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Abstract 

We describe a method for filling holes in unstructured triangular meshes.  The resulting patching meshes 
interpolate the shape and density of the surrounding mesh.  Our methods work with arbitrary holes in 
oriented connected manifold meshes. The steps in filling a hole include boundary identification, hole 
triangulation, refinement, and fairing. 

Categories and Subject Descriptors: I.3.5 [Computer Graphics] Computational Geometry and Object 
Modeling - surface and object representations. 

 

1. Introduction 

During the surface reconstruction process, a mesh is 
calculated from a cloud of points.  This mesh may have 
holes corresponding to deficiencies in the original point 
data, or to regions in which for one reason or another the 
meshing algorithm did not create a mesh.  It is often 
desirable to fill in these holes for reasons ranging from 
aesthetics to the need for a watertight mesh for STL (stereo 
lithography) prototyping. 

A satisfactory hole filling method should: 

1. be automatic.  If the user is to select holes, the interaction 
should be as simple as possible. 

2. run in reasonable time, preferably at interactive speeds 

3. fill a hole with a patching mesh that is minimally 
distinguishable from the surrounding mesh.  In particular, 
mesh density and shape should match across the original 
hole boundary. 

4. be able to deal with arbitrary holes in arbitrary meshes.  
For example, arbitrary meshes may include non-manifold 
edges, and arbitrary holes may be extremely irregular and 
non-planar in their outline.  Our philosophy is similar to 
that of Held7, in that we will always attempt to generate a 
meaningful patch whose correctness will gracefully degrade 
as the hole becomes more pathological. 

The approach described here aims to meet these goals. We 
will discuss how successful we are in Section 7. 

Some existing non-geometric approaches to hole filling 
come from the surface reconstruction literature. Carr et al.3 

use radial basis functions to compute thin-plate 
interpolations of holes in scattered height data, a technique 
that should be extendable to variational implicit surfaces15. 
Szeliski and Tonnesen13 use oriented particles to extend 
and interpolate sparse 3D data. These techniques can be 
extended to meshes. Geometric hole filling is avoided by 
Curless and Levoy4 by using a volumetric method of filling 
holes in voxel space.  Davis et al.5 use volumetric diffusion 
to extend a clamped distance function into space, and then 
find the zero set of the resulting distribution. 

Two existing geometric approaches to hole filling 
influenced the techniques used in this paper. Barequet and 
Sharir1 use a dynamic programming method to find a 
minimum area triangulation of a 3D polygon in order to fill 
mesh holes. Pfeifle and Seidel9 use mesh refinement and 
fairing techniques to fill holes in piecewise polynomial 
surfaces, after finding a spanning triangulation in 2D 
(parametric) space. A cousin of the hole filling problem is 
the Plateau problem, which seeks a minimal disk-like 
surface that spans a given closed 3D curve10. The main 
difference is that the discrete Plateau problem does not 
include the constraints given by a surrounding mesh. A 
method for fairing a mesh region so that it is discrete G1 
continuous with its surrounds is given by Schneider and 
Kobbelt11. 

In the literature we have surveyed, existing approaches to 
discrete Plateau and fairing problems do not address the 
problem of finding an initial spanning mesh, but rather 
assume this as a given.  In fact, to the best of our 
knowledge, there is only one description of general 3D 
polygon triangulation in the literature1. Other hole 
triangulation algorithms that have been proposed in the 
context of vertex removal, for example, have depended on 
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simplifying assumptions such as star-shape or projectability 
to a plane12,14. 

The main contribution of this paper is to give a complete 
account of a geometric method for filling holes in triangular 
meshes. The main stages of this method are: hole 
identification, hole triangulation, mesh refinement, and 
mesh fairing.  An existing hole triangulation algorithm1 is 
generalized and improved to overcome difficulties due to 
crenellations. 2D mesh refinement9,16 is generalized here to 
3D. 

