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De-lighting a high-resolution picture for material acquisition
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Figure 1: Left: Input picture in 2048x2048 pixels. Middle: Intermediary result, all 512x512 pixels tiles are de-lit separately and stitched
together, seams are visible. Right: Seams have been removed by solving a Poisson system for the full image resolution.

Abstract
We propose a deep-learning based method for the removal of shades, projected shadows and highlights from a single picture
of a quasi-planar surface captured in natural lighting conditions with any kind of camera device. To achieve this, we train an
encoder-decoder to process physically based materials, rendered under various lighting conditions, to infer its spatially-varying
albedo. Our network processes relatively small image tiles (512x512 pixels) and we propose a solution to handle larger image
resolutions by solving a Poisson system across these tiles.
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1. Introduction

Across industries spanning from fashion to design, from architec-
ture to games, from visual effects to animation, the ability to easily
scan materials is becoming more and more desirable. The equip-
ment cost and the expertise needed to acquire materials are quite
demanding, thus progress should be achieved to democratize this
process. In this context, we focus on the use case of inferring a
material from a single image, taken with an arbitrary device, like
a mobile phone. In particular in this paper we concentrate on the
albedo extraction of this material, which we refer to as de-lighting.

Recovering a high quality material from a scan involves accu-
rately capturing its SVBRDF (spatially-varying bidirectional re-

flectance distribution function), making it reacting to the illumina-
tion in a virtual environment as the real material would in the real
world. Thus the acquired material must be free of any information
coming from the capture environment that is not intrinsic to the ma-
terial. In the case of the albedo, the resulting map should be free of
any illumination effect (shadow, specular highlight, shades), other-
wise artifacts would be visible when rendering the material under a
new lighting.

Manually removing those effects in the acquired images is a te-
dious but necessary step. It can be long, difficult and destructive.
Mathematical photometry approaches exist that require sequences
of pictures of the same sample under varying lighting environ-
ment. Unfortunately with a single image the problem is under-
constrained. We overcome this issue by leveraging the statistical
domain learned by a carefully trained deep convolutional network.
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Material acquisition requires very high resolution images in
order to yield good quality materials. However, in practical ap-
plications neural networks can handle limited resolutions due to
their high dimensionality. This is why we propose a bucketed ap-
proach that processes smaller tiles separately, associated with a
post-process to seamlessly merge the de-lit results.

We deployed this approach in a commercial application called
Substance Alchemist. Our tool is geared towards productivity, so
performance is paramount, which guided some of our final imple-
mentation and design choices. However, it targets users without
an extensive technical background, photography skills or advanced
equipment, so ease of use is also fundamental. Alchemist therefore
imposes that we make minimal assumptions on the capturing de-
vice, on the quality, lighting and features of the input image and the
material subject portrayed in it. A common workflow is the removal
of the illumination on outdoor materials, such as forest grounds and
stone walls, taken at daylight without constraint on the weather,
with an ordinary camera device and without flash lighting.

Thanks to this approach and its performing implementation, we
were able to produce high-quality materials that find use in con-
sumer and industrial applications every day.

2. Related Work

Recent works on SVBRDF acquisition from single picture have
shown good results using deep learning approaches, often by mak-
ing assumptions on the material or imposing strong constraints on
the material capture.

In their work, Aittala et al. [AAL16] assume that the mate-
rial is stationary. They also impose the use of the flash light dur-
ing the material acquisition, as in the recent approaches of Li et
al. [LSC18] and Deschaintre et al. [DAD∗18]. As those methods
are focusing on retrieving the SVBRDF of a material, they are not
considering self-projected shadows, and should provide good re-
sults on flat materials but may have more difficulties with irreg-
ular material geometry. In addition, imposing the use of the flash
light during the material capture can be destructive on highly spec-
ular materials, as it would produce a saturated area, avoiding a
total recovery of the underlying material. Interestingly, all these
approaches rely on the U-Net network architecture, introduced by
Ronneberger et al. [RFB15]. Indeed it has enabled significant im-
provements in image-to-image translation tasks by increasing the
level of details of the output through the use of skip-connections,
that allow fined-grain detail to flow directly to the decoder part
while skipping the bottleneck of the network.

Qu et al. [QTH∗17] introduce DeshadowNet to perform shadow
removal of a single picture. However, in their work the shadows are
intrinsically different since they are cast by physical objects, possi-
bly located outside of the picture’s field of view, and not by the ma-
terial itself. Their dataset is made of pairs of pictures with/without
the occluder.

