
Eurographics Symposium on Parallel Graphics and Visualization (2023)
R. Bujack, D. Pugmire, G. Reina (Editors)

Extended Visual Programming
for Complex Parallel Pipelines in ParaView

Marvin Petersen1 , Jonas Lukasczyk1 , Charles Gueunet2 , Timothée Chabat2, Christoph Garth1

1RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
2 Kitware, Villeurbanne, France

Abstract

Modern visualization software facilitates the creation of visualization pipelines combining a plethora of algorithms to achieve
high-fidelity visualization. When the complexity of the pipelines to be created increases, additional techniques are needed to
ensure that reasoning about the pipelines structure and its performance remains feasible. This paper presents three additions
to ParaView with the goal of improving presentation of complex, parallel pipelines benefiting pipeline realization. More specif-
ically, we provide a runtime performance annotation visualization integrated in a visual programming node editor, allowing all
users to reason about basic performance and intuitively manipulate the structure and configuration of pipelines. Further, we
extend the list of available filters with control flow filters, supporting for- and while-loops with a comprehensible representation
in the node editor. Our extension is based on graphical manipulation of a node graph that expresses the flow of data and com-
putation in a VTK pipeline, and draws upon a long tradition and positive experience with similar interfaces across a wide range
of software systems such as the visualization tools SCIRun and VTK Designer, or the rendering systems Blender and Houdini.
The extension we provide integrates seamlessly into the existing ParaView architecture as a plug-in, i.e., it does not require any
modifications to ParaView itself or VTK’s execution model.

1. Introduction

Over the past decade, the growing complexity of research questions
pursued by computational scientists and engineers has led to a com-
mensurate increase in the complexity of interactive visualization
systems that frequently take on key roles in scientific discovery,
hypothesis validation, and science communication. The state of the
art among such systems combine complex analysis algorithms with
advanced rendering techniques, while employing parallelization to
allow scaling to very large problem sizes and complexities.

Early it was recognized that visualizations of scientific data can
frequently be expressed in terms of a data flow graph: a directed
acyclic graph (DAG) that describes how data is propagated and
transformed from data sources via processing steps (filters) to the fi-
nal image. Obtaining a good understanding of a complex data flow
graph and its performance becomes an increasingly difficult task,
since data flow graphs become larger, exhibit more complex graph
structures and parallelization complicates straightforward perfor-
mance reasoning. Furthermore, performance analysis and pipeline
realization are deeply intertwined, meaning that the complexity of
performance analysis can depend largely on the complexity of the
respective pipeline. Also, performance insights about parts of the
pipeline, may lead to structural optimizations changing the pipeline
itself. Thus, a fitting representation of these two aspects is essential.

In regard to visual pipeline representations, the data flow graph
that constitutes the foundation of early interactive visualization sys-
tems, such as IBM’s Open Data Explorer (OpenDX) and the Visu-
alization ToolKit (VTK) [SML06], was exposed and utilized as a
primary user interface metaphor to interactively create and manip-
ulate visualizations by allowing direct interaction with a node-link
representation, facilitating a measure of visual programming that
is intuitive for both novices and experts. Corresponding user inter-
faces are found in many interactive visualization systems such as
SCIRun [Sci16], VTK Designer [LB08], VisTrails [BCC∗05], In-
viwo [JSS∗19], OpenWalnut [EHWS10], among many others. The
node editor user interface is also enormously popular in other do-
mains that are data flow-centric, e.g., in rendering systems such as
Blender [Com], Maya [Aut], and Houdini [Sid].

