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Abstract
Image classification has been a topic of interest for many years. With the advent of Deep Learning, impressive progress has
been made on the task, resulting in quite accurate classification. Our work focuses on improving modern image classification
techniques by considering topological features as well. We show that incorporating this information allows our models to
improve the accuracy, precision and recall on test data, thus providing evidence that topological signatures can be leveraged
for enhancing some of the state-of-the art applications in computer vision.

1. Introduction

Image classification has been a buzzing topic of interest for re-
searchers in both computer vision and machine learning for quite
some time. Affordable high-quality cameras and online social me-
dia platforms have provided the internet with billions of images,
most of which are raw and unclassified. Recent developments of
new techniques for classification have shown very promising re-
sults, even on large datasets, such as ImageNet [DDS∗09]. In this
paper, we intend to investigate if topological signatures arising
from topological persistence can provide additional information
that could be used in the classification of images.

Use of topological signatures based on persistent homol-
ogy [HH10] has been a topic of interest for the emerging area
of topological data analysis. The prime advantages of using these
topological signatures are their robustness and scale invariance:
first, they are global and thus more resilient to local perturbations;
second, the computations do not depend on a particular scale of
the data. The idea of persistent homology has found applications
in robotics [DL13], sensor networks [DSG07,GM05], and medical
imaging [TMB14, CBK09], amongst others. In computer vision, it
has been used for image segmentation [Kur15] and shape charac-
terization [BEK10] as well. However, these works did not include
machine leaning features for classification. We use topological per-
sistence for providing some added signatures to the different classes
of images on top of the traditional machine learning classifiers that
use kernel methods or neural networks. We illustrate how these sig-
natures can be used as additional features in the training process.

A main difficulty in using topological signatures for image clas-
sifications is that the current state-of-the-art techniques for com-
puting such signatures for a large set of images do not scale up
appropriately. Attempting to compute the persistent homology of
images, which tend to live in high-dimensional spaces, is a road
block in applying the topological data analysis techniques to image

classifications. Several methods with associated software have been
reported in the literature for computing persistent homology signa-
tures. Among them, PHAT toolbox based on several efficient matrix
reduction strategies of Bauer et al. [BKRW17] and GUDHI [The15]
library based on compression techniques have been popular be-
cause of their space and time efficiencies. A recent software called
SimBa [DSW16] has been shown to work faster, specially for data
sets in dimensions higher than three, a case we are interested in.
Even this method is not completely satisfactory for our purpose.
For an image with dimension 200x200 pixels, persistence computa-
tion takes about 9.6s per image. Now imagine having to do this for
several thousands of images which is the typical size of a database.

To work around this bottleneck, we take a different approach for
computing a topological signature. In traditional persistence com-
putations, a growing sequence of triangulations, simplicial com-
plexes in general are involved. In our approach, we collapse an orig-
inal complex, thereby reducing size instead of increasing it succes-
sively. This provides significant time improvements, which proves
essential for computing the topological signatures for large training
and test data sets. For the same 200x200 pixel image referenced
earlier, our new method computes these signatures in only 1.18s.

Several pieces of novel work on image classification have been
reported over the past few years. Firstly, there have been some ex-
periments on the improvement of the Fisher kernel for image clas-
sification. The work by Perronnin et.al [PSM10] using normalisa-
tion and spatial pyramids has shown an improvement in accuracy.
The work by Kobayashi [Kob14] uses the Dirichlet Fisher kernel
for transforming the histogram feature vector. The primary use of
Fisher-Vector for image classification was in [SPMV13]. Fisher-
Vector has been used in Deep Neural Networks as well [SVZ13],
by stacking it in multiple layers. Another more recent work by
Perronin et al. have used Fisher-Vectors with convolutional Neu-
ral Networks, through the use of a hybrid architecture [PL15].
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[OVS13] uses the same technique for action recognition in video
frames, which is an advanced task of classification as well. Addi-
tional recent work on classification includes [YYGH09,WYY∗10],
which uses the Spatial Pyramid Matching approach based on the
Bag of Features model, and has shown promising results. [DDJ∗14]
uses a label-relation graph for multiclass classification.

Figure 1: Top: The topological features act as inputs to the fully
connected part of our modified convolutional neural network. Bot-
tom: Using modified Fisher Vector on SIFT along with topological
features for training.

