite Equation 29 as

(Mr +∆tCr +(∆t)2Kr)~̇q n+1 = Mr~̇q ef−∆tKr~q n. (31)

Next, we introduce intermediate explicitly computed velocities ~̇q ∗

and v∗rigid via

Mr~̇q ∗ = Mr~̇q ef−∆tKr~q n, (32)

Mrigidv∗rigid = Mrigidvef
rigid + JT

rigidMRSM−1
r ∆tKr~q n. (33)

Finally, letting M̂r = Mr +∆tCr +(∆t)2Kr and Dr =Cr +∆tKr, we
have

M̂r~̇q n+1 = Mr~̇q ∗, (34)

Mrigidvn+1
rigid = Mrigidv∗rigid + JT

rigidMRSM−1
r ∆tDr~̇q n+1. (35)

Note that these are the same equations that appear in [SLYF15], ex-
cept that we cleanly separate forces utilizing PrPd and δn×n−PrPd .
This same clean separation could also be utilized by [WMW15].

5.3. Coupling

Letting β = ρV be the dual cell mass (where dual cells are cells
between two adjacent pressure freedoms on the primal axis), and

Figure 6: 15 reduced deformable tori (each with 10 modes) are
dropped into a pool (384×384×128 fluid grid). The top figure il-
lustrates the dynamics when the tori just hit the water riding on
waves and making splashes. The bottom left figure shows the tori
falling into the pool, and the bottom right figure shows them settling
down.

~λ designate the impulses from solids to fluids, we modify Equa-
tions 24 to obtain

β~u n+1 = β~u ∗− Ĝp̂+W T~λ. (36)

where Ĝ and −ĜT are the volume weighted gradient and diver-
gence operators, and W is the matrix of 0’s and 1’s that selects the
solid/fluid constraint faces. See [RMSF11]. Combining it with the
divergence free equation,

−ĜT~u n+1 = 0, (37)

gives us the modified discretized version of Equation 23:

ĜT
β
−1Ĝp̂− ĜT

β
−1W T~λ = GT~u ∗. (38)

Letting J be the matrix that interpolates from solid particles to
all non-solid dual cell centers, we augment Equations 34 and
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35 with an equal and opposite impulse −JTW T~λ, distributing
−PrPdJTW T~λ to Equation 34 and −(δn×n − PrPd)J

TW T~λ to
Equation 35 to obtain

M̂r~̇q n+1 = Mr~̇q ∗−ST R−1PrPdJTW T~λ, (39)

Mrigidvn+1
rigid = Mrigidv∗rigid + JT

rigidMRSM−1
r ∆tDr~̇q n+1

− JT
rigid(δn×n−PrPd)J

TW T~λ. (40)

Using the typical equal velocity constraint to set the fluid veloc-
ity from Equation 36 equal to the solid velocity from Equation 3
interpolated to the dual cell center center via J results in

W (~u n+1− J(RS~̇q n+1 + Jrigidvn+1
rigid)) = 0. (41)

Substituting ~u n+1, ~̇q n+1, and vn+1
rigid from Equations 36, 39, and 40

results in

−Wβ
−1Ĝp̂+Wβ

−1W T~λ+WJKλJTW T~λ = rhs, (42)

where the symmetric impulse factor Kλ is

Kλ = PT
rigidM−1Prigid +PT

d RSM̂−1
r ST R−1Pd , (43)

and the rhs is

−W (~u ∗− J~v ∗)+WJPT
d RS(M̂−1

r Mr−δr×r)~̇q
∗, (44)

with ~v ∗ = RS~̇q ∗+ Jrigidv∗rigid. Equations 38 and 42 yield a sym-
metric positive-definite monolithic solid/fluid coupling system(

ĜT
β
−1Ĝ −ĜT

β
−1W T

−Wβ
−1Ĝ Wβ

−1W T +WJKλJTW T

)(
p̂
~λ

)
=

(
GT~u ∗

rhs

)
,

(45)

where the coefficient matrix is identical to that obtained in
[RMSF11] with their inverse mass matrix replaced by Kλ. In fact,
setting S = 0 results in Kλ = JrigidM−1

rigidJT
rigid making Equation 45

identical to the one proposed in [RMSF11] for the rigid body case
(as long as one first interpolates to the particles).