A notable exception in this context is ParaView [AGL05]: a
state-of-the-art visualization system that is routinely used in pro-
duction science. Historically, ParaView displays the processing
pipeline—i.e., the data flow DAG—via a tree view widget to pri-
oritize ease-of-use for mostly linear workflows. However, this ab-
straction has proven brittle as ParaView has evolved from a moder-
ate number of relatively simple, general-purpose filters to encom-
pass a large number of special-purpose filters, in part due to in-
creased availability of powerful plugins (e.g. the Topology Toolkit
(TTK) [TFL∗18] for topological data analysis). The resulting non-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/pgv.20231084 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-2324-9661
https://orcid.org/0000-0001-6650-770X
https://orcid.org/0000-0001-6288-4540
https://orcid.org/0000-0003-1669-8549
https://doi.org/10.2312/pgv.20231084


M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

linear data flow graphs are difficult to express in the tree UI, and
managing complex pipelines with tens to hundreds of filters borders
on the infeasible. While ParaView does allow complete control of
visualization pipelines through an additional low-level Python in-
terface, its use is beyond the typical user skill set.

ParaView serves as a standard visualization solution for many
scientific codes (e.g. OpenFOAM [JJT∗07]), and—due to its
scalability—is one of the visualization components of the flagship
Exascale Computing Project (ECP) [Mes17]. Despite the focus in
this area, the inbuilt performance analysis capabilities are limited
and lack a visual representation. Thus users have to process this
data themselves or must employ other tools for analyzing their
pipelines. There are a multitude of tools specifically tailored to the
visual analysis of parallel and distributed applications. However,
for the general user of the visualization system, the additional ef-
fort in the setup or the complexity of the tool for in depth perfor-
mance analysis might be prohibitive. Depending on the goal with
respect to performance, the required data for the analysis is be-
yond basic time-to-solution measurements, especially in complex
pipelines. However, detailed performance measurements referenc-
ing code parts may also become overwhelming for the pipeline cre-
ator, who, in general, does not change the implementation of spe-
cific modules. Thus, we strike a compromise between the ease of
use and the amount of insights that can be gathered from a perfor-
mance visualization, tailored to the use case of pipeline creation.

In this paper we make the following contributions:

• We present in Section 3 a Node Editor implementation, an open-
source plugin that has already been integrated into ParaView and
provides a modern visual programming interface based on the
node-link paradigm. Our implementation exposes the full gamut
of ParaView’s internal processing model, while remaining non-
invasive and completely optional. We discuss specific design and
implementation choices, and compare the use of the Node Editor
UI with the traditional tree view on several examples.

• We present an augmentation of the node-link representation in
the Node Editor UI with the display of performance data, allow-
ing users at all levels to reason about the performance of visu-
alization pipelines in a straightforward and accessible manner,
especially for MPI-based parallel processing (Section 4). We il-
lustrate performance insights on real-world examples.

• In Section 5, we describe UI mechanisms, integrated into the
Node Editor, to simplify constructing and working with com-
plex pipelines that involve iterative processing, such as for-loops
available through specific filters, and illustrate these mechanisms
on real-world problems. The UI mechanisms expose the cyclical
behavior and additional filters allow for iteration of non-linear
pipeline parts, which was previously impossible with only Par-
aView’s UI.

The Node Editor is the first approach to fundamentally enable com-
plex visual programming for the ParaView visualization system.

2. Related Work

Node editors have been employed in many data flow-based systems
in order to provide a clear view of data or workflow and to provide
an intuitive way to manipulate both. Prominent examples of 3D

computer graphics software where the usefulness of node editors
is exemplified are Blender [Com], Houdini [Sid], or Maya [Aut].
There they are used in multiple ways, from compositing images to
creating and manipulating materials for rendering or linking and
grouping objects or their parameters. In scientific visualization,
this concept has been explored in software like OpenDX [Wik21],
AVS/Express [Ava], VisTrails [BCC∗05], SCIRun [Sci16], MeVis-
Lab [MeV], Inviwo [JSS∗19], VTK Designer [Udu15] and Open-
Walnut [EHWS10], among others.

In the OpenDX systems [Wik21], scientific visualizations can
be created using a visual program editor, showing the interactors
and how they are combined in a network view. Here, nodes in
the network represent processing steps, with special nodes repre-
senting data sources (e.g. the FileSelector node) and sinks (Im-
age node). Each node exposes connections for processing inputs
and outputs (ports), which are connected using a drag and drop
metaphor. OpenDX networks are typically laid out such that data
flow vertically, from top to bottom.