Finally, deep learning methods usually operate on small in-
put images, often limited to 256x256 pixels, due to memory
and speed limitation, whereas an artist would typically need at
least 2048x2048 pixels to produce a valuable material. Perez et

al. [PGB03] provides a set of application of the Poisson equation
on image processing, that we leverage for this purpose.

3. Method

3.1. Dataset

Although our objective is to remove lighting effects on
photographs, creating training pairs using real photographs
with/without lighting effects would be almost impossible. Indeed,
we could manage taking two pictures of the same material, one
with a particular lighting setup to produce shadows, and the other
one with a very diffuse lighting setup to avoid shadows and a po-
larized filter to avoid any specular highlights, however we would
always have to deal with shades coming from occluded regions on
a highly irregular material. For instance, on a clover ground, re-
gardless of the lighting setting during the capture, we would never
get the intrinsic clover color on deep areas. It would also be ex-
tremely long to get enough variations in the data and in the lighting
conditions to get a representative dataset. Using synthetic data for
training a neural network has proven to be efficient and reliable as
shown by Li et al. [LSC18], Deschaintre et al. [DAD∗18], nonethe-
less care must be taken to ensure the realism of the synthesized data
and their representativeness of the targeted domain.

To construct our dataset, we use the high quality procedural
PBR material library Substance Source, that contained around 2000
Substance files at the time of our work. Each Substance file is a
node-base graph that outputs the different channels of a physically
based spatially varying material (albedo, normal, height, rough-
ness, metallic), with a set of exposed parameters allowing the gen-
eration of variations and producing a huge amount of different ma-
terials. We decided to focus on outdoor categories (Ground, Stone,
Terracotta, Plaster, Concrete-Asphalt) to fit with the most common
use cases of Substance Alchemist’s users.

We paid a lot of attention in generating realistic materials starting
from a Substance file. Indeed, tweaking procedurally the parame-
ters in their allowed ranges could produce highly unrealistic materi-
als and a manual cleaning pass would be necessary, which is time-
consuming and discourages from iterating on the dataset. Conse-
quently, we adopt a prudent variation strategy by sampling param-
eter’s variations using a Gaussian distribution centered around the
default parameters defined in the Substance file.

Figure 2: Training pairs. Top: Input, a material rendered under a
specific lighting condition. Bottom: Target, the material albedo.
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Once we have satisfactory material variations, we focus on gen-
erating lighting condition variations. We use a Substance Designer
filter which provides a material renderer, the "PBR Render" node.
This filter uses the SVBRDF material information and an HDR en-
vironment map to produce a fast and realistic enough rendering,
that computes Image Based lighting in addition to casting shadows
from the most important light source in the environment map. For
this purpose, we have generated a set of minimalist HDR environ-
ment maps that emulate an outdoor environment with a sun light at
different daytime and a diffuse sky in grayscale, to avoid shifting
colors. The corresponding target of each rendered material is the
albedo of the material. (See Fig. 2)

We proceed with a final data augmentation step by rotating, flip-
ping, scaling and cropping our images. Starting from roughly 300
Substance files, following this process allows us to first obtain 1800
2048x2048 pixels materials, resulting in 25000 renders and finally
around 380000 training pairs of 512x512 pixels images.

3.2. Network architecture

Our network is a deep convolutional network based on the U-Net
encoder-decoder, with five levels of convolutional blocks on each
side of the latent space, that takes as input a 512x512 lit image
and predicts its per-pixel de-lit correspondence. Instead of training
the network to output the de-lit image, we train it to compute the
illumination map, representing the residual information to add to
the input to get the de-lit output, free of shadows and highlights.
This improves the quality of the result by reducing the amount of
information the network has to output. (See Fig. 3)

We use the L1 norm to compute the loss of the prediction com-
pared to the ground truth. We found out that using Bounded ReLU
as activation functions with a threshold of 6 helps the network
to converge, by preventing accumulating a perturbation in the in-
put signal across the layers. We use up-sampling with the nearest
neighbors in the decoding part, and mirror padding at all stages to
reduce the artifacts at the boundaries of each 512x512 tile.

Figure 3: Network architecture

3.3. Seamless reconstruction in the gradient domain

To tackle the ability to use this feature on a high-resolution pic-
ture, we propose a method to process small data separately, with a
merging strategy to produce high-quality results.

We first split the image into 512x512 pixels tiles without over-
lap, and predict the de-lit version of each tile using our network. We

then stitch all the de-lit tiles together, and solve the Poisson equa-
tion on each color component separately on the entire image. As
an application of Perez et al. [PGB03], we use the color gradients
as the guidance field, and provide the entire image borders as the
boundary values for the Poisson equation.