Finally, note that the last term in Equation 43 has the same form as
Equation 21, except that the presence of M̂−1

r (which includes Cr
and Kr) in Equation 43 does not allow us to recover a form similar
to Equation 20.

6. Time Integration

We adopt the Newmark integration scheme from [QYF15] for the
solid/fluid coupled evolution. In order to update the positions, we
start with ~u n and ~v n and apply explicit forces for half a time step
∆t/2 to obtain û ∗ and v̂ ∗. Subsequently, we solve our coupled
system to obtain ~u n+1/2 and ~v n+1/2. Next, we update the solid
positions to time tn+1. Collision and contact are resolved for the
solid bodies using ~x n+1 and ~v n to obtain a collision-free velocity
ṽn, which is accomplished by applying the momentum conserving
impulses given in [SLYF15] (see also our Section 4). Finally, to
update the velocities, we start with ~u n and ṽ n and take a full time
step ∆t. Explicit forces are used to evolve ṽ n to ~v ∗, and ~u n is
updated to include explicit forces and advection to obtain~u ∗. Then,
we again solve our coupled system to obtain the tn+1 velocities
~v n+1 and~u n+1.

7. Articulation and Skinning

Simulating more geometrically complex objects such as the jelly-
fish in Figures 8 and 9 is challenging using simple linear modes
due to linearized rotation artifacts. [SLYF15] proposed simulating
smaller components of such objects using linear modes, and sub-
sequently articulating thse smaller components together. It is prob-
lematic to articulate objects under water by applying impulses in a
post-process, since the water will tend to drive the objects toward
one another. Although this is alleviated by the impulses in the post-
process, the water velocities being unaware of the post-process will
tend to discontinuously flow into the solid objects causing the water
to lose volume. Thus we instead show how to incorporate articula-
tion style impulses into our monolithic solid/fluid coupling solve.

Suppose we are articulating an arbitrary point xp on body p to an
arbitrary point xc on body c. Let Jap and Jac be sparse matrices that
interpolate from all particles to xp and xc respectively. We enforce
articulation by applying an equal and opposite impulse~λa to both
bodies via JT

ap
~λa and −JT

ac
~λa. This is accomplished by replacing

−JTW T~λ in Equations 39 and 40 with −JTW T~λ+(JT
ap− JT

ac)~λa.
This gives a modified version of Equation 42

−Wβ
−1Ĝp̂+Wβ

−1W T~λ+WJKλJTW T~λ

−WJKλ(J
T
ap− JT

ac)~λa = rhs, (46)

where the rhs stays unchanged. Enforcing the equal velocity
constraint gives Jap~v n+1 = Jac~v n+1 where ~v n+1 = RS~̇q n+1 +
Jrigidvn+1

rigid as per Equation 3. Substituting the aforementioned equa-
tions into this equation yields

(Jac− Jap)KλJTW T~λ+(JapKλJT
ap + JacKλJT

ac)~λa = rhsa, (47)

where rhsa is

(Jac− Jap)(~v ∗+PT
d RS(M̂−1

r Mr−δr×r)~̇q
∗). (48)

This becomes a new third equation in our systemA2×2
0

a23
0 aT

23 a33

 p̂
~λ
~λa

=

GT~u ∗

rhs
rhsa

 , (49)

where A2×2 is our previously defined coupling matrix in Equa-
tion 45, a23 = WJKλ(J

T
ac− JT

ap), and a33 = JapKλJT
ap + JacKλJT

ac.
Notably, the system matrix remains symmetric and positive-
definite. It is worth mentioning that this approach also works in
order to fully monolithically couple articulation to the implicit for-
mulation for reduced deformable bodies even without water. In that
case, Equation 49 reduces to a33

~λa = rhsa where we solve for~λa
and subsequently substitute into the appropriate forms of Equa-
tions 39 and 40 to obtain ~̇q and vrigid.

