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Abstract
Rheumatoid Arthritis (RA) is a systemic disease that affects the synovial joints. Currently, the gold standard mea-
surement for tracking the progression of the disease involves a semi-quantitative assessment of bone erosion, bone
marrow edema, and synovitis in Magnetic Resonance Images. The Outcome Measures in Rheumatology Clinical
Trials (OMERACT) Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) system represents a use-
ful standard for the assessment of RA. However, the use of RAMRIS system is time-consuming and tedious and
requires a long learning curve. The work presented in this paper is aimed at identifying how computer automation,
using parallel computing on the Graphics Processing Unit (GPU), can be used to quantify OMERACT-RAMRIS
score. The proposed algorithm is fully integrated in a Computer Aided Diagnosis (CAD) system named RheumaS-
CORE (Softeco Sismat Srl) and enables users—even non-expert ones—to evaluate bone erosion in a short time
and with little training. Preliminary results of qualitative and quantitative validation are presented and discussed
at the end of the paper.

1. Introduction

Rheumatoid Arthritis (RA) is a chronic inflammatory au-
toimmune disease that affects synovial joints and leads to
the destruction of periarticular bones. Bone erosions are
localized lesions with a break in the cortical shell. Since
bone erosions are closely related to the disease activity,
they constitute an early prognostic indicator and an im-
portant clinical parameter to monitor treatment effective-
ness [TC11,SRS13,FGC07]. It is therefore desirable to de-
tect them as early as possible with high precision, in order to
quantify small changes.

Currently, the gold-standard measurement for tracking the
progression of the disease involves a semi-quantitative as-
sessment of bone erosion, bone marrow edema, and synovi-
tis in Magnetic Resonance Imaging (MRI), performed by a
musculoskeletal radiologist.

The work presented in this paper shows how computer
automation can be used to measure bone erosion volumes
in MRI images, using OMERACT-RAMRIS, without the
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expert and time-consuming intervention of a radiologist. A
novel automatic 3D approach for the identification and quan-
tification of bone erosions (i.e., the missing parts of the
bone), to be used in the clinical practice, is described and
evaluated here.

With respect to the literature, the proposed algorithm is
based not on the direct segmentation of the erosion, but
on the segmentation of the bone of interest, the reconstruc-
tion of its original shape, and the comparison between the
segmented shape and the original one. A Statistical Shape
Model (SSM) is extracted from a collection of training
samples of segmented healthy bones; the model comprise
the mean shape and a number of modes of variation ob-
tained through a Principal Component Analysis (PCA). The
healthy bone shape can be obtained as a linear combination
of the mean shape and the modes of variation: the recon-
struction of the original bone shape is obtained by calculat-
ing the best coefficients of this linear combination. The dif-
ference between the segmented bone and the reconstructed
bone is the erosion of which it is possible to calculate the
volume and the scoring.

Thanks to the use of Graphics Processing Units (GPUs),
such as those commonly found on consumer-level personal
computers, the automatic erosion scoring for all wrist bones
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(or hand bones) takes less than one minute. This leads to a
substantial reduction of diagnosis time and costs, achieving
high quality results in a very short time. The proposed ap-
proach is implemented using theOpenCLplatform, which
represents an independent standard holding high potential
for exploiting the massive parallelism of modern multi-core
processors and graphics processors.

The effectiveness of the proposed method is assessed
by presenting both qualitative and quantitative results of
wrist/hand bones considering pathological RA cases. To this
purpose, the algorithm is fully integrated in a CAD system
named RheumaSCORE [Rhe,BPV∗12,CRP∗13,PCVV14].

The paper is organized as follows. Section 2 gives an
overview of the existing techniques and tools for RA scor-
ing. Then details on reconstruction shape, segmentation and
volume evaluation algorithms and GPU computing are pro-
vided. Section 3 provides the description of the proposed al-
gorithm and the evaluation of its performance. Section 4 de-
scribes the integration of the implemented algorithm in the
RheumaSCORE software. Section 5 includes a preliminary
quantitative analysis of the approach when used in the clini-
cal setting. Finally, in Section 6 conclusions are drawn.