For image classification with machine learning techniques, we
investigate both feature vector based supervised classification and
neural network based classification; see Figure 1 for a schematic
diagram. For the first method, we use one of the state-of-the-
art techniques using Fisher-Vector encoding [SPMV13] to gener-
ate the feature vectors. Classifications using Convolutional Neu-
ral Networks have been tested with another state-of-the-art model;
AlexNet [KSH12]. Classification using Fisher-Vector has an accu-
racy of 59.7% on the Caltech-256 dataset using SIFT as feature for
60 or more training samples. We have reproduced the experiments
with and without our topological features to get an improvement for
the latter. This trend is also evident in modifying AlexNet (which
has a precision of 83.2%) and evaluating on the CIFAR-10 image
data set, where we found consistent improvements in model preci-
sion when including topological features.

We compute the topological features for each image and ap-
pend this data with the feature vector obtained from the traditional
method to classify the images. While there may be improvements
in classifiers and methods for augmenting features into them, we
claim that even naively including the topological features adds ad-
ditional relevant information about the image which can be utilized
by the network in making more accurate classifications. Since tra-
ditional feature extractors rely on geometric and image process-
ing properties, such as gradient, orientation of sub-pixels, statistical
distribution of colors or the learned features found in Convolutional
Neural Networks (CNNs), topological features are lost in this pro-
cess. By reintroducing these features, we add additional relevant
information which can be utilized by existing classification tech-
niques. Our entire technique has been illustrated in a video which
is available at https://youtu.be/hq4DYse2c-Y.

2. Topological signature via persistence

We use the theory of persistent homology to generate feature vec-
tors for a point cloud. But, instead of the classical Rips complex fil-
trations, we use a hierarchy of collapsed simplicial complexes and
a novel point selection strategy to save time. The resulting topo-
logical features are added to the features used for traditional im-
age classification techniques. We test our method using two frame-
works: one uses the feature vector based supervised learning and
the other one uses convolutional neural network based learning.

Feature Vector based Supervised learning: Given an image,
the Fisher Vector Encoding [SPMV13] describes a set of low level
features by its deviation from the Gaussian Mixture Model (GMM).
It is known to improve over the Bag of Visualization technique
[GCB04] because it takes into account the higher order statistics
instead of feature count. Essentially, it encodes the mean and co-
variance deviation vectors per component of the GMM and each
element of the local feature descriptors together. We use SIFT fea-
tures [Low99] as the low level feature and compute its divergence
from the GMM using Fisher Vector. This serves as our original
feature vector for each image before adding the topological feature
vector. The quality of classification depends on the number of SIFT
interest points found in the image, as greater number of such points
would improve the feature description of the image.

Convolutional Neural Network based Learning: Next, we
consider Convolutional Neural Networks [GWK∗15] as a more
advanced classification model. These neural networks have found
success by sharing weights among nodes in the early layers of im-
ages, which can lead to faster training and convergence. As an
image is forward-propagated through the network, these shared
weights act as convolutional filter on the image, allowing promi-
nent features to be detected in a translation independent manner.
Because of the precision that CNNs have acheived in image clas-
sification, we believe that modifying them to include topological
features is a good testimony to their utility in image classification.

In the following section, we briefly discuss the relevant concepts
of topological data analysis, primarily persistent homology signa-
tures, which are used as features for the learning frameworks. Since
it is an involved topic we refer the reader to [HH10, ELZ02] for a
more in-depth discussion. We start by giving an intuitive notion of
persistence and then follow with key concepts used in our new al-
gorithm for computing a topological signature.

Figure 2: Tracing persistence of a point cloud in R2 with corre-
sponding barcode

Persistence of point cloud data

Consider a point cloud P⊂R2, comprising of points sampled from
some base shape having three loops as shown in Figure 2. We can
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imagine starting to grow balls of increasing radius, r, around each
point sample, and observe the behavior of the union of all these
balls as r increases. At some radius r1, we notice that the three
holes in our original curve are accurately represented in the union
of balls. However at a larger radius the two smaller loops become
filled, and at an even bigger radius the largest loop fills in as well.
Keeping track of which holes exist in this union of balls allows us
to know how long the hole ‘persists’. For features that are more
prominent we expect them to persist for longer periods of increas-
ing r (e.g. the larger loop in Figure 2 persists longer than the two
smaller ones). This is the basic intuition of topological persistence.
A result of the topological persistence computation is a set of birth-
death pairs of homology cycle classes (represented by cycles–loops
here) that indicate when a class is born and when it dies. The birth
and death points are a pair of real numbers indicating the time (cor-
responding to the radius value) at which these events occur. These
pair of numbers are visualized by a set of points in R2 called the
persistence diagram [HH10], or by a collection of line segments
called the barcodes that stretch horizontally from the birth value
to the death value as shown in Figure 5. These birth-death pairs
can be considered as topological features (signatures) for the point
cloud. For computational purposes, the growing sequence of union
of balls is converted to a growing sequence of triangulations, sim-
plicial complexes in general, called a filtration.

