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Abstract

In the present work, a novel computational framework for variational non-rigid image registration is discussed.
The fundamental aim is to provide an alternative to approximate approaches based on successive convolution,
which have gained great popularity in recent years, due to their linear complexity and ease of implementation.
An optimise-then-discretise framework is considered. The corresponding Euler-Lagrange equations (ELEs), which
arise from calculus of variation, constitute a necessary condition for a minimiser of the variational optimisation
problem. The conventional, semi-implicit (SI) time integration for the solution of the ELEs is replaced by an explicit
approach rendering the implementation straightforward. Since explicit methods are subject to a restrictive stability
requirement on the maximal admissible time step size, they are in general inefficient and prone to get stuck in local
minima. As a remedy, we take advantage of methods based on cyclic explicit numerical time integration. With this
the strong stability requirement on each individual time step can be replaced by a relaxed stability requirement.
This in turn results in an unconditionally stable method, which is as efficient as SI approaches.
As a basis of comparison, SI methods are considered. Generalisability is demonstrated within a generic variational
framework based on quadratic regularisation. Qualitative and quantitative analysis of numerical experiments
based on synthetic test data demonstrates accuracy and efficiency.

Categories and Subject Descriptors (according to ACM CCS): I.4 [Image Processing and Computer Vision]:
Enhancement—Registration

1. Introduction

Non-rigid image registration [HHH01,CHH04,FM08,SP12]
is a versatile and powerful tool in medical image computing
with a variety of different applications. It is about establish-
ing spatial correspondence between two or more views of the
same object, acquired from different fields of vision by dif-
ferent imaging sensors (multi-modal) or at different points
in time (multi-temporal, serial). More precisely, the task is,
given two images, a template image, T , and a reference im-
age, R, find a plausible mapping, y ∈ Y ⊂ {ỹ : Rd → Rd},
such that T ◦ y = R [Mod04, FM08]. Here, d ∈ {2,3} is the
dimensionality. The search for a suitable function, y, is typi-
cally phrased as a variational optimisation problem. At this,

† Send correspondence to {mang,buzug}@imt.uni-luebeck.de.

the distance between T and R is measured in terms of some
functional, D. However, minimising solely D is an ill-posed
problem. One remedy to ensure well-posedness is to add a
regulariser,R, to the objective to form a joint objective func-
tional, J .

Different regularisation models, R, have been designed
in recent years. They are in general motivated from contin-
uum theory and determine requirements on the smoothness
and/or regularity of the mapping, y. Popular approaches in-
clude (hyper-)elastic [Bro81,Chr96,DHLH11], fluid [Chr96,
CTH05, BNG96], curvature (bi-harmonic) [FM03, Hen05],
total variation [CC11] or diffusion [FM02, Thi98] regu-
larisation. The particular choice of R in general depends
on the area of application. In addition, different soft or
hard constraints have been proposed as an additional in-
gredient to rule out undesirable (irregular) solutions from
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the search space, or, likewise, privilege a particular solu-
tion [HM04, PMS10].

For computing a minimiser of the joint objective func-
tional, J , one can in general distinguish between two frame-
works: discretise-then-optimise (DO; cf. e.g. [Mod09]) and
optimise-then-discretise (OD; cf. e.g. [Mod04]). In the for-
mer, the optimisation problem is discretised directly. The
2nd, traditional approach, which is considered here, is based
on calculus of variation: The GÂTEAUX derivative of J
yields a necessary condition for a minimiser. The resulting
Euler-Lagrange equations (ELEs) constitute a system of dif-
ferential equations, which has to be discretised and solved
numerically.

Different approaches have been designed in recent years
in order to compute a solution to the ELEs, most of
which have been tailored to a specific type of regu-
lariser, R, in combination with adequate boundary condi-
tions (e.g. fluid regularisation with periodic boundary con-
ditions [CTH05, BNG96] or diffusion [FM02] and curva-
ture regularisation [FM03] with homogeneous NEUMANN

boundary conditions). In early work on variational non-
rigid image registration (see e.g. [CRM96]) conventional
iterative solvers have been used. The fundamental prob-
lem is their low asymptotic speed of convergence. Faster
approaches have been developed in recent years includ-
ing multigrid [CTH05, Hen05, CC11, FSHW08], additive
operator-splitting (AOS) [Mod04, FM02] and FOURIER

techniques [Mod04, CNH07, LRVMMS08] as well as con-
volution based methods [BNG96, Thi98, VPPA08, VPPA09,
CNH09,CNH10,BKF10]. The latter have become very pop-
ular, due to their ease of implementation and their linear
computational complexity. The general idea of these ap-
proaches is to approximate the regulariser by projecting the
solution onto a smooth space via successive convolution
with some suitable kernel. From a theoretical perspective,
this approximate framework is based on strong assumptions,
which are in general not fulfilled and—from a practical point
of view—it is less accurate than other available strategies
based on numerical differentiation [Mod04].