2. Background and previous work

2.1. Rheumatoid arthritis scoring

Conventional Radiographs (CRs) are used to semi-
quantitatively assess bone erosions in patients with RA.
However, due to their projectional character, the use of CRs
results in an underestimation of the number and size of ero-
sions and, therefore, the eventual disease activity. Further-
more, it has been reported that it takes 6-12 months before
structural changes become evident on CRs [Sok08], imped-
ing the early validation of treatment efficacy.

Other imaging modalities have emerged, which allow a
more sensitive detection of early bone erosions. MRI (Mag-
netic resonance Imaging) has demonstrated to be more sen-
sitive than radiography for the detection of erosive bone
changes in RA, especially the subtle changes that oc-
cur in the early phase of rheumatic diseases [MSC∗98,
COM∗03, LVHp∗06]. The Outcome Measures in Rheuma-
tology (OMERACT) Rheumatoid Arthritis MRI Scoring
System (RAMRIS) has been developed [OPC∗03,LMO∗03]
with data from iterative multicenter studies [OPC∗03,
OKL∗01, CLO∗03]. The OMERACT RAMRIS is a semi-
quantitative scoring system for assessing synovitis, bone
erosions, and bone edema on MRI in RA hands and wrists.
Studies on the quantification of bone erosions using MRI
have previously shown reliability and feasibility [BLSE03,
BEM∗03], and they can be beneficial in documenting pro-
gression or regression of structural joint damage.

Also multidetector Computed Tomography (CT) has an
important role in monitoring damage progression in RA.
Anyways, unlike MRI, CT does not depict inflammation.

Some methods for the semi-automated quantification of
erosions have been proposed for CT and MRI datasets.
Duryea et al. [DMA∗08], using CT data, describe a semi-
automatic outlining of the periosteal surface followed by an
erosion segmentation based on region growing. The studies
performed by Døhn et al. [DEH∗08], using CT data, and by
Bird et al. [BLSE03] and Crowley et al. [CDM∗11], using
MRI data, rely on manual outlining of the erosions, slice by
slice. While a trained operator may produce reliable results,
manual outlining can be very time consuming. Moreover, a
slice-wise approach does not take the true 3D erosion struc-
ture into account.

In contrast, Emond et al. [EIC∗12] employ a 3D segmen-
tation of erosions in MRI. Only the placement of a seed point
and the selection of five parameters are required. However,
this approach brings the complexity related to the choice of
the parameters to segment the erosion.

In addition, to the best of our knowledge, there is no com-
mercial framework for wrist/hand erosion scoring designed
for MRI data. In that sense, a first result is the algorithm pro-
posed here, which has been fully integrated in the RheumaS-
CORE software [Rhe, BPV∗12, CRP∗13, PCVV14], a spe-
cific CAD system for RA.

2.2. Reconstruction from pathological shapes

In RA scoring, a central issue is how to reconstruct patho-
logical anatomical structures, when the original normal situ-
ation is unknown. Statistical models of healthy shapes allow
to reconstruct pathological shapes in an automatic and repro-
ducible way. The idea is to fit the statistical model to match
the pathological shape in healthy regions. The resulting best
fit will provide a patient-specific yet objective proposal for
the re-modeling process.

Statistical models are widely used to represent the shape
and appearance of objects, which can vary [HM09]. The Sta-
tistical Shape Models (SSMs) were introduced by Cootes
and Taylor [CTG95]. Given a training set of shapes (each
one represented by a set of points, a mesh, or an image), a
linear model is learnt which describes any new shape as the
sum of a mean and a weighted combination of “modes of
variation”. The weights, which are called shape parameters,
give a compact encoding of any particular shape.