We carry out a similar process for images by transforming each
pixel to a point p ∈ R5 by taking the RGB intensity values as well
as its (x,y) coordinates. The theory of persistent homology tracks
the birth and death of the cycles. The zero-dimensional homology,
which accounts for number of connected components is trivial in
this case. Hence, we ignore the persistence for zero-dimensional
homology. For ease of computation we compute persistence only
for one dimensional homology, which keeps track of the 1-cycles
or loops in R5. This allows us to balance the necessity of get-
ting relevant topological information against the increased compu-
tation time required for generating high-dimensional homological
features.

2.1. Topological signature by successive collapses

Traditionally, topological persistence for a point cloud is computed
via a particular filtration called the Vietoris-Rips (VR) filtration.
Given a point set, the VR-complex with an input parameter α con-
nects two points if they have distance less than α and then add any
simplex (triangles, tetrahedra etc.) whose all edges have been se-
lected. So, for different values of α, we get different mappings of
the point set to simplicial complexes. As the value of α increases,
a sequence of nested simplicial complexes is generated through
which we track the persistent homology classes represented by cy-
cles. For our case, this essentially determines how long classes of
different cycles ‘persist’ as α changes, thereby generating a signa-
ture for each image represented by the point cloud.

The problem with VR-complex, however, is that, since we con-
nect every pair of points within distance α to form a higher dimen-
sional simplex, there is a steep rise in size, which is more so for
points living in a high dimension such as R5. Hence, we sparsify
the point cloud by taking a δ-sparse, δ-net subsample on it, which
means that for each point in the initial cloud, we have a point at a

Figure 3: Visualization of a Morton Ordering of point cloud data.
Points with similar hue are close in the total ordering.

distance δ in the subsample and that no two points are more than
δ distance close to each other in the sparser cloud. We then build
a complex by joining certain number of nearest neighbours in this
subset point cloud and bringing in higher dimensional simplices
(only up to triangles for one dimensional homology cycles) satisfy-
ing certain conditions as described in [DFW13]. The complex thus
built is called the graph induced complex ( [DFW13]). This ini-
tial complex is reduced in size by successive edge collapses that
collapses vertices as well; see Figure 4 and also Section C. In ef-
fect, it generates a sequence of simplicial complexes where succes-
sive complexes do not nest, but are connected with simplicial maps
(these are maps that extend vertex maps to simplices, see [Mun84]
for details). Algorithms for computing persistence under simplicial
maps have been presented in [DFW12], and the authors have an-
nounced a software (Simpers) for it, which we use for our purpose.
In order to choose a subsample very fast that respects the local den-
sity, we use the Morton Ordering [LSP∗12] of the point cloud; see
Section B. The Morton Ordering provides a total ordering on points
∈ Zd where points close in the ordering are usually close in space,
thus respecting spatial density(see Figure 3). Our data is sparsified
by removing every nth point from the current Morton ordering, and
then repeating the process until there are less than n points remain-
ing for a chosen n. Note that there are other algorithms which can
be used for this purpose, such as implementing a k-means clus-
tering with n-clusters and choosing the center of each cluster for
removal. However, the Morton Ordering is very fast as it is based
on bit operations, hence we inculcate it in our algorithm.

It should be noted that in most cases, datasets often have real-
valued data instead of integer values required for the Morton Or-
dering. To overcome this, we apply a basic scaling to the data
as a preprocessing step, and then consider the closest integer
point ∈ Zd when determining the ordering. Finally, we compute
the persistence of this sequence of collapse operations (simplicial
maps) connecting successive complexes using the software Sim-
pers [DFW12]. The details (along with pseudocode for our algo-
rithm) are given in Section A.

