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Abstract

As the number of models in 3D databases grows, an efficient 3D models indexing mechanism and a similarity
measure to ease model retrieval are necessary. In this paper, we present a query-by-model framework for NURBS
based B-Rep models retrieval that combines partial symmetry of the object and the Fourier shape descriptor of
canonical 2D projections of the 3D models. In fact, most objects are composed by similar parts up to an isometry.
By detecting the dominant partial symmetry of a given NURBS based B-Rep model, we define two canonical planes
from which the Fourier descriptors are extracted to measure the similarity among 3D models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling—Boundary representations I.3.5 [Computer Graphics]: Curve, surface, solid, and object
representations—H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

1. Introduction

Parametric surfaces, in particular Non-Uniform Rational B-
Spline (NURBS), provide a powerful tool for the academic
and industrial communities concerned with the design and
analysis of objects [DB99]. NURBS based Boundary Repre-
sentations (NURBS based B-Reps) are industrial standards
and are widely used in different domains such as molecu-
lar chemistry [BLMP97], 3D geographical information sys-
tems [CSM03] and mechanical components design [CH06].
With the explosion of 3D applications in numerous fields
of science, the number of 3D models is growing rapidly.
Reusing models can help users avoiding to "reinvent the
wheel" and increasing the efficiency of industrial product
development. Therefore, 3D repositories require algorithms
and techniques that are efficient and robust in the back-up
organization to index and search the 3D models.

Recently, sketch based approach has become a new trend
in 3D shape retrieval where the contours of 3D shapes are
extracted and converted into 2D images supplying sketched
features to the indexing and searching process [LLJ∗10,
ERB∗12]. This approach provides a friendly interface that
allows the users to sketch out a simple 2D shape as a query.
The significant success in these works attracted our interests.
However, there exists two major limitations that affect the re-
trieval results. First, they do not define a canonical view that
can best describe the overall shapes of similar objects. That

is, 2D images are generated from multiple views in [LLJ∗10]
or are chosen from a set of potential views in [ERB∗12]. It
does not ensure that the views taken from the similar 3D ob-
jects are the same. This can limit the accuracy of the retrieval
results in a free sketching context. Second, these algorithms
depend on the quality of the representation that it uses to
generate contours. Poor models pose a significant problem
for contours extraction techniques.

Generally, similarities within a 3D model is a com-
mon phenomenon both in natural and in synthetic objects
[MPWC12]. Many objects are composed by similar parts up

(a) A guitar (b) A 4x4 car (c) A hatchback car

Figure 1: NURBS based B-Rep models and the contours of
their projections on global symmetric plane.
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to a rotation, a translation or a symmetry. Geometric redun-
dancy is an essential property that 3D designers commonly
use in their conceptions. Therefore, the similarity detection
within a 3D model can be an important preprocessing step
to extract model features that are used to compare the sim-
ilarity among various models in a database. To clarify this
idea, consider now the three NURBS based B-Rep models
in Figure 1, we show models in two categories: instrument
and car. In each sub-figure, the real model is displayed at
the top and the contour of its corresponding projection on
global symmetric plane is at the bottom. We can see that the
projection on the symmetric plane is a canonical 2D repre-
sentation that can help us distinguishing shapes between dif-
ferent models. In fact, by applying the D1 distance proposed
by Osada et al. [OFCD02], we estimate the shape distribu-
tion of each model by evaluating the distances between the
samples on its contour to its barycenter. The histograms in
Figure 2 shows that the two car models have a similar shape
and have a quite different one compared to the guitar.

Figure 2: His-
tograms of shape
distributions: (green)
the guitar, (blue) the
4x4 car, (red) the
hatchback car.

From this idea, we propose a
feature that combines the sym-
metric property and a 2D shape
descriptor of NURBS based B-
Rep models. Also, we propose a
query-by-model retrieval frame-
work that can be divided into
two phases. First, for each of
available models, a preprocess-
ing phase estimates its features
by detecting its dominant par-
tial symmetry and evaluates the
shape descriptors of the silhou-
ettes extracted from the canon-
ical 2D representations. These
features are then stored together
with the corresponding models.
Second, when a model is queried
to find other models similar to its
shape, it is evaluated the shape descriptor based on its partial
symmetry. This shape descriptor is compared to all available
shape descriptors to retrieve the desired models. In the con-
text of our work, we suppose that all available 3D models
in our databse are closed form and have a dominant partial
symmetry.