Describing the shape of an object is a nontrivial task,
which is commonly performed by employing meshes or
images. Meshes consist of points in specific locations
and the connections among them. They can be contours
that surround a 2D area [RCA03], surface meshes that
cover a volume [WHD∗11] or volumetric meshes that
contain points within the volume [SRE∗06]. For the im-
ages, two different approaches have been proposed: distance
maps [AAF∗10] and the intensity image within the object of
interest [LKH∗09]. Here we adopt the distance map to rep-
resent the bone healthy shape.
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The hypothesis underpinning our approach is that the
shape of bones affected by a pathology departs from stat-
ically normal bone shape variation. When a pathological
bone sample is registered with a SSM built from healthy
bones, any diseased region will be represented as a depar-
ture from the model. Such regions can then be character-
ized as erosions and have their morphology and volume as-
sessed. SSMs describe the variation that exist within a set of
aligned training shapes. They are commonly used to iden-
tify shape instances in medical image data by utilizing the
variability extracted from the training set by Principal Com-
ponent Analysis (PCA) [CTG95]. In building such a model,
it is necessary to establish point correspondences across the
training set. This is often achieved by registering a single
reference into each sample, using algorithms such as itera-
tive closest point (rigid) and B-spline free form deformation
(non-rigid) [KLZH09].

2.3. Segmentation and volume evaluation

Volumetric measurements are essential to evaluate the suc-
cess of a therapy. As an example, the reduction of bone
erosion volume determines the success of the treatment. In
general, the measurement process can be organized into two
steps: first, we need to select the relevant structure (volume
selection with segmentation), and second, we need to com-
pute the respective volume of that structure (volume mea-
surement).

Segmentation is an important task in medical imaging, in
order to recognize anatomical or pathological structures and
determine their relevant characteristics such as size, shape,
and volume. Moreover, image segmentation is the prerequi-
site for many interaction techniques to explore data and to
carry out treatment planning.

In the context of RA, there is relatively little work on
segmentation of wrist bones in 3D MRI sequences. Sebas-
tian et al. [STCK03] describe an approach to segment carpal
bones from Computed Tomography (CT) sequences using
skeletally coupled deformable models. Similarly, Duryea
et al. [DMA∗08] describe their semi-automated approach
using CT data. Koch et al. [KSCP11] and Wodarczyk et
al. [WCT∗15] developed wrist segmentation framework on
3D MRI images. Parascandolo et al. [PCV∗13] implemented
a novel tool, called Smart Brush, for real-time interactive 3D
image segmentation. The tool exploits GPU implementation
of the sparse field level-set method, using OpenCL. It en-
ables simple and user friendly interaction and enables a full
3D segmentation of a whole anatomical element, requiring
only minimal interaction on 2D slices.

Once all voxels of a target structure are identified, the
structure volume can be approximated for volumetry. A
straightforward approach is to weight every voxel belong-
ing to that selection with the size of a respective volume cell
(voxel counting algorithm). This method achieves a reason-
able approximation for interior core voxels. However, it does

not reflect the boundary voxels properly, where the separat-
ing isosurface may be closer or farther away from the vox-
els depending on the voxel values and the threshold. While
this difference is almost negligible for compact selections—
which have a relatively small boundary—it can be significant
for small or elongated structures, like erosions.

Modified voxel counting [KFC89] estimates the volume
as the sum of voxels inside the object plus half the sum
of voxels on the surface. A better approach (voxel counting
with edge resampling) is described in [BOG04] and adopted
in this work. First, the boundary voxels are examined in their
volume cell context, where a boundary cell contains between
one and seven selected voxels (see Figure1). Similar to
the case table of the Marching Cubes approach [LC87], the
boundary cells are classified into simple (one or seven vox-
els are selected) and complex cases (from two to six voxels
are selected). Simple cases can be immediately resolved by
weighting the respective volume with the interpolated iso-
value parameter. The complex cases are recursively divided
into eight subcells using trilinear interpolation until either
only simple cases remain or the respective full voxel volume
is below an error threshold.

Figure 1: Voxel counting with edge resampling. The voxel in
red (R) is interpolated as adjacent to the black one (belong-
ing to the edge of the segmented element). The subdivision
is done according to the voxel neighbors. The small cubes
indicate the levels to be assigned to the 3x3x3 subvoxel in-
terpolation in which R will be divided. At this point, the con-
tribution of “non-empty” subvoxels of R is added to the total
volume.