To illustrate the speed-up we gain by our collapse based per-
sistence computation with Morton Ordering, we report its running
time on several datasets ranging from 3D data as geometric meshes
to high dimensional data embedded in dimension as high as 150-
dim (Table 1). The time taken by the algorithm when run on a ran-
dom sample image from the Caltech-256 and MNIST datasets has
also been included. We compare the speed of computation with
SimBa [DSW16]. Since the authors of [DSW16] already showed
that it generates results faster than existing techniques, beating its
speed indicates the superiority of our approach. For this compar-
ison, we only compute persistence up to the one-dimensional ho-
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Table 1: Comparison of time required to compute one-dimensional
homology against SimBa

Data #points Dim SimBa Our-Algo
Kitten 90120 3 35.72 19.05
PrCl-s 15000 18 94.13 28.17
PrCl-l 15000 25 254.37 47.12
Surv-s 252996 3 469.40 165.28
Surv-l 252996 150 1696.59 294.6
Caltech-256 10786 5 8.38 2.27
MNIST 2786 5 1.86 0.56

mology. While comparing our technique with SimBa , we retain the
default parameter values suggested in the software manual.

Figure 4: A visual example of the sequence generated by subsam-
pling a point set via the Morton Ordering

We test the speed of our method for computing topological sig-
nature on several datasets having dimensions much larger than
three in Table 1. The PrCl-s and PrCl-l are the datasets contain-
ing Primary Circles formed from natural images [AC09]. In PrCl-s,
each point corresponds to a 5× 5 image patch whereas in PrCl-
l, they are of size 7× 7. We run our algorithm on the Adult data
[Koh96] obtained from the UCI Machine Learning Repository. This
is a 14-dim classification data used for determining whether the av-
erage salary in the US exceeds 50k. We also experimented on the
Surviving protein dataset [HPR∗14]. This includes 252996 pro-
tein conformations, each being considered as a point in R150. We
generate a scaled down version of this dataset as well by reducing
the dimension to R3 using PCA, and testing on it.

As is evident from Table 1, our algorithm performs much faster,
especially in high dimensions. Since we avoid simplex insertions of
the classical inclusion based persistence computations, we are able
to yield a significant speed-up.

3. Feature Vector Generation

Now we describe the method we use to incorporate the topological
signatures as features for image classification.

3.1. Persistence as Feature Vector

Given an image I, we use the function f : I→R5 mapping the RGB
intensity of the pixel with coordinates (x,y) ∈ I to a point

(
r−µr

σr
,

g−µg

σg
,

b−µb
σb

,x− x,y− y)

in the point cloud P ∈ R5. (Here µi and σi refer to the mean and
standard deviation of the intensity channel i which can be red,
green and blue respectively. Similarly, x,y are the corresponding
mean.). The color of images which varies from 0− 255 and the
size of images typically 200× 200 depending on the dataset are
essentially normalised using this process. We apply this mapping
to all pixels in the input image in order to obtain an initial point
set P on which the algorithm in section A operates. This algorithm
computes the barcodes denoting the birth-death value for each cy-
cle (as described in section 2). Typically, cycles with short barcode
length correspond to intermediate/insignificant cycles or noise. So,
to find the cycles which persist longer, we sort the barcodes wrt
their lengths and find the largest difference in length between two
consecutive barcodes. The (death-birth) value for every barcode
above this gap is taken as our feature vector. Therefore, if there
are ‘m’ barcodes above the widest gap of the barcodes for an im-
age, li denoting length of the ith barcode, we take the length of the
top ‘m’ barcodes (l1, l2, ..., lm) as our feature vector. This m-length
vector is added to the feature vector obtained from the traditional
machine learning approach and used for training and testing. The
barcode of a sample image from Caltech-256 is given in Figure 7
with the bottom 6 lines in blue forming (l1, l2, ..., l6). We note that,
one may compute the feature vectors from our topological signa-
tures using the methods proposed in [Bub15] [KHN∗15]. We adopt
the simple approach as described here because of the consideration
of speed and simplicity.