2. Related work

Conceptually, a typical 3D shape retrieval framework con-
sists of a database with an index structure created offline
and an online query engine [TV08]. It requires a definition
of feature representing the 3D models to ease the similar-
ity comparison between models. In the last decade, several
techniques proposed different definitions on 3D shape fea-
tures; they can be classified in the following approaches:
feature based, graph based and geometry based [IJL∗05,

BKS∗05,TV08]. For B-Rep models, the nature of their geo-
metrical structures is a good starting point for direct match-
ing. In an early work, El-Mehalawi et al. [EMM03] pro-
posed an attributed graph approach for retrieving similar de-
signs in a database of mechanical components. In this graph,
the nodes represent model surfaces and the links connecting
nodes represent the common edge of the corresponding sur-
faces. Therefore, the model matching problem is reduced to
a graph comparison problem. However, graph comparison
is NP complete: the comparison becomes costly and inef-
ficient when the number of available models grows or the
B-Rep models structures are large and complicated. Chu et
al. [CH06] proposed a search scheme which considers form-
feature, topological and geometric information. They apply
a characteristic that combines the topology graph and the
shape distribution to measure the similarity among 3D me-
chanical components. This scheme seems not to be suitable
for our work because the B-Rep objects in a model do not
have adjacency information (the structure of these models
will be presented in section 3.1). Li et al. [LST∗12] propose
a combination of the components annontations and the ro-
tational symmetry within B-Rep CAD mechanical models
to support partial retrieval. This is a good reference as they
use similarity information of a B-Rep model to enhance the
search. But our models in this work are more general than
their models: they only consider models composed by prim-
itive surfaces.

Symmetry detection for 3D meshes is a well known sub-
ject with several approaches as geometric hashing, transfor-
mation space voting, planar reflective symmetry transform,
graph based [MPWC12]. Recently, Cuillière et al. [CFS∗11]
have presented a method to detect the similarity and the dis-
similarity between NURBS based B-Rep models based on
the inertia tensor and the control points net of NURBS sur-
faces. But they do not estimate the transformation between
similar surfaces and they consider only the underlying sur-
face but not the edges of B-Rep object. Li [LI11] also pro-
poses an algorithm to detect the symmetry between primitive
surfaces within a B-Rep model. In this paper, we propose an
algorithm to identify partial symmetries within a NURBS
based B-Rep model. This algorithm is independent from the
parameterization of underlying NURBS surfaces. Using the
dominant partial symmetry and the shape descriptor pro-
posed in [LLJ∗10, ERB∗12], we derive a hybrid feature to
support the shape retrieval.

This paper is organized as follow: section 3 introduces
our algorithm for the symmetry detection within a NURBS
based B-Rep model, section 4 shows our 3D retrieval frame-
work, we demonstrate our retrieval approach with some ex-
periments in section 5, we finish with the conclusion and
some futur works in section 6.
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3. Symmetry Detection

In this section, we present our algorithm for detecting the
symmetry within a NURBS based B-Rep model. Our al-
gorithm does not only identify automatically repeated faces
in the model but also estimates the isometry between them.
That is, if two patches Pi,P j are similar, there exists an isom-
etry T i j so that:

P j = T i j(Pi). (1)

We consider isometries as compositions of the canonical
isometries, i.e rotations, translations and reflections. They
may be direct or indirect. Also, depending on the nature
of their linear parts, we characterize the plane symmetries
among isometries.