2.4. GPU Computing

To overcome the computationally demanding tasks of med-
ical image applications, researchers are moving to parallel
computing on GPU. Recent GPUs demonstrate enormous
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potential for scientific computing tasks in the form of Gen-
eral Purpose GPU-based processing (GPGPU). In particu-
lar, memory bandwidth, instructions per second, increased
programmability and higher precision arithmetic processing
highlight the potential benefits. For many data-parallel com-
putations, graphics processors outperform CPUs by more
than one order of magnitude because of their streaming ar-
chitecture and dedicated high-speed memory.

The introduction of CUDA [KH10] a few years ago stim-
ulated a tremendous growth in GPU-accelerated applica-
tions. However, CUDA is a proprietary API with a set of
language extensions that works only on NVIDIA’s GPUs.
OpenCL [TNIA10], on the other hand, is an open stan-
dard for parallel programming, maintained by the Khronos
Group [Khr], which has been designed for GPGPU. OpenCL
promises a portable language for GPU programming, capa-
ble of targeting very dissimilar parallel processing devices,
GPU hardware, OS software, and multi-core processors.

In the next section, the mathematical formulation of the
proposed algorithm and its implementation with OpenCL are
described.

3. Automatic bone erosion scoring

3.1. Construction of the Statistical Shape Model

Constructing a SSM basically consists of extracting the
mean shape and a number of modes of variation from a col-
lection of training samples. Obviously, the employed meth-
ods strongly depend on the chosen shape representation.

Shape is invariant to similarity transformations (i.e., trans-
lation, rotation, and scaling). In general, shape changes in-
duced by these global transformations should not be mod-
eled by an SSM, in order to keep the model as specific as
possible. Thus, the first step is to align all training samples
in a common coordinate frame. There have been a number
of works dealing with the alignment of images [CTT∗01,
FJ99, MMV00,VJP97, VW97]. For our application, we are
interested in aligning binary images to encode the training
shapes. This greatly simplifies the alignment task.

Let the training setT consist ofn binary images{I 1, I2,
. . . , In}, each with values of one inside and zero outside the
object. The goal is to calculate the set of pose parameters
{p1, p2, . . . , pn} used to jointly align then binary images,
and, hence, to remove any variation in shape due to pose dif-
ferences. First, a common reference image is chosen from
the cohort. Based on this selection, rigid-based image reg-
istration is performed between the reference image and the
remaining datasets.

The original images for the training set consists of 40 MRI
volumes acquired using an Esaote C-Scan, a dedicated scan-
ner for imaging of extremities. The sequence was a sagittal
Turbo 3D T1 and the resolution was 0.55 mm x 0.55 mm
in each slice with a slice thickness between 0.60 mm and

0.80 mm (with no gap slices). Each slice is 256x256 pixels
and a scan has around 105 slices (Figure2). All images are
manually segmented by an expert.

Figure 2: MRI of wrist affected by RA. The red arrow in
the axial (left) and coronal (right) views highlights the same
erosion of the hamate.

As mentioned earlier, a popular and natural approach to
represent shapes is via point models, where a set of marker
points is used to describe the boundaries of the shape. This
approach suffers from problems such as numerical instabil-
ity, inability to accurately capture high curvature locations,
difficulty in handling topological changes, and the need for
point correspondences. To overcome these problems, we uti-
lize an Eulerian approach for shape representation based on
the level-set method proposed by Osher and Sethian [OS88].

Following the lead of [OS88], we choose the signed dis-
tance function as our representation for the shape. Hence,
each registered data setĨ is transferred into structure specific

signed distance mapsD(i)
a , wherea represents the structure

of interest (Figure3). In these distance maps, negative val-
ues are assigned to voxels within the boundary of the object,
while positive values indicate voxels outside the object.

Figure 3: Distance map of the registered capitate. Coronal
slice of the original MRI volume (left), segmentation of the
capitate overlaid on the grayscale image (center), and reg-
istered distance map (right).