A further, earlier node-based visualization system is SCIRun
[PJ95]. It utilizes a node editor to compose scientific visualizations
and simulations. Furthermore, SCIRun also provides performance
information on each node via the used CPU time that was needed
for completing the specific module.

MeVisLab [MeV] is an image processing and visualization
framework that employs a node editor focusing on the medical do-
main. A modern node-based visualization system also focusing on
medical imaging is OpenWalnut [EHWS10].

A more recent software framework for visualization of scientific
data is Inviwo [JSS∗19]. The node editor used there models the data
flow from top to bottom, while horizontal connections are used to
synchronize property states. Similar to Inviwo, our approach also
makes use of a distinction between horizontal and vertical flow,
modelling data processing and rendering respectively.

VisTrails [BCC∗05] was designed with provenance visualization
for scientific visualizations in mind. With it visualizations can be
created in its own VisTrails Builder, which also uses a node-link
representation for the data flow. VisTrails is built on top of the Vi-
sualization Toolkit (VTK). A tool made specifically for VTK was
presented with VTK Designer [Udu15]. Its primary goal was to ease
the process of developing a pipeline of VTK filters. It uses a node
editor to represent the VTK pipeline structure with sources, filters,
actors and mappers as nodes. Created pipelines could afterwards be
transformed to C++ source code.

Analogously to, e.g., Blender [Com] and in contrast to, e.g., Vis-
Trails [BCC∗05], we include module parameters directly in their
nodes in the presented interface. Furthermore, we include perfor-
mance data about the represented pipeline and its modules, which
most of the previous system do not—with the notable exception of
SCIRun [PJ95]. But in contrast, the plugin presented here visual-
izes the execution times in plots that facilitate comparison between
modules and gives insight into the performance on distributed ma-
chines by including timings per MPI rank. Additionally, the user
interface that is presented here can be easily used with the open-
source visualization application ParaView, building upon a com-
plex and powerful visualization software. Thus, a user does not

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

40



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

Figure 1: A fully verbose filter node. The name and its ports are al-
ways visible. Visibility of properties can be cycled through (none,
basic, basic+advanced). Performance information is individually
toggleable.

have to worry about importing/exporting pipelines into another
software—much less, recreating it there—to get the benefits of
a node-link representation of the data flow, unlike the aforemen-
tioned VTK Designer [Udu15]. Opposed to the aforementioned sys-
tems, the prominent visualization systems ParaView [AGL05] and
VisIt [CBW∗12] represent data flow of their pipelines in a tree view.
Modules that receive data from another module are children to this
module in the tree view.

For performance analysis/visualization, there is a plethora of
tools for parallel applications like Vampir [NAW∗96], more recent
additions like Traveler [SBT∗23] or CallFlow [NBJ∗21] and many
other [IGJ∗14]. In contrast to most of these, our approach is directly
coupled with the interactive visualization system to be analyzed,
thus requiring no effort on the user side to set up. Furthermore, the
scope of the performance visualization used here is directly coupled
to the task of pipeline realization. Many performance visualization
systems provide deep insights into the execution, potentially down
to the hardware level. In contrast, the work presented here is not
targeted at domain experts. Since our approach is targeted at the
general user, it visualizes only basic performance information for
the purpose of general comprehension [IGJ∗14] and simple prob-
lem detection tasks. Therefore, visualizing, e.g., execution traces in
gantt charts [NAW∗96, SBT∗23] is limited in its value in this ap-
plication, since the user cannot change the scheduling of pipeline
modules further than with their position in the pipeline. Similarly,
visualizations of the call context [NBJ∗21], while potentially re-
vealing a more detailed explanation of an inefficiency, are also lim-

ited in their value, since the pipeline pattern directly encapsulates
the high level call structure. While the low level call structure might
be interesting for the performance, the average user of ParaView
does not change the filter implementation, meaning the informa-
tion is less relevant with respect to pipeline realization. Although
basic, the visualization techniques used here have been employed
in performance visualization successfully. For example, as a means
to visualize load imbalance bar charts [DHJ07, NBJ∗21] and heat
maps [VSLNMS20, SLB∗11] have been used.