3.1. Structure of NURBS based B-Rep Models

B-Rep (Boundary Representation) is a method for describing
the 3D objects by representing each object as a composition
of two parts: geometrical and topological entities. Geomet-
rical entities are points, curves and surfaces. These entities
are abstracted into topological entities as vertices, edges and
faces. Vertices are simply 3D points lying on the surfaces,
an edge is a piece of curve bounded by two vertices, and a
face is a portion of a surface bounded by multiple edges. In
addition, there are two others topological entities: loops and
trims. Depending on the loop type (i.e., outer or inner), a
loop defines the way to keep or to cut off bounded portions
within a surface. A loop is also composed of multiple trims
that are directly linked to the edges and which forms a closed
boundary.

In our work, a B-Rep object consists of multiple faces
and a B-Rep model is composed of multiple B-Rep objects.
For instance, the plane model in Figure 3 is composed of
B-Reps objects plotted in different colors (figure 3a). Simi-
larly, the plane tail B-Rep object (figure 3b) contains multi-
ple faces. The face in figure 3c is bounded by edges (green)
and vertices (red). In addition, the underlying surfaces of B-
Rep faces are NURBS surfaces. By definition, a tensor prod-
uct NURBS surface S of bi-degree (p,q) associated to two

(a) (b) (c)

Figure 3: B-Rep model decomposition. (a) B-Rep objects in
a plane model. (b) B-Rep object representing a plane tail. (c)
B-Rep entities within a face of the plane tail.

knots vectors u = {u0, . . . ,un} and v = {v0, . . . ,vm} and a
set of control points C = {Pi j | i ∈ [0,n− p] , j ∈ [0,m−q]}
weighted by wi j ∈ R, is defined by the following equation:

S(u,v) =
∑

n−p
i=0 ∑

m−q
j=0 Ni,p(u)Nj,q(v)wi jPi j

∑
n−p
i=0 ∑

m−q
j=0 Ni,p(u)Nj,q(v)wi j

. (2)

In other words, a B-Rep model contains numerous faces.
For detecting symmetry in a model, we first seek symmet-
ric faces within this model. We take advantage of the loop
closed form within B-Rep faces, we propose a method for
detecting similarity between faces based on the vertices that
bound these faces. Moreover, loops in a face must not inter-
sect each others to maintain the validity of the trimmed face.
Generally, a face has an outer loop that may contain em-
bedded inner loops. In this work, we only take into account
vertices lying on the outer loop of the B-Rep faces.

To ease the notation for the next sections, we denote
M = {Fi}, i ∈ [0,nF ), the NURBS based B-Rep model that
composed of nF faces. Each face is defined by Fi = {Si,V i},
where Si is the NURBS surface used by this face and V i =
{vi

0, ...,v
i
n} is the set of n vertices that bound Fi. We call the

vertices V i the corners of face Fi.

3.2. Algorithm overview

Before entering into the algorithm details, let us introduce
some definitions based on the entities of B-Rep objects. Let
Fi = {Si,V i} and F j = {S j,V j} two separated faces with
the same number of corners (we release this constraint in
3.2.1).

Definition 3.1 Fi and F j are said topologically similar up to
a transformation T i j iff T i j maps V i to V j:

V j = T i j(V i). (3)

Definition 3.2 Fi and F j are said geometrically similar up
to a transformation T i j iff T i j maps Si to S j:

S j = T i j(Si). (4)

Note that, if Fi and F j are topologically similar, we can-
not conclude that they are geometrically similar. Similarly,
they can be geometrically similar without being topologi-
cally similar.

Definition 3.3 Fi and F j are said similar up to a transforma-
tion T i j iff they are topological and geometrically similar up
to this transformation.

These definitions are the key idea for the overall of our
algorithm. Given a B-Rep model M = {Fi}, i ∈ [0,nF ), the
algorithm tries to get as more similar faces pairs as possible.
It is divided in several steps:

Step 1. Match couples of faces that are topologically sim-
ilar, i.e. there exists an isometry between the corners of
two faces. Let Λ = {Pk} be the set of pairs of similar faces
where Pk = {Fi

k ,F
j

k } (section 3.2.1).
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Step 2. For each Pk, find the least-squares solution Rk and
tk so that

V j
k = Rk ∗V i

k + tk

i.e. Pk is topologically similar faces pair (section 3.2.2).
Step 3. For each Pk, estimate the isometry Ik correspond-
ing to Rk and tk, and keep only the Ik representing a sym-
metry (section 3.2.3).
Step 4. For each topologically similar faces pair Pk, val-
idate Rk and tk by applying them to the points on Fi

k and
F j

k . Let ∆ = {Qk} be the set similar faces pairs where
Qk = {Fi

k ,F
j

k , Ik} (section 3.2.4).
Step 5. Merge equal symmetries in ∆. For each group,
relevant isometry and similar patch pairs are extracted. To
have the final result for each group, singles faces inter-
secting the symmetry plane are also tested (section 3.2.5).