By taking the average over all these distance mapsD(i)
a ,

we define the mean distance map

Da =
1
n

n

∑
i

Di
a (1)

and the mean corrected signed distance maps

D̃i
a = D(i)

a −Da. (2)
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These mean-offset functions are then used to capture the
variabilities of the training shapes through Principal Com-
ponent Analysis (PCA). PCA allows to reduce the dimen-
sionality of the training set, i.e. to find a small set of
modes that best describes the observed variation. An eigen-
decomposition of the related covariance matrix

S=
1

n−1

n

∑
i

(

Di
a −Da)

(

Di
a−Da

)T
(3)

delivers the max principal modes of variationφm (eigenvec-
tors) and their respective variancesλm (eigenvalues).

Then, it is possible to approximate every valid shape by a
linear combination of the firstc modes

D = D+
c

∑
m=1

bmφm (4)

wherebm are the weights associated to the eigenvectorsφm.

In many cases,c is chosen so that the accumulated vari-
ance∑c

m=1 λm reaches a certain ratior of the total variance

∑s−1
m=1 λm. Common values forr are 0.9–0.98 (Figure4).

Figure 4: PCA: screeplot for the scaphoid bone. The red
columns, corresponding to the first 11 components, are re-
tained because the ratio r of the total variance is 0.9. The
remaining components are discarded.

3.2. Bone reconstruction

The healthy bone of interest is reconstructed starting from
its eroded shape and from the PCA describing the variability
within the training set of corresponding bone healthy shapes.
The reconstruction is performed in two steps, as follows:

1. First adjustment of the real bone and the model. In this
step, the registration between the mean binary shape of
the PCA and the eroded bone is performed using a rigid
transformation (rotation + translation). The resulting pa-
rameters of the transformation matrix are used in the fol-
lowing step.

2. Reconstruction by successive optimizations. An evalu-
ation function, which represents the error between the
transformed model (obtained using the parameters com-
puted in the previous step) and the real bone, is calcu-
lated. By repeating the optimization process, this evalua-
tion function is minimized by changing the initial model
(Figure5). Modifying the initial model consists in chang-
ing the c shape parameters defined by the PCA (i.e.,
changing the vector of parameters weightsb defined in
(4)). The evaluation function chosen for this optimiza-
tion process is the Dice’s coefficient [Dic45]. Also known
with other names, like “similarity index” or “Sørensen in-
dex”, this coefficient is used for comparing the similarity
of two samples. In the bone reconstruction algorithm, the
similarity is computed between the binary image of the
eroded bone and the binary image of the modified initial
healthy model. The Dice’s coefficientd is calculated us-
ing the following formula:

d =
2|A

⋂
B|

|A
⋃

B|
, (5)

in which A represents the set of the non-zero voxels be-
longing to the binary image of the eroded bone,B is the
set of the non-zero voxels belonging to the binary image
of the modified initial model.

Figure 5: Overall method for the 3D reconstruction.

3.3. GPU bone reconstruction

In our implementation of the bone reconstruction algorithm
on GPU, different OpenCL kernels and strategies are used
to obtain a parallelism with single voxel granularity. For the

c© The Eurographics Association 2015.

51



L. Cesario & P. Parascandolo & L. Vosilla & G. Troglio & G. Viano / OMERACT-RAMRIS score quantification in RA

pipeline described in the previous section (Figure5), the
heavy computational effort relay in the metric evaluation.

For this reason, we write different OpenCL kernels that
evaluate:

1. For the first registration step, the Kappa statistics met-
ric [ZDMP94] between the mean binary shape of the
PCA and the eroded bone. This metric is estimated for
each iteration of the optimization process of the registra-
tion.

2. For each iteration of the bone reconstruction optimization
process, the linear combination between the mean shape
and the modes of the PCA. Moreover, another kernel
evaluates the Kappa statistics metric between the result-
ing linear combination and the segmented eroded bone.

In order to test the speed improvement obtained using par-
allel computing, we implement three versions of the bone
reconstruction algorithm: the first runs sequentially on the
CPU, the second runs in multithread on the CPU and the last
runs on the GPU via OpenCL kernels. These tests are per-
formed on an Intel i7 processor 2.8 GHz with 6GB of RAM
memory and an NVIDIA GTX260 graphic card. Tests are
performed for all anatomical elements of the wrist/hand in
MRI volumetric images.