3. Basic Node Editor

3.1. Design

Our implementation follows the same design as other prominent
node editors, such as the ones of Blender and Houdini. Since VTK
already follows a pipeline concept, most parts of the VTK architec-
ture can directly be mapped to the node-link paradigm. Specifically,
each VTK filter is represented as a single node (a so-called process-
ing node) with the name of the associated filter instance at the top
(Figure 1). Each individual input and output data object of a filter
is represented via a single input and output port, respectively. Input
ports are located on the left border of a processing node, and output
ports are located on the right border. Hence, the processing pipeline
is arranged from left to right, where connections between input and
output ports are represented via blue processing edges. Widgets that
control filter parameters and performance measurements are shown
inside the node.

One design aspect in which our node editor differs from existing
editors is the way in which it handles the visibility of data objects.
A VTK render view (also known as viewport) can be seen as a spe-
cial case of a VTK filter, which takes multiple data objects (filter
outputs) as its input, and then renders them to an output image. We

Figure 2: A representation node (left) and a fully verbose view node
(right).

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

41



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

Figure 3: Example annotations: title and description (if selected).

therefore represent each view also with a view node (Figure 2), but
a view node has only one input port (the set of all visible objects)
and no output ports (since the rendered image is only displayed on
screen and not explicitly represented as a data object).

Whether a data object is shown inside a view is represented by
an edge connecting the output port of the corresponding filter to a
representation node that further connects to the view via an addi-
tional edge (Figure 4). Properties of the render view—e.g., raytrac-
ing and post processing shader parameters—are shown inside the
view node in the same way as for processing nodes, while prop-
erties that are tied to the representation of the specific data object,
like a colormap, are shown in the representation node (Figure 2). In
addition to coloring processing and view elements differently, we
separate more clearly the processing from the visualization pipeline
by displaying processing pipelines horizontally, and visualization
pipelines vertically. This is achieved by placing view nodes always
below filter nodes, and placing the input port of view nodes at the
top.

ParaView also has a concept of active data objects (filter outputs)
and views. The borders of the corresponding nodes are highlighted
via color, whereas inactive nodes have a gray border.

We also allow users to control the visual verbosity of the node
editor. For instance, it is possible to hide view nodes to focus only
on the processing pipeline. To still indicate in this case which data
objects are currently visible in the active view, we render the output
ports of the corresponding data objects in the color of the active
view (Figure 4). It is also possible to toggle the visibility of basic,
advanced, or all filter parameters for the filter nodes, as well as their
performance information (Figure 1).

The node editor also features a layout engine that is based on
GraphViz [EGK∗02]. Every time the graph is modified the layout
engine computes an optimized layout that is as much as possible
consistent with the previous layout. This feature can of course be
turned off and users always can freely move nodes. If turned off, the
layout of the graph is stored alongside the state file when exported.

Furthermore, the node editor allows adding annotations in form
of resizable rectangles with titles and descriptions for grouping fil-
ters and explaining design choices, as shown in Figure 3.

3.2. Implementation

Since the ParaView user interface is based on Qt, we decided to
implement the node editor via the Qt Graphics View Framework.
The primary reason for this is the reuse of existing code, since this
framework makes it possible to simply embed the parameter wid-
gets of a filter inside a node in the same way they can be embedded

in the Properties Panel. Note that in Figure 7 the same wid-
gets of the contour filter are shown in the properties panel as well as
in the corresponding node. We did not have to adjust existing wid-
get code, and widgets are automatically synchronized when shown
and adjusted simultaneously in both views.