The present work aims at designing a numerical frame-
work, which closes the gap between efficient, approxi-
mate models that feature a low implementation complex-
ity [BNG96, Thi98, VPPA08, VPPA09, CNH09, CNH10,
BKF10] and sophisticated numerical methods [CRM96,
CTH05, Hen05, CC11, FSHW08, Mod04, FM02, Mod04,
CNH07, LRVMMS08], which provide greater accuracy. It
turns out that there readily exists such a framework [Gen79,
GS78, AAG96, GWB10], which is based on cyclic, explicit
numerical time integration. The fundamental contribution
of the present work is to introduce these approaches to
variational, non-rigid image registration. Generalisability is
demonstrated by testing the methodology within a generic
L2-norm based regularisation framework. More precisely,
results are provided for diffusion [FM02], curvature [FM03],

elastic [Bro81, Chr96] and 2nd order elastic [CNH10] regu-
larisation. As a basis of comparison conventional SI numer-
ical time integration is considered, too.

2. Methodology and Theory

2.1. General Mathematical Model

We treat non-rigid image registration as a variational optimi-
sation problem. At this, images are modelled as compactly
supported, continuous functions, T,R ∈ I ⊂ {I : Rd ⊃Ω→
R}, defined on a d-dimensional interval Ω := (ω1

1,ω
1
2)×

·· · × (ωd
1 ,ω

d
2) ⊂ Rd , with boundary, ∂Ω. The task of im-

age registration is to find a suitable spatial mapping, y =
(y1, . . . ,yd) ∈ Y , y = x− u(x), where u = (u1, . . . ,ud) ∈ Rd

denotes a displacement vector, such that—ideally—T ◦ y =
R (cf. e.g. [Mod04, FM08]). To compute y we formulate
the registration problem within a TIKHONOV-regularisation
framework:

miny {J (R,T ;y) =D(R,T ;y)+αR(y− yr)}. (1)

Here, D : I ×I ×Y → R measures the distance between T
and R andR :Y →R is a regulariser, which prescribes prop-
erties of an adequate mapping, y. Further, yr is a reference
mapping, which allows for introducing prior knowledge into
the regularisation model. In general, we have yr ≡ x.

2.2. Distance Measure

As for the distance measure,D, we assume—without loss of
generality—that R≈ T ◦ y. Thus, the L2-distance

D(R,T ;y) =
1
2

∫
Ω

(T (x−u(x))−R(x))2dx (2)

between T and R is a valid option. Other measures, D,
that are less strict in terms of the intensity relationship can
e.g. be found in [Mod04, HHH01]. As we consider an OD
framework here, the GÂTEAUX derivative of D has to be
computed. Thus, let T ∈ C2(Ω), R ∈ L2(Ω), u ∈ L2(Ω)d

and some pertubation v ∈ L2(Ω)d be given. The GÂTEAUX

derivative of D with respect to v is given by (cf. e.g.
[Mod04])

du;vD(R,T ;u) =
∫

Ω

〈b(x,T,R,u(x)),v(x)〉Rd dx; (3)

b(x,T,R,u(x)) = −(T (x − u(x)) − R(x))∇T (x − u(x)) is
a force field, which drives the registration; ∇ :=
(∂x1 , . . . ,∂xd )T ∈Rd , where ∂xi represents the partial deriva-
tive along the i-th spatial direction.

2.3. Quadratic Regularisers

As has already been discussed in §1 there exist a variety
of different regularisation models [Bro81, Chr96, DHLH11,
Chr96,CTH05,BNG96,FM02,Thi98,FM03,Hen05,CC11].
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In the present work we limit ourselves to quadratic regulari-
sation. At this,R can compactly be represented via

R(u) = 1
2

∫
Ω

〈B[u],B[u]〉dx. (4)

Here, B, is some differential operator. In general format, the
GÂTEAUX derivative of (4) reads

du,vR(u) =
∫

Ω

〈A[u](x),v(x)〉Rd dx, (5)

where A is a differential operator subject to appropriate
boundary conditions.