3.2.1. Topological faces matching (step 1)

Given two faces Fi = {Si,V i} and F j = {S j,V j}, where
V i = {vi

0, . . . ,v
i
n−1} and V j = {v j

0, . . . ,v
j
m−1}. This step con-

sists of mapping "one-to-one" the corners of V i into match-
ing corners of V j where an isometry may exist while re-
serving the corners orders in corresponding loops. For most
cases, similar faces share the same number of corners. How-
ever, for some reasons, similar faces may have extra corners
in the face loop (e.g to refine corresponding edges). Then,
similar faces sometimes have different number of corners
while the loops topologies stay unchanged. In the ideal case,
n = m, it is easy to find out the mappings. We consider all
the mappings Ti j such that:

n−1

∑
k=0
|‖vi

k− vi
k+1‖−‖v

j
m±k[n]− v j

m±(k+1)[n]‖| (5)

where ‖•‖ is the L2-norm of Euclidean distance. In contrast,
it is more complicated when the number of corners number
differs between V i and V j. In general, suppose that n < m,
the isometry testing process finds the optimized subset V o =
{vo

0, . . . ,v
o
n−1} ⊂V j cancelling the expression:

n−1

∑
k=0
|‖vi

k− vi
k+1‖−‖v

o
n±k[n]− vo

n±(k+1)[n]‖| (6)

In order to derive matching corners between V i and V j,
we only keep corners of the trim surface where the left and
right tangent direction are different enough. This filtering al-
lows to consider only relevant corners. As the mapping be-
tween corners is just a necessary condition, a validation on
the surfaces will be performed to identify actual mappings
(section 3.2.4).

In this step, the process seems to be a greedy approach
that has a complexity of O(N2), where N is the number of
faces in the model. For the robustness, only faces with the
same bounding boxes volume are tested first for isometry.

3.2.2. Least-Squares Estimation of the Transformation
(step 2)

Given two sets V i and V o whose corners are mapped accord-
ing to equation 6, i.e. vi

0 7→ vo
0, . . . ,v

i
n−1 7→ vo

n−1, we want to
find out the similarity transformation parameters R (rotation)
and t (translation) that minimizes the mean squared error of
these two point sets:

e2(R, t) =
1
n

n−1

∑
k=0
‖vo

k − (R∗ vi
k + t)‖2. (7)

For simple cases, we solve the linear system A−→x =
−→
b by us-

ing the pseudo inverse, where A and
−→
b are matrix and vector

composed by ordering coordinates of the two set V i and V o,
−→x is the solution representing the transformation parame-
ters. But this method fails when the corners of V i and V o are
coplanar. So we have to find out another method that over-
comes this problem. Lorusso et al. [LEF97] compare four al-
gorithms to estimate this transformation. From their compar-
isons, the singular value decomposition (SVD) of a matrix is
the most efficient and robust method. Arun et al. [AHB87]
propose an algorithm based on the SVD of a 3× 3 matrix,
Umeyama [Ume91] refines this algorithm to resolve special
cases. The algorithm to estimate the transformations param-
eters between two points sets V i and V o can be resumed as
follow:

• Formulate the covariance matrix:

H =
n−1

∑
k=0

(vi
k−µi)(v

o
k −µo)

t . (8)

where the superscript t denotes the matrix transposition,
µi and µi are the two barycenters of V i and V o.