The software architecture of the node editor implements an ob-
server pattern to react to changes of the pipeline state. Hence, the
node editor only manages the visual representations of pipeline el-
ements, which are created, modified, or deleted based on events
emitted by the pqServerManagerModel, the pqActiveOb-
jects, and pqApplicationCore instances. The event-driven
design of ParaView made this usually difficult task rather simple.
Specifically, the node editor listens to the following events:

• pqServerManagerModel::sourceAdded
• pqServerManagerModel::sourceRemoved
• pqServerManagerModel::viewAdded
• pqServerManagerModel::viewRemoved
• pqServerManagerModel::connectionAdded
• pqServerManagerModel::connectionRemoved
• pqActiveObjects::viewChanged
• pqActiveObjects::selectionChanged
• pqApplicationCore::stateLoaded

Note, the sourceAdded/Removed events are also triggered for
the creation of filters, since in VTK the filter class is derived from
the source class (which consumes no input data objects). The node
editor listens to events emitted from the pqActiveObjects
class to highlight different parts of the node editor.

The node editor never explicitly changes the pipeline state, in-
stead changes are requested through the existing pqServer-
ManagerModel. If the state changes after such a request, the
pqServerManagerModel will emit events which are captured
by the observer pattern. This architecture has the advantage that the
logical component of the node editor is minimal and that everything
is by design consistent to the pipeline state.

4. Runtime Annotation

A good understanding of the pipelines employed in these systems is
necessary to be able to reason about its performance and make in-
formed decisions about restructuring the pipeline and changing pa-
rameters. In order to reason about the performance of the pipeline in
shared-memory parallel or even distributed execution, it often does
not suffice to examine only time-to-solution of the whole pipeline.
Single modules can be the bottleneck of a pipeline. While the run-
time performance of a specific filter cannot be influenced by the
user directly, the choice of filter and its parameters and dependen-
cies inside the pipeline can.

Including performance information about each module is benefi-
cial in multiple ways. First, the user gains a better understanding of
the cost of each individual filter and in relation to other filters in the
pipeline. This enables the user to spot bottlenecks and apply poten-
tial optimizations or change the pipeline structure. Furthermore, by
comparing the current runtime of a filter to the runtimes of previ-
ous executions of the same filter, one can estimate the influence of
specific parameter changes or how a change in a filter earlier in the
pipeline influences a later stage. This transfers to the evaluation of
data redistribution to mitigate load imbalance in a distributed case.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

42



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

4.1. Design

Using the additional screen space that is available in the node edi-
tor, we complement the nodes of the node graph with runtime per-
formance information (see Figure 1). Focusing on the pipeline real-
ization task for end users of ParaView, we identified the following
basic tasks that the runtime annotation should support:

(T1) Compare the performance of two or more modules
(T2) Further identify the filter(s) with the largest contribution to

the overall runtime
(T3) Identify load imbalance when executing modules on multiple

MPI ranks
(T4) Compare the runtime of modules before and after a parameter

change (e.g. filename, iso-values etc.)

In order to support these tasks, we include performance infor-
mation at the module level. While more detailed information could
yield additional insights about the exact source of bottlenecks or
similar, the average user is not expected to change the inner work-
ings of VTK or ParaView.

Additionally to the modules themselves and their parameters in
the basic node editor, we include a runtime visualization per mod-
ule that shows the modules runtime—or runtimes if executed on
multiple ranks—in one of currently four representations. In the
three chart representations, the y-axis represents the runtime in
seconds—having the same scale for each module—and the x-axis
shows the categories of the origin of the measurement, meaning
whether the measurement was produced locally or on a server and
if on a server, on which rank.

The first representation is a bar chart showing the runtime of the
most recent execution. Thus, the first bar represents the local exe-
cution and every following bar is an additional server rank, which
may further be divided into render- and data-server (Figure 1). This
view enables easy comparison between module runtimes, due to
the same y-scale (T1). Furthermore, load imbalances can be easily
spotted in this view as they manifest in uneven distribution of the
bar heights (T3). Since the maximum of the y-scale is chosen as the
maximum over all modules plus a margin, identifying the modules
with the largest execution time is also simple (T2).

If multiple timings should be registered but the order is not im-
portant, e.g., when processing a file series, we employ a box plot
per rank and one accumulated over all ranks (see Figure 5), How-
ever, the bar chart and the box plots suffer from scalability issues
when the number of ranks is too large.