In the present manuscript we consider three promi-
nent regularisation models, namely diffusion [FM02], cur-
vature [FM03] and elastic regularisation (of first [Bro81,
Chr96] and 2nd order [CNH10]). The individual models read

RD(u) =
1
2

d

∑
i=1

∫
Ω

〈∇ui,∇ui〉dx (6)

for diffusion regularisation,

RC(u) =
1
2

d

∑
i=1

∫
Ω

(∆ui)2dx, (7)

for curvature regularisation and

RE(u) =
1
2

∫
Ω

(
µ
2

d

∑
i, j=1

(∂xi u j +∂x j ui)2 +λ(∇·u)2

)
dx,

(8)
and

RE2(u) =
1
2

∫
Ω

(µ
3

Σ(u)+λ‖∇(∇·u)‖2
2

)
dx, (9)

where

Σ(u) =
d

∑
i=1

d

∑
j=1

d

∑
k=1

(
∂

2
xix j uk +∂

2
xixk u j +∂

2
x jxk ui

)2

for elastic regularisation of 1st and 2nd order, respectively.
The differential operators that result from the GÂTEAUX

derivative of (6)-(9) are given by

AD[u] =−∆u, (10)

AC[u] = ∆
2u, (11)

AE [u] =−µ∆u− (λ+µ)∇(∇·u), (12)

AE2[u] = µ∆
2u+(λ+2µ)∆∇(∇·u). (13)

Each of these regularisers has distinct features, which
makes them particularly suited for a given application. The
diffusion regularisation decouples with respect to the in-
dividual spatial directions. Curvature regularisation is im-
mune against missing pre-registration. Elastic regularisation
is physically motivated, which makes it in particular inter-
esting for medical imaging applications. The second order
elastic regulariser combines the features of curvature and
elastic regularisation: it couples the regularisation along the

Figure 1: Impulse response for the considered regularisa-
tion models (from left to right: diffusion, elastic, curvature
and 2nd order elastic regularisation).

spatial directions and comprises affine mappings in its ker-
nel. To illustrate the properties an impulse response with re-
spect to the individual differential operators,A, is displayed
in Fig. 1.

3. Numerical Solution

3.1. Continuous Mathematical Model

As has been stated in the beginning of this manuscript, we
consider an OD framework. Thus, the computation of a min-
imiser of (1) translates into computing a solution of the ELE

αA[u](x) = b(x,T,R,u) on Ω, (14a)

BBCu(x) = 0 on ∂Ω, (14b)

where BBC is some suitable boundary condition. The force
vector, b, and the operator, A, in (14a) are the GÂTEAUX

derivatives ofD (see (3)) andR (see (10)-(13)), respectively.

A solution to (14) can be obtained by a fixed point itera-
tion. However, this is delicate sinceAmay have a non-trivial
kernel. A common strategy to stabilise (14) is to introduce an
artificial time variable, t > 0 [Mod04]. One obtains

∂t u(x, t)+αA[u](x, t) = b(x, t,T,R,u) on Ω×R+, (15a)

BBCu(x, t) = 0 on ∂Ω×R+, (15b)

u(x, t) = u0 on Ω×{0}. (15c)

3.2. Discretisation

A cell-centred grid, Ω
h ∈Rdm1×···×md

, mi ∈N, i = 1, . . . ,d,
is used for discretisation. At this, the grid coordinates, xk :=
(x1

k , . . . ,x
d
k )

T ∈ Rd , k ∈ Zd , with xi
k = ω

i
1 +(hi−0.5)ki, i =

1, . . . ,d, represent the centre point of a cell of width h =
(h1, . . . ,hd) ∈Rd , hi = (ωi

2−ω
i
1)/mi. Further, the time axis

is discretised via t j := jht , ht > 0, j = 0, . . . ,mt .