• Find the SVD of H

H =USVt (9)

• Calculate the rotation matrix and the corresponding trans-
lation

R =VUt t = µo−R∗µi. (10)

According to [AHB87], if one of the singular values of
S is zero (equation 9), i.e. λ1 > λ2 > λ3 = 0, we can form
another solution R′ and t′ by introducing the matrix V ′ =
[v1,v2,−v3], where v1,v2,v3 are the three column vectors of
V corresponding to the three singular values. We have:

R′ =V ′Ut , t′ = µo−R′ ∗µi. (11)

The estimated rotation matrix should be orthogonal in or-
der for the transformation Ti j to be an isometry (i.e. to pre-
serve both distances and angles). Additionally, this isometry
is direct if det(R) = 1 and indirect if det(R) =−1.

Note that, this algorithm estimates a unique direct isome-
try and a unique indirect isometry if the corners number of
each set is more than two, i.e. n > 2, and the corners in V i

(and V o) are not colinear. Another interesting advantage of
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this algorithm is that it allows the corners to be coplanar.
This algorithm meets our needs since the vertices in some
faces form a triplet or are coplanar.

In summary, given two sets V i and V o whose corners are
mapped "one-to-one" (according to equation 6), the least
square estimation gives at most two isometries, one direct
and another indirect, that transform V i to V o. Hence, the
faces corresponding to these points set are topologically sim-
ilar and the corresponding transformation is:

T i j =

[
Ri j t
0 1

]
. (12)

3.2.3. Isometry Classification (step 3)

According to [Tis88, Fre10], depending on the nature of the
associated fixed points, an isometry T i j can be classified into
several classes: translation, rotation, symmetry or combina-
tions of them. We characterize the symmetries by being the
isometries with a plane of fixed points.

3.2.4. Isometry Validation (step 4)

Suppose that Fi and F j are topologically similar up to a re-
flection T i j . To test if these two faces are also geometrically
similar, we have to validate the corresponding transforma-
tion on the underlying surfaces. For that, a trivial approach
is to validate points sampled from these faces. Effectively,
the samples of Fi are transformed by applying T i j to see
if the transformed points are the same as the samples of F j.
However, it is challenging to find a mapping "point-to-point"
between the samples of two faces according to a given trans-
formation due to two reasons:

• Surface parameterizations are arbitrary and independent
from the corners matching.

• Similar faces may have underlying surfaces parameterized
differently, i.e, different size of knots vectors, different
control points number or different order.

Then, we propose two sampling methods within B-Rep
faces used in two scenarios: a direct sampling for underlying
surfaces with the same parameterization, and a relative uni-
form distance method for underlying surfaces with different
parameterizations. The common idea of these two methods
is to take samples of the faces based on the corners asso-
ciated to the inner and outer loops. Furthermore, a face is
bounded by edges that are unknown in the underlying sur-
face, some samples may be taken outside the face boundary.
Fortunately, as the loop within a B-Rep face is closed, we de-
fine a domain polygon of 2D parameters (u, v) that bounds
the domain of the actual face. A sample is taken if and only
if its parameters are inside this polygon.

Direct Sampling

The direct method is involving when the faces have the same
parameterization. The parameters of samples within a face

are computed based on the corners within the domain poly-
gon. Effectively, we use a barycentric coordinate within a tri-
angle to compute the samples (see Figure 4). For faces hav-
ing more than three corners, we apply a constraint Delaunay
triangulation to devise the domain polygon into multiple tri-
angles. With this method, we can easily determine the map-
ping "point-to-point" between two samples sets by respect-
ing the corners mapping of the two matched faces. Thus, the
geometric similarity of the faces is assessed.

A

B C

P

Figure 4: Illustration of barycentric coordinate computation.
P = tA+ rB+(1− r− t)C, with r+ t = 1 and r, t ∈ [0,1].

Relative uniform distance sampling

When two similar faces have different parameterizations, it
is not feasible to validate the two samples sets gererated by
the directed sampling method. In fact, the samples distribu-
tions over these two faces are different. We then propose
then a stochastic validation based on the shape distribution
presented in [OFCD02]. A uniform sampling over u and v
parameter spaces cannot generate an equally spaced sam-
ples on NURBS surfaces (see Figure 5a). In this method,
we use an iterative approach to determine the two param-
eter gaps based on the distance between two points on the
NURBS surface. The distance is defined globally for the ac-
tual model. Figure 5b show the equally spaced samples taken
over a face.

