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Abstract. In this paper we are presenting a novel approach that en-
ables rendering large-shared datasets at interactive rates on a remote
inexpensive workstations. Our algorithm is based on view-dependent ren-
dering and client-server technologies. In our approach, servers host large
datasets and manage the selection of the various levels of detail, while
clients receive blocks of update operations which are used to generate
the appropriate level of detail in an incremental fashion. We assume that
servers are capable machines in term of storage capacity and computa-
tional power while clients are inexpensive workstation that have limited
3D rendering capabilities. To avoid network latency we have introduced
two powerful mechanisms that cache the adapt operation blocks on the
clients’ side and predict the future view-parameters of clients based on
their recent behavior history. Our approach dramatically reduces the
amount of memory needed by each client and the entire computing sys-
tem since the dataset is stored only once in the local memory of the
server. In addition, it decreases the load on the network as a result of
the incremental update contributed by view-dependent rendering.

1 Introduction

Recent advances in computer and communication technologies have dramatically
increased the number of computers connected to the Internet, thus extending
usage of the Internet as a media to exchange and share knowledge. The increased
need for more information and the limited bandwidth of the shared network
has been calling for smart application and algorithms to bridge the increasing
gap between hardware capabilities and the large amount of data that resides
in various servers all over the world. In addition, advances in three-dimensional
shape acquisition, simulation, and design technologies have led to a generation
of large polygonal models and virtual environments that are beyond the local
storage of the Internet clients and cannot be downloaded in a reasonable amount
of time.

The structure of the Internet as an enormous number of computers connect
via global network has led to development of various distributed application.
These applications include multimedia, three-dimensional graphics, and virtual
environments that require a transmission of large data over short periods of time.
Distributed three-dimensional games, virtual museum, and virtual walk-through
are good examples of such applications. These distributed applications usually
manage very large datasets that clients can not download either because they
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are too large to fit into their local machines’ memory or because these datasets
are shared by other clients. On one hand, most of these applications are required
to run at interactive or semi-interactive rates. On the other hand, the time it
takes one machine to send a request to another machine and receive an answer
may be too long for interactivity or even unpredicted. In the network community
they refer to this time interval as network latency. Level-of-detail rendering could
be used to reduce the size of the shipped three-dimensional datasets. El-Sana
[5] has shown that view-dependent rendering dramatically reduces the traffic
load over a local network by using a client-server technology. View-dependent
rendering has been introduced to enable seamless and adaptive level-of-detail
representations on real-time for polygonal datasets. The level-of-detail selection
is based on view parameters such as view location and illumination. However,
view-dependent rendering may not be enough to overcome the latency problem,
which is the major obstacle in extending view-dependent rendering to work over
the Internet. In addition, traditional view-dependent rendering schemes usually
increase the size of the dataset, require the existence of the entire dataset in
main memory, and do not enable different users to share the dataset currently
in memory. To overcome the memory size drawback El-Sana and Chiang [2]
have developed an external memory view-dependent rendering. However, their
approach provides only a single-user solution and requires an additional level of
preprocessing.

(a) Client-Server network (b) Client-Server View-dependent rendering

Fig. 1. Systems Configuration

In this paper we have developed a remote view-dependent rendering for
large datasets over a wide area network. Our approach is based on the view-
dependence tree data-structure [7] and a client-server technology. The view-
dependence trees are stored in a remote and capable machine in terms of memory
size and computation power. We shall refer to this machine as server which are
accessed by different remote inexpensive machines that we will refer to as clients.
To overcome the latency problem in wide area networks we have introduced two
powerful mechanisms that provide caching of adapt operations and prediction of
future view-parameters of the associated client. Our architecture enables inex-
pensive workstations to take advantage of view-dependent rendering to visualize



large remote 3D datasets. In addition, it reduces the memory needed by each
client machine, improves the rendering frame rates, and dramatically reduces
the communication load.

2 Previous Work

Our system is based on two main ideas: view-dependent rendering and a set of
users who share the visualized dataset. Next, we will briefly discuss some of the
previous work in these two fields.

2.1 View-Dependent Rendering

Recent advances in level-of-detail rendering have taken advantage of temporal
coherence to adaptively refine or simplify the polygonal environment from one
frame to the next in a view-dependent manner. In particular, adaptive levels of
detail have been used in terrains by Gross et al [8] and Lindstrom et al [14].
Hoppe has developed the concept of progressive meshes [10] which are based
upon two fundamental operators – edge collapse and its dual, the vertex split.