2. Preliminaries 

A triangular mesh is defined as a set of vertices and a set of 
oriented triangles that join these vertices. Two triangles are 
adjacent if they share a common edge. Adjacent triangles 
are consistently oriented if their borders traverse their 
common edge in opposite directions.  The dihedral angle 
between two consistently oriented adjacent triangles is the 
angle between the triangle normals.  A mesh is oriented if 
all of its triangles are consistently oriented. An edge is 
adjacent to a triangle if it is part of the border of that 
triangle. 

A boundary edge is an edge adjacent to exactly one 
triangle.  A boundary vertex is a vertex that is adjacent to a 
boundary edge.  A hole is a closed cycle of boundary edges. 
A singular vertex is a vertex that has more than two 
adjacent boundary edges. A non-manifold edge is an edge 
that has more than two adjacent triangles.  An interior edge 
is an edge that is not a boundary edge. A manifold mesh has 
no non-manifold edges and no singular vertices, but may 
have boundaries. 

In the hole filling process, we refer to the original mesh as 
the surrounding mesh and to the mesh that fills the hole as 
the patching mesh. 

We will assume that all meshes, unless otherwise noted, are 
oriented, manifold, and connected.  In particular, two 
separate holes will have no vertices in common (otherwise 
those would be singular vertices), and a given hole will not 
have islands (otherwise the mesh would not be connected). 

Note that although the definition of a hole is entirely 
topological, there are examples that do not conform to our 
conventional notion of a hole.  In Figure 1 each jagged 
edge is a boundary of its respective mesh and therefore a 
hole in the sense of this paper.  However, in practice, the 
notion of what constitutes a hole (more specifically whether 
a hole needs to be filled) will be application or user 
dependent. 

Geometric information can help in distinguishing between 
the different kind of holes in Figure 1.  For simplicity we 
will assume that the hole boundary contains no singular 
vertices and has no adjacent non-manifold edges.  Each 
vertex v  on the hole has a set of adjacent edges },..,{ 1 nee , 
in the order of walking the fan of triangles adjacent to v .  

The surface angle at v  is ),( 10 +<<∑ ∠ iini
ee . The total 

surface angle for a hole boundary is the sum of the vertex 
surface angles.  In Figure 1 it is easy to compute that the 
jagged holes in shapes (a), (c) and (e) are )2( +nπ , nπ , 
and )2( −nπ , where n  is the number of boundary 
vertices.  In general, the larger the total surface angle of its 
boundary relative to the number of boundary vertices, the 
more likely it is that a hole will be judged to be a hole in the 
conventional sense. 

 
Figure 1: The jagged hole in the annulus at (a) is 
continuously deformed into the jagged outside boundary of 
the annulus at (e).  At some point between (c) and (e) the 
jagged boundary ceases to become a hole in the 
conventional sense of the word but remains a hole as 
defined in this paper. 

3. Hole Identification 

The first step in filling a hole is identifying it. Holes can be 
identified automatically by looking for boundary vertices, 
or can be easily indicated by a user by clicking on a 
representative edge or vertex. Requiring a user to, for 
example, lasso-select a hole can be onerous for holes that 
cannot be viewed from a single position. Given a seed 
boundary vertex, an application can trace a series of 
boundary edges until it identifies a closed loop of boundary 
edges.   

(b) 

(c) 

(d) 

(e) 
(a) 
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4. Hole Triangulation 

Once a hole is identified, the first step in filling it is to find 
a triangulation of the three-dimensional polygon defined by 
that boundary. Barequet et al2 give an interesting overview 
of the problem of triangulating three-dimensional polygons, 
and show that the problem of determining whether a 3D 
polygon has a triangulation that is not self-intersecting and 
that defines a simply-connected 2-manifold is NP-
complete. In this paper we concern ourselves with the lesser 
problem of finding weight-minimizing (but possibly self-
intersecting) triangulations. 

An existing )( 3nO  algorithm1 for triangulating a 3D 
polygon is extended here. A weightset L  is an ordered set 
with an addition operation and a distinguished element L0  
that is both the minimal element and the additive identity. A 
weight is an element of a weightset. 