To correct for position drift from numerical errors, we further ap-
ply pre-stabilization impulses following the approach in [WTF06].
This is done outside of our coupled system during the position up-
date.

Although simulated separately, the articulated bodies are rendered
using a standard skinning approach. This has implications on the
simulation as described in [SLYF15], wherein the weights on par-
ticles used to create the skin mesh play a role in collision, contact,
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Figure 7: 50 reduced deformable tori (each with 10 modes) fall into a pool (256×256×64 fluid grid) and float on water (viewed from two
different camera angles). The reduced deformable tori get squeezed and bent as they interact with the fluid and collide with each other.

Figure 8: An articulated and skinned reduced deformable jellyfish (5 sub-components each with 20 modes) swims in deep water
(128×128×160 fluid grid). Balanced actuation forces are applied to eight points on the bottom of the bell to simulate the swimming motion.

etc. We similarly incorporate skin particles by changing the matrix
J (see Section 5.3) to include the effects of first weighting the solid
particles to create the skin particles and then interpolating from the
skin particles to all non-solid dual cell centers. J still effectively in-
terpolates from the solid particles to the non-solid dual cell centers

as in Section 5.3, but the weights change to incorporate the fact that
the fluid should see the velocity of the skin mesh.

Figure 9: Three articulated and skinned jellyfish swim closely together (128×128×160 fluid grid). Actuation forces are applied in the same
manner as in the single jellyfish example in Figure 8. We assign different initial velocities to each jellyfish. The two jellyfish on the left bump
into each other before heading off in different directions.
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Figure 10: 150 reduced deformable starfish (each with 20 modes) fall into the water (224×352×64 fluid grid) and eventually settle down
onto the rocks. The starfish are actuated by applying balanced forces to the five arms and the center of mass. These forces scale as a sine
function in time. This example demonstrates the scalability of our framework and the ability to incorporate collision and contact correctly.

8. Examples

In Figure 5, we provide a simple test to show that our method han-
dles buoyancy properly. The density of the five reduced deformable
spheres increases monotonically from left to right. The spheres are
released from the same depth in the water tank and eventually settle
at different depths ranging from floating to neutral to sinking. The
sphere model has 2k vertices and 9k tetrahedrons. The water tank
is 5m×1m with water filled up to 1.5 meters.

We use three different torus simulations to showcase applications
of our coupling system. The torus model has 12k vertices and 60k
tetrahedrons. Firstly, in Figure 4, we zoom in on a single torus to
observe its deformation as well as the rich water features. When
the torus first enters the water, it sinks down a little and the tube
radius shrinks. After riding up and down several tides of waves,
the torus eventually recovers its shape and floats on the water. The
water in the tub is initially 1m× 1m and filled up to 0.4 meters.
Secondly, Figure 6 shows 15 tori dropped into a pool of size 3m×
3m with warer filled up to 0.4 meters. Thirdly, in Figure 7 we make
a even larger scale scene with 50 tori dropped into a bigger pool of
size 4m× 4m and water level again at 0.4 meters. These examples
illustrate our capacity to properly incorporate collisions for a large
number of floating objects.

Apart from simple shapes such as spheres and tori, we also ran our
system on interesting sea creatures such as starfish and jellyfish.

Figure 3 compares the motion of a rigid starfish and a reduced de-
formable starfish as they fall into a water tank. The starfish model
has 2k vertices and 6k tetrahedrons. With only 20 reduced modes,
the reduced deformable starfish is able to display quite compelling
deformation as it hits water and then gently rests on the rocks, while
the rigid starfish shows rather uninteresting motion throughout the
simulation (as seen in the video). The area of the water tank is
1m× 1m, with water initially filled up to 0.4 meters. In Figure 10,
we drop 150 of the reduced deformable starfish into a larger tank of
water (3.5m×5.5m×0.5m). The starfish exhibit realistic motion as
they successively fall into the water from various random initial ori-
entations, colliding with each other and the rocks. The heavy stack-
ing in the final rest poses illustrates the robustness of our system in
handling collisions and contact. Furthermore, this example under-
lines the advantage of our method when there exist many copies of
the same reduced deformable object as they can share most of the
data structures leading to efficiency in storage.