Merge trees have been introduced by Xia et al [22] as a data-structure built
upon progressive meshes to enable real-time view-dependent rendering of an
object. Hoppe [11] has developed a view-dependent simplification algorithm that
works with progressive meshes. This algorithm proceeds to construct a vertex
hierarchy over a progressive mesh in a top-down fashion by minimizing an energy
function. Luebke and Erikson [15] define a tight octree over the vertices of the
given model to generate hierarchical view-dependent simplifications. De Floriani
et al. [4] have introduced multi-triangulation(MT). Decimation and refinement
in MT are achieved through a set of local operators that affect fragments of
the mesh. Klein et al [13] have developed an illumination-dependent refinement
algorithm for multiresolution meshes. El-Sana et al [6] have developed Skip
Strip: a data-structure that efficiently maintains triangle strips during view-
dependent rendering.

View-dependence tree [7] is a compact multiresolution hierarchical data-
structure that supports view-dependent rendering. In fact, for a given input
dataset the view-dependence tree construction often leads to a forest (set of
trees) since not all the nodes can be merged together to form one tree. View-
dependence trees are constructed bottom-up by recursively applying the vertex-
pair collapse operation (see figure 2). The order of the collapses is determined
by a predefined simplification metric.

Fig. 2. Vertex-pair collapse and vertex split operations.



View-dependence trees are able to adapt to various levels of detail. Coarse
details are associated with nodes that are close to the top of the tree (roots)
and high details are associated with nodes that are close to the bottom of the
tree (leaves). To be able to handle non-manifold cases, a more general scheme
is used so that when a vertex split occurs more than two new adjacent triangles
can be added. The reconstruction of a real-time adaptive mesh requires the
determination of the list of vertices of this adaptive mesh and the list of triangles
that connect these vertices. Following [7], we refer to these lists as the list of
active nodes and the list of active triangles. At each frame the active nodes list is
traversed to adapt to the appropriate level-of-detail representation of the given
scene.

2.2 Distributed Interactive Systems

Experimental distributed systems have also been developed for real-time iter-
ation in shared virtual environments such as Maverik [12], WAVE system[19],
Shastra[1], NPSNET[16], and Cspary[18], and RING system[21]. Man and Cohen-
Or [17] have developed a selective pixel transmission for navigating in remote
virtual environments [17]. Hesina and Schmalstieg [9] have suggested a network
architecture for remote rendering. Chim et al [3] have suggested algorithms on
caching and prefetching of virtual objects in distributed virtual environments.
Schmalstieg and Gervautz [20] have developed a demand-driven geometry trans-
mission for distributed virtual environments.

Recently, El-Sana [5] has introduced a multi-user view-dependent rendering
approach that allows multiple clients to visualize in a view-dependent manner
large datasets that resides in a local server. Even though this approach shows a
good improvement over external memory view-dependent rendering however, it
has failed to handle the wide area network since it lack any prediction or caching
mechanism.

3 Our Approach

Our approach provides a novel solution that enables Internet users to take advan-
tage of view-dependent rendering. The technique of view-dependent rendering
provides a mechanism to accelerate the rendering process as well as the trans-
mission process.

On one hand the Internet becomes “the place” of shared-large media in-
cluding large 3D models. On the other hand, Internet users’ machines usually
lack the memory size and the rendering capability to interact with large dataset
by themselves. In fact the vast majority of the Internet clients use low-end PC
machines.

Our algorithm is based on a view-dependent server and a set of view-dependent
clients. In our current implementation, we assume that the large dataset resides
in a view-dependent server which has enough memory and computation power to
store and handle the entire multiresolution representation. The view-dependent
clients visualize in a view-dependent fashion the dataset that currently resides in
the server through the Internet using inexpensive machines. Each client receives



only the level of detail required to visualize a dataset with respect to its cur-
rent view-parameters and its machine computation capability. It is important to
note that clients interact with the large dataset without downloading the entire
dataset into their local machines’ memory because of memory size, consistency,
or security issues. In addition, our approach aims to reduce the load on the wide
area network and avoid undesirable slowdown.

4 Adopting View-Dependence Trees

View-dependence tree [7] is a compact multiresolution hierarchical data-structure
that supports view-dependent rendering. To use view-dependence trees in remote
shared multi-users environments we have added new functionality and performed
several changes.

(a) A View-dependence block (b) Above and below cache levels.

