Data Driven Soft Robotics

Fredrik Holsten¹, Sune Darkner,¹ Morten Pol Engell-Nørregård², Kenny Erleben¹ ¹Department of Computer Science, University of Copenhagen, Denmark ² Evil Hippie Design

INTRODUCTION: Soft robots are attractive because they have the potential of being safer, faster and cheaper than traditional rigid robots. If we can predict the shape of a soft robot for a given set of control parameters, then we can solve the inverse problem: to find an optimal set of control parameters for a given shape.

WHAT IS THE THEORY BEHIND IT?

1) SHAPE VECTOR EXTRACTION FROM POINT CLOUD

- Visual markers on surface of robot
- Multiple depth cameras for 360-view

Figure 1: Sample robot shapes for different control parameters

2) LEARN SHAPE FUNCTION

 $\vec{s}(\vec{\alpha}) \approx \vec{s}_0 + J\Delta \vec{\alpha}$ Shape function

 $\vec{\alpha}_k = [\alpha_0^k, \alpha_1^k, \dots, \alpha_P^k]^T$ Control parameters

 $\vec{s}_k = [x_0^k, y_0^k, z_0^k, x_1^k, y_1^k, z_1^k, ..., x_N^k, y_N^k, z_N^k]^T$ Shape vector

 $\vec{u}_i = \vec{s}_i - \vec{s}_0$ Displacement vector

 $A = [\vec{a}_1 \vec{a}_2 \cdots \vec{a}_{K-1} \vec{a}_K] \quad U = [\vec{u}_1 \vec{u}_2 \cdots \vec{u}_{-1} \vec{u}_K]$

 $J = UA^T (AA^T)^{-1}$ Jacobian

- Trivial to increase order of approximation
- Split configuration space into disjoint regions
- Embarrassingly parallel
- 5-fold cross-validation for optimal approximation order vs number of local models

Figure 2: Many low ordered, local models show promising results in terms of time complexity and validation loss

3) INVERSE KINEMATICS

Solve inverse kinematics to find optimal control parameters for desired shape \vec{s}_{qoal}

$$\vec{\alpha}_{goal} = \arg\min_{\vec{\alpha}} \frac{1}{2} ||\vec{s}(\vec{\alpha}) - \vec{s}_{goal}||^2$$

Fredrik Holsten Master student, DIKU npb574@alumni.ku.dk

HOW DO WE EXECUTE IT?

THE LEARNING CUBE

Figure 3: Overview of hardware setup

pySoRo

- Software for communicating with motors and cameras
- Camera calibration and noise analysis
- Postprocessing of data
- Various methods for learning the configuration function
- real time interaction of robot with environment, using learned function
- Documented
- Publicly available on GitHub!
- github.com/erleben/pySoRo

INFO

- price for complete setup: < 1300 EUR
- contact us if you are interested

Biggus Dickus Destructo RoboGrabber Sponge Bob SpringGrabber

Figure 4: The robots used

THE ROBOTS

FUTURE WORK:

- Increase complexity of robots
- Time integration and path planning
- Task execution