As an example, in Table1 we show the execution time of
the first and second steps of our algorithm using a sequen-
tial version on CPU (CPUs), a multithread version on CPU
(CPUm) and a parallel version on GPU (GPU). For the first
step, the GPU version is 13 times faster than the CPUm ver-
sion and 37 times faster than the CPUs. For the second step,
the GPU version is 13 times faster than the CPUm version
and 105 times faster than the CPUs. Similar results are ob-
tained for the remaining bones.

Table 1: CPU versus GPU bone reconstruction for the cap-
itate bone.

Algorithm step Execution time
(s)
CPUs CPUm GPU

First adjustment of
the real bone and the
model

12.37 4.43 0.33

Reconstruction by
successive optimiza-
tions

114.47 18.76 1.37

In Table2 and Table3, we report the total execution time
(CPUs, CPUm, GPU) for all the bones of the wrist district
(forearm bones, carpal bones and metacarpal bones) and of
the hand district (metacarpal bones and phalanx bones). As
regards the wrist bones, for the first step, the GPU version
results 15 times faster than the CPUm version and 42 times
faster than the CPUs one. For the second step, the GPU ver-
sion is 16 times faster than the CPUm one and 112 times
faster than the CPUs one.

Table 2: CPU versus GPU bone reconstruction for the wrist
district.

Algorithm step Execution time
(s)
CPUs CPUm GPU

First adjustment of
the real bone and the
model

144.26 52.35 3.4

Reconstruction by
successive optimiza-
tions

2167.1 323.7 19.3

Table 3: CPU versus GPU bone reconstruction for the hand
district.

Algorithm step Execution time
(s)
CPUs CPUm GPU

First adjustment of
the real bone and the
model

72.0 24.1 1.8

Reconstruction by
successive optimiza-
tions

882.1 117.9 9.0

As regards the hand bones, for the first step, the GPU ver-
sion results 12 times faster than the CPUm one and 42 times
faster than the CPUs one. For the second step, the GPU ver-
sion is 13 times faster than the CPUm version and 98 times
faster than the CPUs one.

Moreover, in order to evaluate both the qualitative perfor-
mance of the bone reconstruction algorithm and the quan-
titative reliability of the volume evaluation algorithm, we
simulated various erosions on previously segmented healthy
bones. In this way, it is possible to visually inspect the results
and to understand if the algorithm could fill those manually
deleted parts and reconstruct them, bringing the bone back
to its original shape.

Figure6 shows the results of the bone reconstruction al-
gorithm when applied to healthy bones with simulated ero-
sions. All the simulated erosions are identified by the algo-
rithm and their shape is correctly reconstructed.

3.4. Volume and OMERACT-RAMRIS score evaluation

After reconstructing the shape of the healthy bone, the dif-
ference between the original eroded segmented bone and the
reconstructed bone is computed. The resulting volume con-
stitutes the erosion.

In order to choose the more suitable volume evaluation
algorithm, some tests have been performed on phantom
shapes, spheres and ellipsoids with different sizes, so as to
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Figure 6: Bone reconstruction of simulated eroded bones.
Capitate bone (left), scaphoid bone (center), and hamate
bone (right). The blue line superimposed to the MRI cor-
responds to the contour of the segmentation, with manually
inserted holes corresponding to simulated erosions. The red
part is the reconstructed part of the bone, i.e. the erosion,
obtained as a result of our algorithm.

estimate the reliability of the volume evaluation algorithm
(voxel counting with edge resampling - VCER) against the
simple voxel counting (VC). The results show that in the
case of more ideal shapes, like the spheres, the VC algorithm
gives values nearest to the ideal value (VI) against the VCER
algorithm. If we compute this volume on thinner, more real-
istic shapes (like ellipsoids), the error given by the VCER
algorithm is more stable and the average value of the ra-
tio VCER/VI is 0.98 that is nearest to the best concordance
value (1) respect of the ratio VC/ VI, 1.09.

In addition, we apply the VCER algorithm on healthy seg-
mented bones and on the same bones with simulated ero-
sions and on those reconstructed erosions (Figure6). The
error obtained comparing the “ideal” value, i.e. the VCER
of the healthy segmented bone, with the “sum” of the VCER
applied on the eroded bone and on the reconstructed ero-
sions is of the same order of the previous one computed on
phantom shapes.