In order to develop a compact matrix-vector framework,
the displacement vectors, ũ(xk, t

j) =: u j
k ∈ Rd and the grid

points, xk ∈Rd , are assembled in a lexicographical ordering,
ω

h = (xk) ∈ Rnd , nd = d ∏
d
i=1 mi, and, uh, j = (u j

k) ∈ Rnd ,
respectively. Further, we assemble the discrete images in
vector format, T h,Rh : ω

h → [0,1]. By exploiting midpoint
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quadrature, one obtains

Dh(Rh,T h;uh, j) = h̃
1
2
‖T h(ωh−uh, j)−Rh‖2

2

and Rh(uh, j) = h̃‖Bhuh, j‖2
2, as a discrete analogue for (2)

and (4), respectively; here, h̃ = ∏
d
i=1 hi (further details can

e.g. be found in [Mod09]).

A semi-implicit discretisation of (15) reads

uh, j+1=
(
End +htαAh

)−1
(uh, j +bh, j(ωh,T h,Rh,uh, j)). (16)

The force vector, bh, j , in (16) is at this computed via

bh, j(ωh,T h,Rh,uh, j) =−r∇̃h,dT h(ωh−uh, j),

where r = (Rh(ωh)− T h(ωh − uh, j)) and ∇̃h,d is a sparse
matrix, which represents a central finite difference approx-
imation of ∇. Likewise, we introduce the sparse matrices,
∇h,d (backward differences), and, ∆

h,d , to approximate the
NABLA and LAPLACIAN operators within Ah. The discrete
representations of the individual differential operators, Ah,
are given by

AD,h = Ed⊗∆
h,d ∈ Rnd×nd ,

Ed = diag(1, . . . ,1) ∈ Rd×d and

AC,h = (AD,h)TAD,h ∈ Rnd×nd ,

for diffusion and curvature regularisation, respectively. For
elastic regularisation of 1st and 2nd order we have

AE,h =−µ∆
h,d− (λ+µ)∇h,d(∇h,d)T ∈ Rnd×nd

and

AE2,h = µ∆
h,d

∆
h,d +(λ+2µ)∆h,d∇h,d(∇h,d)T ∈ Rnd×nd ,

respectively.

3.3. Numerical Time Integration

A conventional approach would be to directly solve the SI,
linear system (15) via iterative sparse matrix solvers. In case
RD is considered, the regularisation decouples along each
spatial direction. Thus,

uh, j+1 =
(
End +htα∑

d
l=1A

D,h
l

)−1
ũh, j, (17)

where ũh, j := (uh, j +htbh, j(ωh,T h,Rh,uh, j)). This leads to the
idea of additive operator splitting (AOS) [WRV98, Mod04,
FM02], where the inverse in (17) is replaced by the sum of
inverses. Thus, (17) becomes

uh, j+1 =
1
d

d

∑
l=1

(
End +htαAD,h

l

)−1
ũh, j. (18)

This considerably speeds up the numerical solution since
AOS yields a tridiagonal system (each Ah

l is tridiagonal but
∑

d
l=1A

h
l in (17) is not), which can efficiently be solved by

e.g. the tridiagonal matrix algorithm (TDMA). Other tech-
niques, for efficiently solving (15), which are not considered
in the present manuscript, are FOURIER [Mod04, CNH07,
LRVMMS08] or multigrid [CTH05,Hen05,CC11,FSHW08]
methods.

There is no doubt, that these techniques are fast, efficient
and theoretically sound. However, they are quite elaborate,
in particular when it comes to designing parallel algorithms.
In addition, they are often tailored to a specific type of reg-
ulariser or might not necessarily allow for adaptive regular-
isation models [Kab06, CNH07, SRWHE12]. An alternative
is to use explicit numerical time integration,

uh, j+1=
(
End −htαAh

)
uh, j+htbh, j(ωh,Rh,T h,uh, j), (19)

which in turn does not demand the solution of a semi-linear
system. However, it is well known from numerical analysis
that explicit time integration is subject to a time step size re-
striction (CFL condition; cf. e.g. [Str04]). Considering (19),
we have to adhere to

ρ

(
End −htαAh

)
< 1 ⇒ ht <

2
αρ(Ah)

=: ht,max, (20)

in order to guarantee convergence. Here,

ρ(M) := max
i
{λi : λi ∈ σ(M), i = 1, . . . ,n,n ∈ N}

is the spectral radius of any M ∈ Rn×n with spectrum

σ(M) := {λi : λi is an eigenvalue of M}.