 For a sequence of vertices },...,,{ 110 −= nvvvV , 3R∈iv , 
let ),...,,( 110 −= nvvvP  be the associated 3D polygon. 

Define a weight function LV →Ω 3: , where L  is a 
weightset and Ω  assigns a weight to each triangle whose 
vertices are in V .  For nji <≤≤0 , let jiW ,  be the 
weight of the minimum-weight triangulation of the sub-
polygon ),...,( ji vv .  We calculate minimum weights for 
polygons with increasing numbers of vertices, starting from 
polygons of 3 vertices (i.e. triangles) using the following  

Triangulation Algorithm. 

1. For 2,...,1,0 −= ni , let LiiW 01, ←+ and for 

3,...,1,0 −= ni , let )2,1,2, ++(Ω←+ iiiW ii .  Set 

2←j . 

2. Put 1+← jj . For 1,...,1,0 −−= jni  and 
jik +← , compute 

)],,([min ,,, kmikmmi
kmi

ki vvvWWW Ω++←
<<

. 

Record the index m  where the minimum is achieved 
as ki,λ . 

3. If 1−< nj , go back to step 2.  Otherwise the weight 
of the minimum-weight triangulation is 1,0 −nW . 

4. Recover the triangulation using the ki,λ  values 
recorded in step 2 (see Barequet and Sharir1 for 
details). 

Define the weightset 

[0, )areaL = ∞ , with 0 0
areaL = . 

If we use the weight function  

),,( of Area),,( kmikmiarea vvvvvv =Ω , 

the Triangulation Algorithm will yield a minimum area 
triangulation.  (This weighting, modified to avoid skinny 
triangles, is used by Barequet and Sharir1). 

Minimum area triangulations are acceptable when holes are 
relatively planar, but begin to go wrong when the plane of 
the triangulation is orthogonal to features in the boundary  
(see Figure 2(a), (b)).  These features are called 
crenellations, after the teeth at the top of a castle wall (or of 
a chess rook).  A minimum area triangulation will include 
triangles that duplicate crenellation triangles in the 
surrounding mesh, thus creating sharp folds and non-
manifold edges (see Figure 2(c)). 

 
Figure 2: (a) hole with no crenellations. (b) hole with 
crenellations. (c) minimum-area fill. The fill duplicates the 
crenellation triangles and creates non-manifold edges 
along the topmost horizontal edges. (d) min-max dihedral 
angle fill. 

To avoid this, we introduce a new weighting on triangles 
that takes into account their dihedral angles with adjacent 
triangles.  The weights are ordered pairs (angle, area) 
belonging to a new weightset 

[0, ] [0, )angleL π= × ∞ , with )0,0(0 =
angleL . 

The ordering in angleL  is designed to give precedence to 
dihedral angles over areas, and to penalize large dihedral 
angles: 

),(),( dcba <  iff ( ca <  or ( ca =  and db < )).  

(a) (b) 

(c) (d)
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The addition operator sums area but retains the "worst" 
(i.e., largest) dihedral angle: 

)),,(max(:),(),( dbcadcba +=+ . 

We can now define the weighting function 

angleangle LV →Ω 3:  

)),,(),,,( (),,( kmiareakmikmiangle vvvvvvvvv Ω=Ω µ , 

where ),,( kmi vvvµ  is the maximum dihedral angle 
between ),,( kmi vvv  and existing adjacent triangles.  The 
Triangulation Algorithm, using this weighting, will yield 
the triangulation that minimizes the maximum dihedral 
angle (see Figure 2(d)). 

Note that ),,( kmi vvvµ  depends on existing adjacent 
triangles.  These are taken to be the adjacent triangles that 
exist at the time of evaluation.  In Step 1, )2,1, ++( iiiµ  
is calculated against the triangles adjacent to edges 

)1, +( ii  and )2,1 ++( ii  in the surrounding mesh.  In 
Step 2, ),,( kmi vvvµ  is calculated against the triangles 

),,(
, mi vvv
miλ  and ),,(

, km vvv
kmλ .  When 

)1,0(), −=( nki  the surrounding mesh triangle adjacent to 
edge ),( 10 −nvv  is also taken into account. 