Figures 8 and 9 highlight our ability to incorporate articulation and
skinning into our monolithic coupling framework. We segment the
jellyfish model into 5 sub-components: the bell and the four arms.
One set of the whole jellyfish has 11k vertices and 37k tetrahe-
drons. We enforce three point joint constraints between each arm
and the bell (twelve in total). The balanced actuation forces act
on eight points near the bottom of the bell and produce smooth
swimming motion. In Figure 9, three jellyfish start with different
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Figure 11: The graph shows the runtime taken by each frame for
the 50 tori performance tests. The first wave of tori hit the water
surface around frame 20, and the second wave of tori hit the wa-
ter surface around frame 60. Collision is turned off to make the
simulations behave similar to each other.

orientations and initial velocities. Note that we also passively ad-
vect some plankton nearby the jellyfish for the sake of added real-
ism in visualization (see the video). Both simulation domains are
1m×1m×1.25m.

In all the above-mentioned examples, we adopt the reduced de-
formable model described in Section 3, where the basis is com-
puted following the modal analysis method [PW89], and thus the
matrices Mr, Dr and M̂r have a diagonal form. Notably, this makes
the computation of M̂−1

r in Equation 43 trivial.

To evaluate the performance of our coupling system compared to
one that couples fluids to regular deformable bodies [RMSF11], we
analyze the runtime needed by each system for the same problem.
To make a fair comparison, we set up an example similar to that in
Figure 7, where we spread out 50 tori evenly and drop them into
the water without collision. We simulate this example with both a
coarse torus mesh (5k tetrahedra) and a fine torus mesh (60k tetra-
hedra) using the two systems. The runtime per frame of the four
simulations are shown in Figure 11. Note that more than 90% of
the runtime is spent on the coupling system solve using the pre-
conditioned conjugate gradient (PCG) method, which is the most
expensive part in these examples, as well as all the other exam-
ples shown in this paper. While our system for reduced deformable
body shows only marginal performance benefits over the system
for regular deformable body on a coarse mesh, the advantages are
more pronouced on higher resolution meshes. Although one could
still argue that a regular deformable body with a coarse mesh can
provide deformations with similar levels of detail to those of as a
reduced body with a fine mesh, a regular deformable body could
suffer from various problems that a reduced deformable body triv-
ially avoids, including high frequency oscillation, and undesirable
local deformations.

9. Conclusion

First, we formalized the projection scheme introduced in [SLYF15]
to neatly partition forces and impulses between the reduced space
and the rigid frame of the reduced deformable bodies in a manner
that guarantees conservation of momentum. Then, we used this new
framework in order to formulate a monolithic solid/fluid coupling
approach that enables reduced deformable bodies to be simulated
in a fluid environment along with their rigid and fully deformable
counterparts. In addition, we illustrated how to fully couple artic-
ulated bodies into the solid/fluid coupling framework, and further
included details for skinned bodies.

While reduced deformable bodies alone bring considerable savings
in terms of computational resources and simulation time in com-
parison to fully deformable bodies, the benefits are less obvious in
a solid/fluid coupling framework. For example, in Figure 6, where
15 tori were dropped into the water, the simulation still takes one
minute per frame (depending on the degree to which the tori are
interacting) because the overall simulation speed is bounded from
below by the non-reduced fluid simulation. Nevertheless, our ap-
proach significantly reduces the storage for deformable bodies to be
more along the lines of rigid bodies. Moreover, our method scales
well to large number of objects with the same model, since each
object only has a small constant number of degrees of freedom and
they can share a majority of the data structures. Notably, this also
substantially reduces the communication cost during paralleliza-
tion. In addition, the smaller degrees of freedom could make it fea-
sible to solve optimization problems for deformable bodies; for ex-
ample, one could explore extensions of [TGTL11] to deformable
swimming creatures. Finally, our framework provides a theoretical
foundation that could be used to couple reduced deformable solids
to model reduced fluids such as those mentioned in related work.
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