For this reasons, we use the VCER algorithm to evalu-
ate the volumetric information needed to compute the ero-
sion score in accordance to RAMRIS. The global score of
the erosion is computed considering the eroded bone vol-
ume compared to the intact bone, with 10% increment. As a
result, the rating of the erosion per single bone is comprised
between 0 (healthy bone) and 10.

4. Software application design

As the test results of our scoring procedure are very en-
couraging, this pipeline has been fully integrated in the
RheumaSCORE application, developed by Softeco Sis-
mat to address the RA disease [Rhe, BPV∗12, CRP∗13,
PCVV14]. RheumaSCORE is a Computer-Aided Diagno-
sis (CAD) system supporting physicians (e.g. radiologist or
rheumatologist) during the diagnostic process and the RA
follow-up management. The physician is supported by sev-
eral functional environments, addressing:

1. the investigation, through the recognition of wrist/hand

bones and the automatic evaluation of bone erosion scor-
ing (using the previously described procedure);

2. the tracking, through the management of clinical data
(like Rheumatoid Factor and C-Reactive Protein), the in-
sertion of free annotations and the retrieval of similar RA
cases on the basis of historical clinical data, RA measure-
ments or keywords specified in the free annotations;

3. thefollow-up, through the automatic comparison among
the parameters measured in longitudinal image pairs.

RheumaSCORE leads the user during the workflow for
the evaluation of erosion scoring. The system provides a
GUI where the user can select the anatomical tissue to be
segmented and where the acquired images are shown. Us-
ing the Smart Brush tool [PCV∗13], the user has only to
“paint” some “clues” in the anatomical element to be seg-
mented, with no need to set parameters, which are automati-
cally adjusted by the software, or to “edit” the results. During
the segmentation, the bone surface is automatically recon-
structed using the marching cubes algorithm [LC87]. Once
the segmentation has been completed, the system provides
automatic scoring of bone erosions, using the bone recon-
struction and volume evaluation algorithms, as described in
the previous sections. Processing takes less than one minute
for all wrist bones (or hand bones), which leads to a remark-
able reduction of diagnosis time and costs.

Figure 7: RheumaSCORE: diagnostic environment. The se-
lected bone is the scaphoid. This bone is eroded and the
missing part is shown in red.

Figure7 shows the Diagnostic environment of RheumaS-
CORE after the bone erosion measurement. The visualiza-
tion area displays

1. in the left, a table with, for each bone, the values of
its volume, the volume of the erosion and the RAMRIS
score. The user can change the selected bone, by clicking
on the related row of the table.

2. in the middle, the simultaneous 2D slice-by-slice visual-
ization of original grayscale data, segmentation results (in
blue for the selected bone, in white for the other bones)
and, only for the selected bone, its missing part recon-
structed from the SSM (in red). The user can browse
through the slices scrolling forward and backward and
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choosing the displayed orthogonal view (axial, coronal,
or sagittal). Moreover, the user can zoom and pan the im-
age and modify the window/level and the properties dis-
played for the segmented/reconstructed parts.

3. in the right, the 3D surface rendering of the recognized
bones in blue and the missing part of the bone recon-
structed from the SSM in red. The 3D scene allows the
adjustment of arbitrary viewing directions and zooming
into relevant regions. To support depth perception, inter-
active rotation is provided.

5. Clinical application

This section describes the application of our automatic scor-
ing approach to MRI images of the wrist of patients affected
by RA. We want to show the main benefits brought to the
clinical practice by this novel method. The assessment in
this section includes the comparison between a manual scor-
ing by trained radiologists and the results obtained by our
automatic approach. Moreover, an inter/intra operator pre-
liminary study is presented.

5.1. RAMRIS vs RheumaSCORE

An extended and quantitative validation study has been car-
ried out at DIMI (Dipartimento di Medicina Interna, Clinica
Reumatologica, Università degli Studi di Genova). 57 pa-
tients (42 women, median age 52 years, range 20-73 years,
median disease duration 22 months, range 1-420 months)
diagnosed with early RA according to the 1987 ACR cri-
teria were studied. Wrist and metacarpophalangeal (MCP)
joints were imaged with a dedicated-extremity, 0.2 T MRI
(Artoscan, Esaote, Genova, Italy) at baseline and after a me-
dian of 15 months (range 6-121 months).