This removes the seams visible when all the de-lit tiles are
stitched together by smoothing the gradients, and makes the de-
lighting feature available on any picture’s resolution. This method
works particularly well because the tiles are from the same material
and present a coherence at their boundaries (See Fig. 1).

4. Results

4.1. Visual quality

Fig. 4 presents some results of inference on synthetic data. Our
model successfully removes the shadows and the specular high-
lights present in the input material, and provides a result that is
really close from the ground truth albedo. The details coming from
the material elevation are well reduced and the result is still of high
quality, without blurry effect.

Figure 4: De-lighting results on the test set. From left to right:
Input rendered material (512x512 pixels); De-lit result; Ground
truth; Illumination map

As shown in Fig. 5, our model generalizes well on real pictures,
and our merging solution provides a good seamless result for high-
resolution input.

Figure 5: De-lighting results on real use cases. Top: Input picture
in 2048x2048 pixels. Bottom: De-lit results after seamless recon-
struction
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4.2. Metrics

We evaluate the quality of the delighting using three metrics: Mean
Squared Error, Mean Absolute Error and SSIM Error, comparing
the de-lit output to the ground truth albedo (See Tab. 1). In addi-
tion, we have created a test set dedicated to checking the visual
quality of the network output on carefully selected real cases. For
this purpose, we have aggregated pictures of grounds and stones
taken in the context of photometry and photogrammetry, using sev-
eral camera devices and under various lighting conditions.

Metric Lit vs. albedo De-lit vs. albedo
Mean Absolute Error 0.0864 0.0446

Mean Square Error 0.0120 0.0040
SSIM 0.3023 0.1805

Table 1: Average metrics computed on the entire test set, compar-
ing the error before and after the de-lighting.

4.3. Implementation details and performance

We use TensorFlow framework in Python to train our model. Our
network requires around 20Go of memory during the training stage.
We use a NVivia Quadro GV100 for the training, and it takes
around five days to get a fully converged model. For the deploy-
ment into Substance Alchemist software, we first used TensorFlow
C++ API, built for GPU running, but we figured out that the model
loading and inference time was unstable across GPUs. For instance
the first inference was 7 to 30 times longer than the next inferences,
which made the feature unusable.

To overcome this issue we have implemented a C++ API for our
network directly using CUDA and CuDNN libraries. The weights
of the network are exported as a binary file that is read by the C++
API when the network is rebuilt, and we have developed some opti-
mized CUDA kernels for the operations that are not natively avail-
able in CuDNN (for instance, the reflect padding and the nearest
neighbor up-sampling). We did a benchmark on the performance, to
compare our CuDNN implementation with the use of TensorFlow
GPU C++, and also the use of single or half precision in CUDA,
as well as the use of the optimized TensorCore operations for the
convolution with CuDNN (See Tab. 2).

Method Duration (ms)
TensorFlow 1st inference 306.7

TensorFlow next inference 44.3
CuDNN FP32 53.1
CuDNN FP16 37.0

CuDNN TensorCore optim 21.1

Table 2: Inference performance benchmark. Mesure done on a
NVidia Quadro GV100 for a batch of 16 images in 512x512, ex-
pressed in ms per image.

The Poisson equation solving is done using the Intel R©MKL
Poisson Library, using the gradients as vector field. The gradients
in horizontal axis and vertical axis are computed per tile and per
channel (RGB) in a dedicated CUDA kernel, then stitched together

as for the de-lit tiles. We use the Dirichlet boundary condition and
fix the boundary values to the actual values of the entire stitched
image boundaries. We set a 0 value of gradient at the boundary of
a tile in the considered direction (e.g. we have a null gradient for
all pixels of the right border in the horizontal gradient, and respec-
tively for the bottom border and vertical gradient).

Finally, de-lighting a 2048x2048 picture (a batch of 16 512x512
tiles) takes around 1 second, the first half for the de-lighting task
and the second half for the seams removal.

5. Discussion

We have proposed a method for removing all the illumination vis-
ible on a picture of a material in order to retrieve the albedo of the
captured material. Our solution shows good results at solving this
under-constrained problem thanks to the domain learning using a
deep convolutional network. We have developed a framework for
the procedural data generation starting from Substance files, and
produced a huge and realistic dataset of synthetized rendered ma-
terials.

Our solution shows limitation if the shadows are too strong
though, or if they are projected too far from the occluding part.
In these cases, it fails at recovering entirely the albedo but still pro-
vides an improvement compared to the input.

In future work, we plan to extend this solution to extract other
channels of the SVBRDF of the captured material (normal, height
and roughness). We also plan to train the model to remove shadows
that are projected by objects in addition to the self-occlusion, to
cover more use cases of Substance Alchemist’s users.
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