To target this issue, we include a line plot where each line is get-
ting thinner and more transparent the older the measurement is (see
Figure 5). Further, the latest timing is colored differently. By con-
necting the measurements of each rank with a line, spikes in the plot
that indicate load imbalance are still visible with larger number of
ranks (T3). This representation enables comparison of consecutive
runs, allowing to observe the impact of parameter changes or struc-
tural changes in the pipeline on the performance (T4). However,
with increasing number of iterations it suffers from overplotting.

Hence, we integrate a heat map visualization (Figure 5d and Fig-
ure 5e). Here the iteration is shown on the y-axis—oldest (top) to
latest (bottom)—and the ranks on the x-axis with color indicating
the execution time. This way consecutive runs do not suffer from

Figure 4: Two node editor views of the same pipeline. The top pipeline has the view nodes enabled but everything else hidden. The bottom
pipeline hides the view nodes but shows the timings and parameters on some filters.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

43



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

(a) (b) (c) (d) (e)

Figure 5: Different available visualizations for execution time. Figure 5a shows a bar chart with the execution time per rank represented by
the respective bar height. The labels below indicate the server rank (s1-s4) or the local client l. Figure 5b and Figure 5c Show the box plot
and line plot view respectively for displaying multiple timings. The line plot shows the most recent timing in orange, while older timings
are thinner and have a higher transparency. Additionally there is a box plot showing the distribution over all measurements indicated by acc.
In the heat map view (Figure 5d) the timings are ordered from oldest to newest execution from top to bottom. For each run, the execution
times for each rank are shown in descending order from left to right, displaying the rank with longest time on the left. This ordering can be
changed to show the execution times in ascending order of the corresponding rank id (Figure 5e), to compare timings of the same rank for
multiple runs. The timings are encoded by color on a scale from 0 to the maximum time over all ranks and iterations of this filter. Beneath
the heat map, a bar chart shows the longest execution time measured for a rank of the most recent execution of this filter in relation to the
global maximum across all filters.

overplotting. In order to better compare consecutive runs, the rank
measurements are sorted with respect to their execution time in de-
scending order. The timings are encoded by color on a scale from
0 to the maximum time over all ranks and iterations of this filter
(T4). Load imbalances manifest themselves as horizontal gradients
in the heat map (T3). The varying local maxima for the heat map
impedes comparison between filters. To remedy this, we include
a bar chart beneath the heat map that shows the largest execution
time measured for a rank of the most recent execution of this filter
in relation to the global maximum across all filters (T1)(T2).

4.2. Implementation

Similar to ParaView’s TimerLog, performance data is retrieved
via GatherInformation calls on the current session with
vtkPVTimerInformation objects. Each filter has a ParaView
internal unique id, which is used to map the timings inside the log
onto the corresponding nodes. To this end, the log is processed with
regular expressions. This map can be queried by the runtime anno-
tation widget and is updated after each pipeline update. The runtime
annotation widget uses Qt Charts add-on to visualize the runtime
information for the three chart representations—bar chart, series of
box plots and line plots. The heat map is implemented as a custom
widget. One can iterate through the representations by clicking the
widget. Currently only processing nodes are equipped with the run-
time annotations.

5. Advanced Control Flow

The VTK processing pipeline can be represented as directed acyclic
graph (DAG). This graph can be arbitrarily complex, and histor-
ically ParaView prioritized relatively simple, linear graphs. How-
ever, with the recent advances in scientific computing these graphs
become more and more complex and even require new approaches
to process data; especially in regard to processing ensemble data.
The node editor simplifies reconnecting input and output ports
via simple clicks, while at the same time displaying even com-
plex pipelines in a comprehensible manner; in contrast to the

execution time peak memory usage
without for-loop 30.96 s 13.98 GB

with for-loop 36.29 s 1.13 GB

Figure 6: Two pipelines computing the same iso-contours on multi-
ple blocks. The left pipeline does so via standard VTK multiblock
execution and the right employs the for-loop filters. The pipeline
with the for-loop, while being marginally slower, reduces the mem-
ory requirement for the pipeline drastically. The input is a database
from which 100 blocks with size of 129 MB are read. The size of
the output contours is 188 MB.