3.2. Choosing Parameters

Next, we discuss how we choose the different parameters to gen-
erate persistence for the images. We need to tune two parameters,
the first being the value k which are the number of nearest neigh-
bors each node connected to for the δ-sparse, δ-sample complex
we build (Section A Step 1). The second is the parameter n, where
we choose the nth point from V i and collapse to its nearest neigh-
bor for the simplicial mapping f i : Ci−1→ Ci; see Section A. For
choosing these parameters, we do an initial unsupervised clustering
of the images based on the t-distributed stochastic neighbor embed-
ding or t-SNE [vdMH08]. This technique provides visualizations of
high-dimensional point clouds via a nonlinear embedding which at-
tempts to place close points in the high dimensional space to close
places in either R2 or R3. We take a subset of images from each
of our datasets and generate the persistent signatures as described
above. These signatures are embedded in R2 using tSNE. The ef-
fects are evident in Figure 6a, where we experiment on the MNIST
digit dataset. MNIST digits clustered based on the computed bar-
codes, shows that digits with similar one-dimensional homology
features are close together. Specifically, the digits 0-9 can be parti-
tioned into 3 equivalence classes based on the number of holes in
each digit, where

[0] = {1,2,3,5}, [1] = {0,4,6,9}, [2] = {8}

and this is reflected in 6a. We provide a bad clustering example
on the CIFAR-10 dataset with values k = 8, we can see that t-
SNE produced a noisy result, where not a lot of distinct clusters
are formed. Tuning the parameter values of k to be k = 15, more
distinct visible clusters were formed on the CIFAR-10 dataset as
evident in 6c. We found this to indicate that we should modify
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Figure 5: Point cloud and persistence diagram of (a) Kitten (b) Genus (c) Botijo. The blue, red and green lines belong to the zero, one and
two dimensional homology respectively.

(a) Good clustering on MNIST (b) Bad clustering on CIFAR-10 (c) Better clustering on CIFAR-10

Figure 6: T-SNE was used as an aide in picking parameters for the computation of barcodes.

Figure 7: One dimensional homology for an image in Caltech-256.
The bars in blue are above the widest gap and chosen as feature
vector

the aforementioned parameters. We repeat this experiment for k =
{15,17,19,21,23,25}th nearest neighbors and value of n ranging
from 8 to 20. Finally, we choose those values of k and n for which
tSNE produces the most distinct clustering of images, namely k=17
and n=15.

4. Results

We have primarily focused on two classification frameworks.
The first one is the traditional machine learning approach where
we generate a feature set for each image; thereby training and
testing on an optimal classifier. The second one is the con-
volutional neural network approach where we modify the final
layers of the classifier to accommodate our new features. We
have worked on several image datasets chiefly the CIFAR-10,
the Caltech-256 and the MNIST hand written dataset. All our
codes are freely available on our website: https://web.cse.ohio-
state.edu/∼dey.8/imagePers/ImagePers.html .

Feature Vector based Supervised Learning

For classification, the number of features extracted for each im-
age is generally quite large and in addition, can vary depending on
the image. Because of this, the images are transformed into a fixed
sized image representation using global image descriptor known as
the Fisher Vector encoding [SPMV13]. We have assumed 16 Gaus-
sian functions to form the GMM used as the generative model.
We first compute the Hessian-Affine [MS02] extractor to gener-
ate interest points, thereafter calculate the SIFT [Low99] features
of these interest points. If there are ‘l’ interest points, this process
generates a 128× l dimensional vector. This vector is transformed
to a feature vector of length 4096× 1 using the Fisher Vector en-
coding. Finally, we train an SVM model using the feature vector
generated from each image and use it to classify the images.

We first tried to classify images from the CIFAR-10 dataset
[Low09]. The dataset contains 6 batches of 1000 images with a total
of 6000 images for each of the 10 output classes. Each individual
image is extremely tiny with dimension 32x32. Since these images
are so low in resolution, the number of interest points extracted is
very small, and thus insufficient to characterize each image. There
are ten classes of images in CIFAR-10, giving a baseline of 0.1 for
precision and recall. For each class we trained on 4000 images and
tested on the other 2000. We present the average result over all the
10 classes in Table 2.