The study was concerned on changes in RAMRIS score
(single bone and total score). We found that, comparing tra-
ditional and automatic RAMRIS erosions score, perfect con-
cordance was 45.2% at baseline and 92.9% at follow up.
The correlation between the methods is reported in Figure8,
where concordance is shown in green and discordance in red
for the 25 patients in whom erosion changes were seen. The
x axis reports the different bones studied. Concordance was
present if the reader and RheumaSCORE gave the identical
RAMRIS score to the erosion. Discordance occurred in all
remaining cases.

The agreement between the traditional and automatic
RAMRIS evaluations was good only for the follow up MRI,
after patient treatment (Figure8). This discrepancy is appar-
ently difficult to justify because the observers and the tech-
niques were identical at both time points. A possible expla-
nation is the concomitant decrease of bone marrow edema
that could have occurred after successful treatment. The ex-
perienced reader is in most cases able to differentiate bone
marrow edema from real erosions, whereas the automated
method may be not. As a consequence, a human supervision

to correct possible imprecision of the automated procedure
is still necessary.

Figure 8: Correlations between traditional and semi-
automated RAMRIS erosion score at baseline (A, 45.2% con-
cordance) and at follow up (B, 92.9% concordance). Agree-
ment is shown in green, disagreement in red.

5.2. Inter/Intra operator study

Studies for intra and inter-reader operators evaluation and for
comparing the standard RAMRIS and the RheumaSCORE
methods were performed: seven patients affected by RA ac-
cording to the 1987 ACR criteria were studied with two
MRIs with a 0.2 T dedicated machine (Artoscan, ESAOTE,
Genova, Italy) using a turbo T1-weighted three dimensional
sequence (T3-D T1) in the coronal plane, with subsequent
multiplanar reconstructions on other planes, of the hand and
wrist (baseline and follow-up 17 months apart, range 8-36
months).

The RAMRIS for erosions was calculated in agreement by
two experienced readers (FB, MAC). An experienced reader
(FB) and 6 inexperienced readers evaluated the 3D recon-
structions of MRIs using RheumaSCORE software.

In the evaluation of bone volumes, the intra-class corre-
lation ICC for FB in 8 consecutive readings, 2 weeks apart,
was 0.99. The ICC for the inexperienced readers was again
0.99, independently from the RAMRIS for erosions. The
inter-rater agreement (k) between FB and the inexperienced
readers varied between 0.77 and 0.86 (mean 0.81) for pa-
tients with a low erosion RAMRIS (of value 3), and be-
tween 0.49 and 0.77 (mean 0.65) for patients with higher
erosion RAMRIS (of value 9). During follow up, the median
RAMRIS score for erosions remained unchanged (p=0.12);
accordingly, also bone and erosion volumes measured by
RheumaSCORE did not change (p=0.19).

6. Conclusion

In this work, a novel approach for automatic OMERACT-
RAMRIS erosion scoring has been presented. The algo-
rithm has been implemented exploiting the GPU parallel
computation, using OpenCL. A comparison with its sequen-
tial/multithread CPU counterparts demonstrates the high
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computational performance achieved. An assessment study
has been carried out and preliminary results demonstrate that
the use of the proposed algorithm within a dedicated soft-
ware is feasible and may further facilitate the procedure of
erosion staging.

Correlation values between the traditional RAMRIS and
RheumaSCORE at baseline are not completely satisfactory,
due to the difficulty to automatically differentiate bone mar-
row edema from erosions. Considering this aspect, the algo-
rithm could be improved, e.g. considering also the informa-
tion related to the image gray levels.

Moreover, the proposed method is sensitive to large bone
erosions (for RAMRIS score values over 7). In this case, the
large missing part in the segmented element does not allow
the correct execution of the first step of the algorithm. To
overcome this limitation, we plan to allow the user to cor-
rectly place the mean shape on the eroded bone, when nec-
essary.
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