However, there exist elegant strategies [Gen79, GS78,
AAG96, GWB10] to stabilise (19). The basic idea is to re-
lax the strong stability requirement in (20) by a cyclic varia-
tion of the size of a series of substeps, h?t,i, i = 0, . . . ,w− 1,
w ∈ N, of a given exterior step, ht . At this, stability is only
demanded at the end of each cycle. The relaxed stability re-
quirement reads

ρ

(
∏

w−1
i=0

(
End −h?t,iαAh

))
< 1, (21)

which is equivalent to |∏w−1
i=0 1− h?t,iαλ| < 1 ∀λ ∈ σ(Ah).

With this, the computational rule for the cyclic, explicit time
integration is given by

uh, j+1= ûh, j +htbh, j(ωh,T h,Rh,uh, j). (22)

where ûh, j := ∏
w−1
i=0

(
End−h?t,iαAh

)
uh, j . The implementa-

tion complexity for (22) is essentially the same as for (19).
The gain in efficiency is due to the computational rule for the
substeps, h?t,i, up to half of which violate the stability require-
ment in (20) rendering (22) as efficient as (semi-)implicit
methods.

The remaining question is, how to choose the substeps. In
super-time-stepping [Gen79,GS78,AAG96] (STS) the com-
putational rule for, h?t,i, is determined explicitly. That is, one
searches for an optimal set of time steps in the sense that the
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duration (i.e. the exterior step), ht = ∑
w−1
i=0 h?t,i, is maximised

subject to the stability requirement

|∏w−1
i=0 (1−h?t,iαλ)| ≤ κ ∀λ ∈ [γ,λmax],

γ ∈ (0,λmin] and κ ∈ (0,1), where λmin and λmax are the
smallest and largest eigenvalues of Ah. Relating this prob-
lem to the optimality properties of Chebychev polynomials
yields [AAG96]

h?t,i,STS = ht,max ((−1+ν)cos(πi/(w−1))+1+ν) , (23)

i = 0, . . . ,w−1, where, ν := γ/λmax, ν ∈ (0,λmin/λmax].

Recently, a similar approach [GWB10] has been pre-
sented (denoted by EE? (explicit Euler)). In [GWB10] the
connection between iterated box filtering (which is a sta-
ble operation) and conditionally stable, explicit numerical
time integration of the diffusion equation, has been explored.
In [GWB10] this connection is proven to exist. The compu-
tational rule for the substeps is given by [GWB10]

h?t,i,EE? =
ht,max

2cos2(π 2i+1
4w+2 )

. (24)

The final step before applying (23) or (24), is the com-
putation of an estimate for ht,max. This is not a problem in
practice, due to the existence of the Gershgorin circle the-
orem (cf. e.g. [GL96, theorem 7.2.1; p. 320]). This theorem
provides a straightforward rule for estimating the spectral
properties of Ah and by that—according to (21)—for esti-
mating ht,max.

Under the assumption of exact arithmetic, the ordering of
the individual time steps, h?t,i, i = 0, . . . ,w− 1, is of no rel-
evance. In practice, exact arithmetic is not given. Round-off
errors might accumulate during the computation and by that
cause instabilities in case w becomes large. Therefore, it has
been suggested to rearrange the time steps, h?t,i, within so-
called κ-cycles [Gen79, GS78]: Let the steps, h?t,i, be col-
lected in a w-tuple, h?t = (h?t,i) ∈ Rw. The permutation of
these entries, h?t,i, is assigned to the w-tuple, h̃?t = (h?t,φ(i)) ∈
Rw, according to the heuristic rule φ(i) := (i+ 1)s mod p.
Here, p ∈ N is the next largest prime number, p > w, and
s > 0 is a user defined parameter.

The regularisation parameter, α, can be relaxed during the
computation (controlled by an iteration number nα and the
relaxation parameter β). Convergence is tested for according
to (modified from [Mod09])

(c1) J h, j−J h, j−1 < 0,

(c2) |J h, j−J h, j−1| ≤ εJ (1+J h,0),

(c3) ‖uh, j−uh, j−1‖2 ≤ εu(1+‖uh, j‖2),

(c4) ‖δJ h, j‖2 ≤ εδJ (1+J
h,0),

(c5) ‖δJ h, j‖2 ≤ 103
ε,

(c6) α≤ εα,

(c7) j > n j.

Figure 2: Synthetic test data; from left to right: Rh, T h, 1−
|Rh−T h| and grid overlaid onto T h.