Next, we compute the persistence of each image in R5. The value
of ‘m’ as discussed in Section 3.1, computed as an average over all
images, is 10. Hence we have appended the longest 10 barcodes to
the signature described above, giving vector of length 5006×1. The
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Dataset #classes Method P - T P + T R - T R + T
CIFAR-10 10 SIFT + Fisher Vector Encoding 23.63 28.24 23.56 31.16
CIFAR-10 10 AlexNet 83.2 83.8 98.25 98.15
Caltech-256 20 SIFT + Fisher Vector Encoding 57.50 59.50 51.50 64.00
MNIST 10 Deep MNIST SoftMax Regression 98.15 98.46 99.57 99.48

Table 2: Precision(P) and Recall(R) for different Methods with and without using Topological features. (P-T and R-T) indicates Precision
and Recall Without Topology whereas (P+T and R+T) indicates Precision and Recall With Topology

precision and recall for this case increased significantly as noted in
the Table 2.

The second dataset that we use is the Caltech-256 [GHP06]. The
number of images in each category varies within a range between
80 and 827, the median being 100. Since the dataset is skewed, we
use a subset of the dataset taking the first 20 classes having 100 or
more images as a measure for image classification. We also fix the
number of training and test images as 75 and 20 respectively, for
each class to maintain consistency. We use the same technique as
before, computing precision and recall for features with and with-
out the persistence values. In this case, for the 20 classes, the pre-
cision and recall have improved significantly as well. The average
accuracy for all the 20 datasets using SIFT with the Fisher Vector
Encoding comes out to be 53.27%. However if we use the signa-
ture of our persistent homology, the accuracy increases to 56.74%.
There is an increase in the average precision and recall for each
class as well, as listed in Table 2. We also plot the accuracy varying
the training set size from 25 to 75. The accuracy has a considerable
increase using topological features in each case(see Figure 8a). Fig-
ure 8b plots the precision of a subset of eight classes on the dataset,
and shows that the fluctuations in precision across different classes
varies a lot for the fisher vector method, generating a result of 0%
on two occasions, whereas the output using topology is reasonable
for all the classes.
Two things are worth noting at this point. Fist, our algorithm runs
faster than the state-of-the-art software SimBa used for generat-
ing topological features from point cloud data. In this regard, we
have provided a quantitative comparison (Table 1). Second, we do
not include the two dimensional homology features to save com-
putational time. Therefore, we show the result that we would have
obtained after including these topological features. The following
table shows the accuracy, precision and recall of running SimBa
and our algorithm (with 2D features) on 5 classes of the Caltech-
256 dataset and on CIFAR-10. Note that, since we have taken a
subset of the entire dataset, better accuracy on this subset does not
necessarily mean better overall performance. Table 3 illustrates the
similarity between the results obtained by considering SimBa and
our algorithm with and without the two dimensional homological
features. Interestingly, in some cases, considering only one dimen-
sional features provides better accuracy.

CNN and Deep Learning based Training

The second framework in our experimentation was based on the
Convolutional and Deep Neural Network models. For these models
we started by experimenting with the MNIST handwritten dataset
[LBBH98]. We implement a straightforward Deep MNIST softmax
regression network [SB98]. In a nutshell, the network comprises

(a) Performance versus training size

(b) Fluctuations in precision across different class

Figure 8: Comparison of accuracy and precision with and without
topological features

SimBa Our Algo Our Algo +β2
Acc Pr Re Acc Pr Re Acc Pr Re

I 54.6 61.9 63.9 58.9 65.6 64.8 59.2 60.1 64.8
II 19.6 21.2 33.0 21.3 28.2 31.4 22.4 28.2 31.2

Table 3: Qualitative comparison of our algorithm with SimBa with
and without 2-dimensional homological features. Acc: Accuracy,
Pr: Precision, Re: Recall. I- 5 classes of CalTech256, II - CIFAR-
10

of two sets of convolutional layers followed by pooling and rec-
tified linear activations, which is then input to a fully connected
layer from which we determine the final output probabilities. Af-
ter training, this model has a precision of 98.16%. However, in-
cluding the topological features in the second to last layer of the
fully connected network, we get a further improvement of 0.36%
over the previous reported result. While this may not seem signifi-
cant improvement, getting a slight improvement on a model which
is already so accurate is encouraging. This trend in improvement
continues for another dataset that we tried, namely the CIFAR-10
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which we discussed earlier. While the SIFT feature vector is not a
very good method to classify these tiny images, Deep Neural Net-
works have proven to be quite effective in such cases. A classic,
successful model for this dataset is AlexNet [KSH12], which we
modify slightly for our purpose. AlexNet starts with multiple con-
volutions, followed by normalization and the pooling layers and
finally two fully connected layers with ReLu activation function;
see [KSH12] for more details. Training the classifier with 50,000
iterations with a batch size of 64, we obtained a precision of 83.2%.
On top of that, we added the topological features to the fully con-
nected layer in the last stage of the model to get a 0.6% increase in
precision. The details of all the results are included in Table 2.