Fig. 3. View-Dependence Tree

We have divided the view-dependence trees into blocks based on parenthood
and sibling relation in the view-dependence trees, as depicted in Figure 3(a).
This blocking scheme is similar to the one developed by El-Sana and Change
[2] to support external memory view-dependent rendering. Our blocking scheme
improves the transmission time, make it possible to take advantage of compres-
sion, and paves the way for a successful caching scheme. We shall refer to each
block as view-dependence block and to blocks that contains at least one active
node as active blocks. Instead of using active-nodes list as in traditional view-
dependence tree we use active-blocks as a list of pointer to the active blocks in
the blocked-view-dependence trees.

To allow multiple users to access the same view-dependence trees concur-
rently we have separated the active-blocks list from the view-dependence trees.
Recall that implicit dependencies [7] have been developed to prevent foldover at
runtime by carefully assigning id-es to the nodes of the view-dependence tree.
In addition, we have found that the implicit dependencies enable the separa-
tion of the active-nodes from the view-dependence tree. This separation enables
multiple interfaces to have different active-blocks while sharing the same view-
dependence tree.

The size of the transmitted data determines partially the transmission time,
therefore we compacted the view-dependence tree by making the geometry of a
parent node identical to one of its children’s geometry. Such a scheme of the view-
dependence trees stores geometry information such as vertex position, normal,



and color on the leaves of the tree. Each Internal node only keeps a pointer to
the appropriate address where its geometry information is stored. These changes
reduce the overhead of storing a view-dependence tree to only 2/3 times more
than the 3D representation of the original mesh.

5 Our System Configuration

In this section we shall review the configuration of our system which is based
on a view-dependent server and clients that access this server via the Internet.
Next we shall overview our view-dependent server and client architecture.

5.1 View-Dependent Server

The view-dependent server is responsible for delivering three-dimensional objects
in view-dependent fashion over the Internet. Since servers on the Internet should
provide services for multiple clients, the view-dependent server should also send
different appropriate level-of-detail to the seeking-service clients.

The server loads a view-dependence trees [7], then based on the view-
parameters of each client, it delivers an appropriate level of detail for the loaded
dataset. We shall refer to the main process that sets the public communication
channel, initializes the shared memory arena, and loads the view-dependence
tree into memory as the server manager. The server manager also listens, on a
public channel, for requests for connection by new clients. For each calling client,
the server creates a new thread, which is responsible for the interaction with the
calling client. We will refer to this thread as an interface.

Each interface stores the characteristic parameters, maintains the active-
blocks list, and handles the view-parameters changes of its associate client. On
each change of the client’s view-parameters its interface updates the active-blocks
list to adapt to a better representation of the viewed scene. The interface is also
responsible for packing and sending the view-dependence blocks with the proper
additional data to its associate client.

The active-blocks list should match the active-nodes list that depends on
the view parameters such as camera position, view direction, and illumination.
Instead of watching for changes on the view parameters the interface receives only
a switch-up and switch-down operations which reflect the changes on the view-
parameters. On receiving the switch operations, the server updates its active-
blocks list and transmits the added blocks to its associate client.

5.2 View-Dependents Clients

Clients should receive and maintain the minimum amount of information needed
to maximize the visualize appearance of the inspected 3D dataset. In our imple-
mentation, clients maintain a small fraction of the view-dependence trees in a
form of blocks; an active-nodes list as a list of pointers into nodes in the active
nodes list; and active-triangles list which is sent to the graphics hardware at each
frame. Practically, the active-nodes and triangles lists represent the appropriate
level of detail of the visualized dataset with respect to current view parameters
of the client.



Periodically, the client scans its active-nodes list and tries to converge to
the best visual appearance of the currently visualized dataset by increasing or
decreasing the resolution in various regions. For split operations that produce
nodes that are in the lower quarter of the active-block, the client sends a switch-
down message to its interface. And for merge operations that activate nodes in
the top quarter of the active block the client sends switch-down message to its
interface.

5.3 Messages and Session Phases

Our current implementation relies on the data-network layer hence, we assume
that the connection is sequential and reliable. Nevertheless, our system maintains
a timeout on the data channel to check for critical simple-detected errors such
as communication breakdown.