For the validation, we define a shape function that mea-
sures the distance between a point on the surface and the
symmetry plane. To construct the shape distribution his-
togram of a face, we define a B fixed size bins and evalu-
ate the distances of all the taken samples to the symmetry
plane. We next count the number of samples that fall into
each bin. Let Hi and H j be the histograms equivalent to the
shape distribution of Fi and F j, we use a correlation metric
to measure the similarity between the histograms:

dH(H
i,H j)=

∑
B
k=1(H

i(k)−Hi
))(H j(k)−H j

))√
∑

B
k=1(Hi(k)−Hi

))2 ∑
B
k=1(H j(k)−H j

))2
,

(13)

where

Hk
=

1
B

B

∑
l=1

Hk(l).

If the distance between two histograms is under a thresh-
old, we add the face pair Qk = {Fi

k ,F
j

k , Ik} to ∆.
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(a) Uniform parameters (b) Relative 3D distances

Figure 5: Two methods of sampling within a trimmed sur-
face.

3.2.5. Isometry Expansion

Now, ∆ contains a set of face pairs and corresponding isome-
tries that can share some symmetry planes. These groups of
face pairs have to be merged to form the dominant symmetry
of the actual model. For that, we define a distance between
two isometries as:

d(I, I′) =
(

1−〈−→n ,
−→
n′ 〉
)
+

dist(m,P′)
DBBox

+
dist(m′,P)

DBBox
,

(14)

where−→n (
−→
n′ ), P (P′) are normal vector and a point of the

symmetry plane corresponding to the isometry I (I′), DBBox
is the bounding box diagonal of the actual model, and m (m′)
is the barycenter of the two faces corners associated to the
isometry I (I′). Using this metric (14), we group the face
pairs associated with the same symmetry.

The dominant symmetry of the model is the one that has
the maximal volume of the bounding box of its symmetric
faces. Moreover, there might exist some single faces that are
not similar to any other faces but that intersect the dominant
symmetry plane. The local symmetry within these faces may
contribute to the dominant symmetry. We filter these faces
by testing the intersection between the symmetry plane and
their bounding box and perform a validation based on the
shape distribution of the two set of points that are located
in the left and the right of the symmetry plane (using the
relative distance sampling).

The figure 6 presents results of the detection of partial
symmetries existing in twelve NURBS based B-Rep mod-
els. For each sub-figure, the blue and the red patches are the
dominant symmetric patches within the models. The smooth
parts are the faces contributing to the symmetry, the dot parts
are the local symmetries within the faces.

In conclusion, the main idea of our algorithm is to con-
sider the transformation between the faces corners, in order
to efficiently filter transformations. If an isometry exists and
is a symmetry, it is validated on the faces bounded by the
corresponding corners. The validated isometries are merged
to identify dominant symmetry of the actual model. An ex-
pansion process is performed to get a final result. As a result,
for each model, the algorithm gives a symmetry plane and a

subset of faces and points of the two symmetric parts. In the
next part, this set is used to extract the features of the model
to support the model retrieval.

4. Shape Retrieval

In this section, we introduce our proposed feature that en-
codes the global shape of every model by the Fourier de-
scriptor (FD). This feature can be easily compared to oth-
ers with a high accuracy. Inspired from the work in [ZL01],
we use the results of the symmetry detection and define two
canonical planes in which the 2D silhouettes describing the
global shapes of 3D models are extracted and in which the
FD is evaluated. The following sections describe how we es-
timate and apply the FD in our work.