The effect of the angleΩ -triangulation is to compute a kind 
of convex hull of the surrounding mesh before attempting 
to find a minimum-area spanning surface. 

5. Mesh Refinement 

We wish to fill a hole with a mesh that approximates the 
density of the surrounding mesh.  Given the spanning 
triangulation computed in Section 4, we can refine the 
triangulation into a mesh by adapting an algorithm given by 
Pfeifle and Seidel9.  The basic idea is to compute edge 
length data for the vertices on the hole boundary and 
diffuse these values into the interior of the patching mesh, 
subdividing triangles to reduce edge lengths, and relaxing 
interior edges to maintain a Delaunay-like triangulation. 

To relax an edge means, for the two triangles adjacent to 
the edge, to check that each of the two non-mutual vertices 
of these triangles lies outside of the circum-sphere of the 
opposing triangle (see Figure 3).  If this test fails, the edge 
is swapped. 

Given a density control factor α  and a triangulation for the 
hole, we use the following 

Refinement Algorithm: 

1. For each vertex iv on the hole boundary, compute the 
scale attribute )( ivσ  as the average length of the 
edges that are adjacent to iv  in the surrounding mesh.  
Initialize the patching mesh as the given hole 
triangulation. 

2. For each triangle ),,( kji vvv  in the patching mesh, 

compute the centroid cv and the corresponding scale 
attribute .3/))()()(()( kjic vvvv σσσσ ++←  For 

kjim ,,= , if )( cmc vvv σα >−  and 

)( mmc vvv σα >− , then replace triangle 

),,( kji vvv  with triangles ),,( kjc vvv , ),,( kci vvv , 

and ),,( cji vvv  in the patching mesh and relax the 

edges ),( ji vv , ),( ki vv , and ),( kj vv . 

3. If no new triangles were created in Step 2, the 
patching mesh is complete. 

4. Relax all interior edges of the patching mesh. 

5. If no edges were swapped in Step 4, go to Step 2.  
Otherwise go to Step 4. 

We found empirically that a density control factor 2=α  
yields a patching mesh that visually matches the density of 
the surrounding mesh. 

No edge swap
required

Edge swap

(a)

(b)

v

v

e

e

T

T

 
Figure 3: Edge relaxation.  If, for an edge e the vertex v is 
inside the circum-sphere of triangle T, the edge is swapped. 

6. Fairing 

Fairing is the process of making a surface smooth, usually 
by minimizing a fairness functional.  We generalize the 

203



 Liepa / Filling Holes in Meshes 

© The Eurographics Association 2003       

 

 

 

 

 

method described by Kobbelt et al.8 to shape the patching 
mesh that was calculated in Section 5. 

Let R→2:Vω  be a weighting function that assigns a 
weight to every edge ),( ji vv . For every vertex v , define 
the weighted umbrella-operator  

∑+−=
i

ii vvv
v

vv ),(
)(

1)( ω
ωωU , 

where the iv  are the direct neighbors of v , and 

∑=
i

ivvv ),()( ωω . 

When 1)( , =ji vvω  for all ji vv ,  the corresponding ωU  is 
called the uniform umbrella-operator. A popular method of 
smoothing meshes is to replace each vertex v  with 

)(vv ωU+ , which has the effect of replacing each vertex 
with the average of its immediate neighbors. When 

jiji vvvv −=)( ,ω , we obtain the scale-dependent 

umbrella-operator, which introduces less global shape 
distortion when used to smooth irregular meshes6.  For 
edges )( , ji vv  that have exactly two adjacent triangles 

),( 1, jki vvv  and ),( 2, jki vvv , we can define 

),(cot),(cot()( ,2,1, jkijkiji vvvvvvvv ∠+∠=ω , 

which induces the harmonic umbrella-operator, which also 
tends to preserve triangle shape6. 

The umbrella-operator can be applied recursively to get a 
second-order weighted umbrella operator: 

∑+−=
i

ii vvv
v

vv )(),(
)(

1)()(2
ωωω ω

ω
UUU . 