Clients take advantage of the memory and computation power of the server
to acquire the ability to visualize large datasets over the Internet. Because our
system is distributed over a wide area network, it involves several different phases
of interaction. In the setup phase the server loads the view-dependence trees and
sets the public communication channel at which it listens for clients’ requests for
connection. On receiving a request-for-connection message the server creates an
interface to handle the connection with the calling client. The interface, which
has access permission to the shared memory, then establishes a private data
channel shared with the calling client.

As soon as the client and the interface have established a connection the
interface initializes its active-blocks, active-nodes, and active-triangles lists using
the root-nodes list of the view-dependence trees. Then it sends the created lists to
its associate client. On receiving the data, the client initializes its data-structures
and buffers and both the client and its interface enter the adapt dialog phase.
The client-server dialog allows the client to converge to the best possible visual
appearance of the inspected scene with respect to its computation power, local
memory, and rendering capabilities. During this phase the client updates its
active nodes-list and sends switch messages based on its view parameters. Based
on the received switch messages the interface sends blocks of view-dependence
nodes.

To terminate the connection session the client sends to the server a disconnect
message. On receiving this message, the associate interface releases its allocated
resources, returns an acknowledge message, and terminate the session.

6 Overcoming Network Latency

Distributed applications over the Internet take advantage of sharing computation
power and storage space, but they suffer from the disadvantage of the Internet
latency. Latency of a network link is the time delay between a transmitted packet
and its associated acknowledge. The disadvantage of latency becomes very severe
for interactive applications.

We have chosen to tackle the problem of latency by caching some information
on the client side and predicting the future view-parameters. We have also devel-
oped a new adapt-operation form that is used for performing a split and its dual



merge without sending additional data. Caching adapt operation on the client’s
local storage not only reduces the amount of transmitted data but it can also
avoid transmission of a complete group of adapt operations. The prediction of
future view-parameters allows the server to send more data to the client without
waiting for its reply.

6.1 Caching the Adapt Operations

By using view-dependent rendering we manage to reduce the transmitted data
by orders of magnitude, but to avoid the latency problem we should try to avoid
transmitting data when possible. We have achieved that by caching previously
sent blocks and reuse them instead of re-transmitting.

Our cache algorithm is based on the blocking scheme of the view-dependence
tree we have introduced in section 4. The client caches every block it receives
from the server as long as it has enough memory space (note that a cache could
also be on an external media). We assume that clients keep at least the active-
blocks list in its local memory. In order to be able to converge to the appropriate
visual appearance of the visualized scene we cache one level of view-dependence
blocks above the current active-blocks list and one level of view-dependence
blocks below the active-blocks level as shown in Figure 3(b). We maintain these
addition levels in a lazy manner by taking advantage of the cached blocks and by
transmitting blocks that have a better chance to be used in the near future. In
such a scheme the same block could be transmitted multiple times from a server
to the client during one session. We could often avoid such cases by caching every
block transmitted either in local memory or on an external media as long as we
do not reach the cache buffers’ limit.

We manage the cache by maintaining two level buffers: local and external
memory. In addition, we maintain the booking of the received blocks in a hash
table based on the unique id of each view-dependence block. Before asking for
any block, the client checks its local-memory and external-memory buffers re-
spectively to verify that the needed view-dependent block does not exist.

Since we have used limit cache buffers we had to come up with a scheme
that manage removing items form the cache buffers and switch blocks between
the local and external memory. With each block we store its level on the view-
dependence trees, then we give priority to blocks according to the distance be-
tween their level and the current active level. We keep blocks with higher priority
on the local memory and the ones with lower priority on the external memory.

6.2 Prediction Mechanism

Sine the user is the human factor in the real-time interaction, idle time is almost
inevitable. In these intervals the client and server often do not exchange any
data over the communication channel. We utilize these intervals by performing
operations that reduce the need for data transmission in the future. We shall refer
to the performed operations as prediction. The server’s interface utilizes its idle
time by predicting the future view-parameters and sends view-dependence blocks
needed for the predicted view-parameters. For better prediction, the server’s
interface tracks the speed, velocity, and tangent of the client’s motion. Then a



client chooses whether to cache the predicted adapt-operation and notify the
server or discard them.

6.3 Client Server Synchronization

Assume that a server has an idle time and it sends future predictions to a client.
Concurrently, the client’s camera moves and sends switch messages to the server.
Both the client and the server cannot determine which action took place first
and each one thinks its action happened first. Choosing the incorrect order for
the two events order may cause the to consider the arriving prediction for its
new view-parameters. To avoid such a problem we synchronize the server and
client to ensure the consistency of the view-parameters they both consider.