The iterations are stopped in case (c1) ∨ ((c2) ∧ (c3) ∧
(c4))∨ (c5)∨ (c6)∨ (c7). Here, εJ > 0, εδJ > 0, εu > 0
and εα > 0 are user defined parameters and ε > 0 represents
the machine precision. A multiresolution framework (based
on [Mod09]) is used in order to speed up the computation.
To solve the semi-implicit system, MATLAB’s mldivide
is used for the results included in this study. However, any
other algorithm suitable for solving a sparse linear system
can be applied (e.g. GMRES, KRYLOV subspace methods,
multigrid,...).

4. Numerical Experiments

To test the discussed framework, numerical experi-
ments in terms of a synthetic test problem are per-
formed. As a reference data set, Rh, a MR brain tem-
plate [CZK∗98] is considered. Rh is deformed according
to yh

r = ω
h − 7(sin(2πνω

h
1),cos(2πνω

h
2))

T, where ω
h
i =

(xi
1,...,1, . . . ,x

i
m1,m2)∈Rm1m2

, i= 1,2 and ν= 1.25 ·10−2 and

T h = Rh(yh
r ) (see Fig. 2 for an illustration; the visualisation

is based on [Mod09]). It is possible to compute the relative
error, δuh = ‖uh− uh

ref‖/#uh
ref, as well as a point-wise map,

eh : Ω
h → R, of the L2-distance between known and com-

puted displacement vectors.

The regularisation parameter is set to α = 2.0 (curvature),
α = 0.2 (diffusion), α = 0.2 (µ = 1.0, λ = 0.0, elastic) and
α = 1.0 (µ = 1.0, λ = 0.0, 2nd order elastic). The maximum
number of iterations is set to mt = 800. Further, nα = mt ,
β = 1, ht = 1.0, εJ = 10−3, εu = 5 · 10−3, εδJ = 5 · 10−3

and εα = 10−5. The initial distance between T h and Rh is
7.231 · 102. The results are displayed in Fig. 3 and sum-
marised in Tab. 1. At this, values for the determinant of the
JACOBIAN matrix, J(yh), are provided (computed via finite
difference approximations). The strictly positive JACOBIANs
suggest regular mappings (no folding). The error map, eh,
is computed for {xk ∈ Ω

h : Rh(xk) > 0} to not account for
errors, where there is no information to drive the registra-
tion. In addition, plots that relate the convergence of stan-
dard semi-implicit and the proposed explicit methods are
displayed in Fig. 4. As can be seen, the semi-implicit and
the explicit solution strategy perform equivalent.
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Figure 3: Registration results. Each set of 4 images displays (from left to right) the deformed template image, T h(yh), with a
grid overlaid, 1−|Rh−T h(yh)|, J(yh) and eh. Each row provides results for a different regularisation model with respect to the
individual numerical schemes (1st row: diffusion SI; 2nd row: diffusion AOS (left) and diffusion EE? (right); 3rd row: elastic
SI (left) and elastic EE? (right); 4th row: curvature SI (left) curvature EE? (right); 5th row: 2nd order elastic SI (left) and 2nd

order elastic EE? (right)).

0 200 400 600 800
10−1

100

lo
g(
J

h )

curvature EE?

curvature SI
diffusion EE?

diffusion SI
elastic EE?

elastic SI

2
nd order elastic EE?

2
nd order elastic SI

Figure 4: Rate of convergence. Displayed is a semi-
logarithmic plot of the objective value, J h, versus the itera-
tions for the semi-implicit and explicit numerical strategies
with respect to different regularisation models. The compu-
tation is performed only on the highest resolution level.

5. Discussion and Conclusion

In the present manuscript an alternative numerical frame-
work for variational non-rigid image registration based on

cyclic numerical time integration has been discussed. This
work aims at providing an efficient alternative to approxi-
mate convolution based registration models [BNG96,Thi98,
VPPA08, VPPA09, CNH09, CNH10, BKF10]. These models
have gained great popularity in recent years, due to their lin-
ear complexity and ease of implementation. However, they
are less accurate than their counter parts in the OD frame-
work based on numerical differentiation to solve the ELEs.