For manifold surfaces, if )(vωU  measures the deviation of 
a vertex v  from a taut surface bounded by its neighbors, 

then 0)(2 =vωU  implies that the deviation from tautness 
at a vertex v  is equal to the average deviation from 
tautness of its neighbors. Given a patching mesh, we fair it 
by arranging the non-boundary vertices iv  of this mesh so 

that 0)(2 =ivωU .  This amounts to solving a linear 
system.  The linear system is sparse, and although it is not 
strictly symmetric, the Conjugate Gradient method has 
given good results. These are shown in Figure 6 (see color 
section).  In this case, scale-dependent fairing yields a more 
pleasing shape than uniform fairing. Schneider and 
Kobbelt’s discrete curvature diffusion11 gives even more 
pleasing results, but is not unconditionally stable. See 

Figure 4 through Figure 8 (some of these are in the color 
section) for more examples of the entire hole filling 
process, from triangulation to meshing and fairing. 

7. Discussion 

The exposition in this paper was confined to triangular 
meshes, but the techniques extend easily to meshes that 
contain arbitrary polygons. 

Another interesting extension of the techniques in this 
paper would be to fill  gaps between surfaces, or holes with 
islands.  We envision the use of line segments (either 
automatically calculated or user defined) to create bridges 
between disconnected boundaries (a 2D version of this is 
described by Held7).  These line segments are used in the 
hole identification and triangulation phases, but can be 
ignored for the refinement and fairing phases. 

In Section 1 we outlined several goals for a good hole 
filling method. In practice, we have found the methods 
described here to be fast and robust in the context of filling 
holes in meshes reconstructed from clouds of points.  But 
due to the )( 3nO performance of the Triangulation 
Algorithm, holes with boundaries consisting of hundreds of 
edges can takes minutes as opposed to seconds.  And 
although we set a goal of filling arbitrary holes in arbitrary 
meshes, we have confined our discussion to holes in 
oriented connected manifold meshes.  Our software, 
however, deals with non-manifold meshes, where the main 
difference is that hole detection becomes more difficult.  
And it could deal with holes with islands by computing 
bridges.  As mentioned earlier in a comparison with Held7, 
these extensions lead to computed patches whose quality 
degrades with the pathology of the hole. 

As for the goal of computing a patch that is compatible with 
the surrounding mesh, since our patch tends to be an 
isotropic triangular mesh, it does not blend well visually 
with anistropic meshes such as triangulated grids, or 
meshes with predominantly non-equilateral triangles. 

Although the methods discussed here were developed for 
surface reconstruction applications, they can be generally 
useful in mesh processing objectives such as feature 
deletion and region replacement, and construction of 
surfaces from feature curve networks.  We also note that 
Figure 8 (see color section) suggests that because hole 
filling is able to approximately reconstruct a mesh from 
partial information, it might be of use in mesh compression. 
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Figure 4: (a) An example of a complex hole.  Note that the hole almost "circumnavigates" the sphere. (b) Min-max dihedral 
angle triangulation. (c) Refined and faired hole patch. 

 
Figure 5: (a) Stanford bunny. (b) Mutilated Stanford bunny. (c) After hole triangulation. (d) After meshing and fairing. (b) and 
(d) are reproduced in the color section in Figure 8. 

(a) (b) 

(c) (d) 

(a) (b) (c) 
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Figure 6: (a) Hole at the top of a sphere (inside of sphere is gray). (b) Patching mesh (yellow), before fairing. (c) Patching 
mesh (yellow) after uniform fairing. (d) Patching mesh (yellow) after scale-dependent fairing. 

    
Figure 7: (a) Four of the five holes in the Stanford bunny. (b) Close-up of  holes. (c) Triangulated. (d) Meshed and faired. 

 

 
Figure 8:  (a) Mutilated Stanford bunny. (b) After hole triangulation, meshing and fairing. 

(a) (b) (c) (d) 

(a) (b) 

(a) (b) (c) (d)
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