5. Conclusion

In our work, we have accumulated ample evidence that topological
features provide additional information for the classification of im-
ages. This is not surprising as most techniques rely on geometric,
textural, or gradient based features for classification that do not nec-
essarily capture topological features. However, computational time
for generating the topological signatures remains to be the main
bottleneck. Even though our faster technique has made progress in
this direction, further research in needed to incorporate topological
features for image classification for very large databases.

Appendix A: Algorithm for fast computation of topological
signature

To compute the topological signature for an initial point cloud P⊂
Rn, we follow the procedure below:

1. Create a Nearest Neighbor graph on P by creating an edge be-
tween each point and its k-nearest neighbors.

2. Create a δ-sparse, δ-net subsample on P to form V 0

3. Build a graph induced complex C0 on V 0 using the algorithm
described in ( [DFW13])

4. Undergo a sequence of subsampling of the initial point set V 0 ⊃
V 1 ⊃ ... ⊃ V k based on the Morton Ordering discussed in B.
(For every V i ⊃ V i+1, we remove every nth point from the ith

sample to form V i+1).
5. Generate a sequence of vertex maps f i : V i→ V i+1, as defined

in section C. This in turn generates a sequence of collapsed
complexes: C0,C1, ...,Cn. Each vertex map induces a simpli-
cial map f i : Ci−1 → Ci that associate simplices in Ci−1 to
simplices in Ci

6. Compute the persistence for the simplicial maps in the sequence

C0 f1−→C1 f2−→ ...
fk−→Ck to generate the topological signature of

the point set P.

Thus given a sequence of simplicial maps, we can compute persis-
tence by sequence of collapse operations (induced by the maps) on
our initial complex (which is described in section C).

Appendix B: Subsampling by Morton Coding

Now we will discuss our method for generating a sequence of batch
collapses, given an initial simplicial complex C. To do this, we first

create a total ordering on our point set V 0. This ordering is explic-
itly defined by the Morton Ordering mapping M : ZN 7→ Z such
that

M(p) =
B∨

b=0

N∨
i=0

xi,b
2 � N(b+1)− (i+1)

where xi,b
2 denotes the bth bit value of the binary representation of

the ith component of x, ’∨’ denotes the binary or operation, and
’�’ denotes the left binary shift operation. This mapping is merely
a bit interleaving of the different components of p. Applying M to
every p ∈V 0 yields a total ordering on our initial point set.

We can exploit the knowledge that points with similar Morton
encoding are found in similar areas, to generate a new subset V 1 ⊂
V 0 that respects the underlying density of the initial point set.

First choose a value k such that 1 < k ≤ ‖V 0‖. V i+1 can then be
defined as

V i+1 = {x j | x j ∈V i, j 6≡ 0 mod k}

Where x j is the jth vertex in the Morton Ordering of V i. Following
this approach, the process can be repeated to create a sequence of
subsets

V 0 ⊃V 1 ⊃ ...⊃V n,‖V n‖≤ k

Appendix C: Vertex Map and Collapses

This sequence of subsets of V i allows us to define a simplicial map
between any two adjacent subsets V i and V i+1 by the following
map.

f i(p) =

p if p ∈V i+1

inf
v∈V i+1

d(p,v) otherwise

Essentially, each vertex in V i is either chosen for the subsampling
or mapped to its nearest neighbor in V i+1 .

This map on the vertices, then induces a map on all higher-order
simplices of C. More formally these maps are collapses of the sim-
plicial complex C.

C0 f1−→ C1 f2−→ ...
fk−→ Ck

Given a sequence of simplicial maps f1, f2, ... fn between an initial
simplicial complex C0 and a resulting simplicial complex Cn, Au-
thors in [DFW12] describes an annotation-based technique to gen-
erate the persistence of such a sequence. The authors use a set of el-
ementary inclusions (not needed in our case) and collapses to break
down the the simplicial maps into their fundamental elements. Us-
ing this, they derive the persistence of the simplicial maps. For our
purposes we utilize this annotation based algorithm on the sequence
of maps f i described above.
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