4.1. Preprocessing

From the dominant symmetry of a given model, we consider
only the symmetric parts (half lies on one side of the symme-
try plane, and the other half may be reconstructed by apply-

Figure 6: Some results of partial symmetries detection.
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(a) The canonical planes (b) The canonical 2D shapes

Figure 7: Preprocessing step

ing the transformation). The faces are sampled by the uni-
form distance method. Then, we apply the Principal Com-
ponent Analysis (PCA) on this points set to get the three
principal component vectors. Because of the symmetry, two
of the principal components lie in the symmetry plane (and
the other one is in the direction of the normal). As showed
in the figure 7a, let ~v1 (green), ~v2 (red), ~v3 (blue) be the
three principal component vectors in the descending order,
the first canonical plane P1

c (blue) is defined by the vectors
~v1, ~v3, the second P2

c (red) is defined by the vectors ~v1, ~v2.
The samples set is projected into the two planes orthogonal
to the symmetry plane containing two principal vectors to
get the canonical 2D shapes of the given model (figure 7b).
The silhouettes of these 2D shapes are extracted to estimate
the shape descriptors.

4.2. Shape descriptor

From the silhouette of each canonical 2D shape, curve sam-
ples are taken following an equal arc-length sampling. The
figure 8 presents the silhouettes extracted from canonical 2D
images in the figure 7b and the corresponding samples. In or-
der to facilitate the use of the fast Fourier transform (FFT),
the number of samples N is chosen to be a power-of-two in-
teger. Also, we use the the centroid distance as the shape
signature to compute the FD, it is defined as:

u(t) =
√
[x(t)− xc]

2 +[y(t)− yc]
2 (15)

where (x(t),y(t)) are the coordinates of the ordered sam-
ples on the silhouette, t = 1 . . .N; and (xc,yc) is the barycen-
ter of the silhouette (that is of the projected 3D sample
points). The shape descriptor DFD is a N-tuple of Fourier
descriptor F computed over these distances and normalized
with respect to DC component F0:

DFD =

[
|F1|
|F0|

,
|F2|
|F0|

, . . . ,
|FN/2|
|F0|

]
. (16)

As mentioned in [ZL01], the centroid distance combin-
ing with the normalized FD is translation and scale invari-
ant. These descriptors represent the shape of the object in

Figure 8: The silhouettes and the samples points.

a frequency domain. The lower frequency descriptors con-
tain information about the general features of the shape, and
the higher frequency descriptors contain information about
finer details of the shape. Although the number of coeffi-
cients generated from the transform is usually large, a subset
of the coefficients (N/2) is enough to capture the overall fea-
tures of the shape.

In our approach, every model has two shape descriptors
DFD1 and DFD2. The similarity measurement (distance) be-
tween two NURBS based B-Rep models M1 and M2 is de-
fined as:

Sim(M1,M2) =
N/2

∑
i=1
|D1

FD1−D2
FD1|+

N/2

∑
i=1
|D1

FD2−D2
FD2|.

(17)

5. Experiments

In this section, we show the results of our proposed retrieval
system within a repository of 41 NURBS based B-Rep mod-
els that are downloaded from http://www.grabcad.
com. Our models fall into four categories: airplane, car,
household and animal. Effectively, the shape descriptors of
all models are estimated in priori. When a model is queried,
its shape descriptors are evaluated and compared to oth-
ers following the equation 17. Our experimental results are
showed in the tables 1 and 2, each row present the query
model and its associated results in a descending order of
similarity measures. Only the three most relevant models are
showed. For airplane, the best matching find all models in
the same categories but one. For the cars, the outlier model
is a car body (uncompleted car model).

Table 1: Queries for a car and seven best matching.
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Table 2: Queries for an airplane and seven best matching.

6. Conclusion

In this paper, we propose a hybrid feature combining the
symmetry property and the Fourier shape descriptor for 3D
model retrieval. There are two main contributions in this
work: first, we propose an algorithm to detect the domi-
nant symmetry within a NURBS based B-Rep model; sec-
ond, we define the two canonical planes that describe the
global shapes of a 3D model in 2D representation. The two
canonical planes define a common reference where the shape
descriptors are computed. This definition of the shape de-
scriptors is independent of the pose of the object. In fu-
ture work, we plan to consider general isometries. As our
similarity detection algorithm can identify all type of trans-
formations within 3D models: rotations, translations, reflec-
tions. Each transformation has its own characteristic from
which we can elaborate other descriptors to enhance the ac-
tual Fourier shape descriptors.
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