Clients consider predications that are either accurate or lead to transmission
of uncached blocks. In our scheme, it is not easy for clients or servers to measure
the “goodness” of prediction because the server is not aware of the exact view-
parameters and both – client and server – do not keep a history of the switch
messages. Practically, we do not need to determine the relation between the
sent switch messages and the received view-dependence blocks. It is sufficient
to determine where in the partial view-dependence tree in the client side the
received block will fit. We use the unique id of each block to determine its
position on the partially cached view-dependence trees. In such a scheme, a
server may send blocks that is already cached in the client side. In such case,
the client discards these blocks as soon as they arrive.

7 Implementation and Results

Similar to [5] the server allocates shared memory buffers to store the view-
dependence tree. The server interfaces have a read-only access to the shared
memory to maintain their active-blocks list. Active-blocks list keeps a record
for each active block that includes a pointer to the actual node of the view-
dependence tree. View-dependent rendering algorithms usually store in the local
memory the multiresolution hierarchy on the rendering machine. Instead, our
approach keeps a set of active blocks that include the selected level of detail in
the rendering machine (the client machine). Such a technique usually provides
more memory space which enables the selection of more detailed representation
for large datasets. In addition, the display process and the adaptation process
run completely in parallel since they live in two different machines.

We have also tested the performance of our unoptimized implementation on
different hardware using various datasets and have received encouraging results.
Next we are reporting some of the acquired results. For security reasons we were
not able to conduct test outside the state of Israel, therefore all the reported
results were carried out in two geographically distributed regions within the
same country. In such a wide area network we can at the maximum, get either
2Megabit/second or 10 Megabit/second (depends on the client position) but in
our experiments we have never exceeded 1 Megabit/second. For each experiment
session, we periodically check the latency of the network.

One of the major advantages of view-dependent rendering is the ability to
takes advantage of coherence between consecutive frames. Therefore, we have



Dataset Original Average/frame
Vertices Triangles Triangles (K) Split/Merge (K) Blocks Sent(KB) Time(ms )

Dragon 151 K 300 K 72 1.6 0.5 240
Terrain 262 K 522 K 80 1.8 0.6 230
Palace 280 K 760 K 83 2.3 0.64 243
VR-City 612 K 1,250 K 91 2.6 0.68 260

Table 1. Run time over a sequence of frames for various datasets.

chosen to compare its performance over sequences of frames and not over one
isolated frame. Hence, the reported results were obtained using sequences of
frames.

In table 1 we report the average number of split/merge operations, data sent
over the data channel, number of triangles at each frame, and the average time
for a frame. These results were obtained using the configuration: the server runs
on an SGI ORIGIN 200 and the client runs on an Pentium III machine with 128
MB. As can be seen from Table 1 we have achieved acceptable frame rate even
for large datasets. In the same time the average amount of data transmitted at
each frame is quite small.

Figures 4 and 5 show images generated by our system. Figure 4(a) show
the original dragon model. Figure 4(b) shows in small window on the top-right
corner the image seen by a user and the other window is the global view of the
dataset. In Figure 5(a) we see the full resolution of a Terrain dataset and in
Figure 5(b) we show a low resolution view of the same Terrain dataset.

8 Conclusion and Future Work

We have presented a novel approach for view-dependent rendering of large datasets
on an inexpensive workstation. Our idea is based on a client-server architecture
over a wide area network. We have adapted a compact-multiresolution-hierarchy
data structure that supports view-dependent rendering that is known as view-
dependence trees. The view-dependence trees reside in a remote Internet server
that runs the view-dependent server. A client that may run on an inexpensive
machine establishes a connection with a server and sends its view-parameters to
the server which provides the client with the appropriate level-of-detail repre-
sentation of the scene with respect to the sent view parameters.

We see the scope for future work in designing virtual environment applica-
tion that allows typical Internet clients to enjoy navigating through very large
datasets at reasonable interactive rates. In addition, our approach could be used
to promote remote touring, virtual museums, and remote shopping malls.
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(a) Original Model:300K triangles (b) Selected View: 76K triangles

Fig. 4. View-dependent rendering of a Dragon model

(a) Original Mesh:522K triangles (b) Low resolution:32K triangles

Fig. 5. Uniform low resolution of a terrain model.

(a) Client-Server network (b) Client-Server View-dependent rendering

Fig. 1. Systems Configuration (a larger version of Figure 1).