The fundamental aim of this work is to provide a
framework that has a low implementation complexity and
at the same time is efficient and shares the sound the-
oretical foundation of available techniques in the OD
framework [CTH05,Hen05,CC11,FSHW08,Mod04,FM02,
CNH07, LRVMMS08]. There is no doubt that these tech-
niques provide efficient and sophisticated means for solving
the considered PDE system. However, they might not always
be applicable. That is, FOURIER-based approaches [Mod04,
CNH07, LRVMMS08] cannot be used in case adaptive
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Table 1: Quantitative analysis of the registration results. Provided are the resulting distance, the resulting relative change in
distance r =D(Rh,T h(yh))/D(Rh,T h), the range of the JACOBIAN, J(yh), the relative error, δuh, as well as the maximum error
for the `2-norm between ground truth and computed displacement field.

D(Rh,T h(yh)) r Jh
δuh/m max(eh)/m

AD,h SI 6.770 ·101 9.362 ·10−2 [5.869 ·10−1,1.400] 1.632 ·10−3 5.339 ·10−3

AOS 5.474 ·101 7.570 ·10−2 [3.252 ·10−1,1.547] 1.622 ·10−3 6.980 ·10−3

EE? 6.779 ·101 9.374 ·10−2 [5.868 ·10−1,1.400] 1.633 ·10−3 5.342 ·10−3

AC,h SI 1.803 ·101 2.493 ·10−2 [4.930 ·10−1,1.545] 7.214 ·10−4 6.924 ·10−3

EE? 1.826 ·101 2.526 ·10−2 [4.955 ·10−1,1.542] 7.312 ·10−4 6.897 ·10−3

AE,h SI 7.672 ·101 1.061 ·10−1 [7.322 ·10−1,1.250] 1.548 ·10−3 5.245 ·10−3

EE? 7.679 ·101 1.062 ·10−1 [7.322 ·10−1,1.250] 1.549 ·10−3 5.247 ·10−3

AE2,h SI 1.065 ·101 1.473 ·10−2 [2.977 ·10−1,1.741] 5.404 ·10−4 8.688 ·10−3

EE? 1.065 ·101 1.473 ·10−2 [2.982 ·10−1,1.741] 5.414 ·10−4 8.697 ·10−3

regularisation [Kab06, CNH07, SRWHE12] is considered.
AOS [Mod04, FM02] can only be applied if the matrix
operator, Ah, has a rich structure and decouples with re-
spect to each spatial direction. Clearly, multigrid tech-
niques [CTH05,Hen05,CC11,FSHW08] are generally appli-
cable, feature linear complexity and have a high rate of con-
vergence. However, their implementation is a rather delicate
matter. The discussed framework is generally applicable, ac-
curate, has the theoretical sound background of conventional
approaches within the OD framework and features a low im-
plementation complexity. It has been demonstrated exper-
imentally that it performs equivalent to semi-implicit ap-
proaches. Generalisability has been demonstrated by testing
the methodology within a generic framework for variational
non-rigid image registration based on quadratic regularisa-
tion, accounting for diffusion [FM02], curvature [FM03],
elastic [Bro81, Chr96] and 2nd order elastic [CNH10] reg-
ularisation.

However, this reduced implementation complexity does
not come for free. A generic problem when considering ex-
plicit numerical time integration for solving the considered
system of PDEs is that the solution establishes on a point-
wise basis. Therefore, the effect of the regularisation is con-
trolled locally and not globally. In the implicit case, the solu-
tion is available immediately throughout the entire domain,
which makes these techniques—from a theoretical point
of view—more suited for the considered problem. How-
ever, as has been demonstrated in the present manuscript,
only marginal differences (qualitatively as well as quantita-
tively) are to be observed when comparing explicit and im-
plicit implementations. A complete analysis and compari-
son to other approaches (such as multigrid [CTH05, Hen05,
CC11,FSHW08], FOURIER [Mod04,CNH07,LRVMMS08]
or convolution based techniques [BNG96, Thi98, VPPA08,
VPPA09, CNH09, CNH10, BKF10]) remains subject to fu-
ture work.

The present implementation is conceptual (for both–the
implicit and the explicit implementation) and by that by no

means optimised for speed, yet. As such, we did not provide
a detailed analysis of computational performance. It is based
on a sparse matrix-vector framework and implemented in
MATLAB in order to demonstrate general applicability and
keep track of the precise structure of the differential oper-
ators. Turning to parallel architectures as well as to matrix
free implementations is expected to dramatically improve on
the performance. This is something to be done in our future
work, which also includes a detailed analysis of the runtime.

The intended application for the designed non-rigid reg-
istration framework is the analysis in serial or cross-
population brain tumour imaging studies [MTS∗12a,
MTS∗12b, HDB08, GBD11].
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