Pipeline Browser. In addition to these basic user interface
features implemented in the ParaView code base, we also extended
the VTK pipeline architecture in the TTK [TFL∗18] code base to
support for loops and recursion, i.e., partially cyclic pipelines. The
node editor highlights such loop constructs by coloring the start
and end nodes boundary and they become apparent as cycles in the
graph view (Figure 6 and Figure 8).

5.1. Independent Iterations

It is a very common use case to apply a processing pipeline not on a
single data object, but on a set of objects. Imagine a workflow that

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

44



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

extracts features from a single timestep of a time series, or a mem-
ber of an ensemble. Analysts might want to apply this workflow on
every timestep or on all ensemble members. This can be expressed
as a For Each operation where every individual pipeline execution
is independent of the other executions. In the past, analysts had to
implement this operation explicitly—e.g., via batch processing—
but as discussed in the following it makes sense to incorporate such
set operations explicitly inside the pipeline for convenience.

VTK already supports such set operations for pure linear
workflows via vtkMultiBlockDataSet. A vtkMulti-
BlockDataSet object is a collection of vtkDataObjects
called blocks (which can in turn be again vtkMultiBlock-
DataSets). One can think of a vtkMultiBlockDataSet as
a list of data objects. If such a vtkMultiBlockDataSet is fed
into a filter that was designed to process only an elementary data
object type (such as vtkPolyData) then the pipeline executor
will actually pass the blocks individually into the filter and collect
the outputs in a new vtkMultiBlockDataSet. So the filter
itself (and its code base) is unaware of the vtkMultiBlock-
DataSet, nor in which context it is executed in the pipeline.
However, this very convenient feature is only available for linear
pipelines where each filter must have exactly one input and one out-
put. Additionally, the blocks of a vtkMultiBlockDataSet are
all kept in memory. Thus, if one feeds 100 vtkImageData ob-
jects into a linear pipeline consisting of ten filters, then the machine
has to keep 100 × 10 data objects in memory, which makes this
feature only applicable for relatively small vtkMultiBlock-
DataSets and pipelines. A pipeline exemplifying this behavior
is shown in Figure 6.

We overcome the aforementioned limitations by introducing two
new VTK filters called ttkForEach and ttkEndFor. Note the
prefix ttk stems from the fact that these filters are currently im-
plemented in the Topology ToolKit [TFL∗18], but we aim
to move the code to the VTK code base in the future. The ttk-
ForEach and ttkEndFor filters work in tandem to execute the
pipeline spanned between them on every element of the ttk-
ForEach input data object. The ttkForEach filter consumes
a vtkMultiBlockDataSet and produces in every execution
exactly one block as an output, i.e., the block at the index of the
current iteration. To this end, the ttkForEach filter maintains
the current iteration index and the maximum number of iterations
as member variables. The ttkEndFor filter takes two inputs: the
first must be the ttkForEach filter, and the second input is the
supposed output of the for loop. Every time the ttkEndFor filter
is executed, it uses the public interface of the ttkForEach fil-
ter to retrieve the current iteration index and the maximum number
of iterations. Then the ttkEndFor filter checks if more iterations
need to be performed (in which case the ttkEndFor filter asks the
ttkForEach filter to start the next iteration), or if the current it-
eration was the last iteration (in which case the ttkEndFor filter
forwards the loop output and the subsequent pipeline will be ex-
ecuted). The ttkEndFor filter maintains a vtkMultiBlock-
DataSet member variable and every time it is executed it places
the last for loop output at the block of the current iteration index,
i.e., it aggregates the for loop output over time. This aggregation
can be turned off, in which case the filter only forwards the output
of the last iteration. Note, this abstract tandem design makes it also

possible to nest loops. Moreover, in the previous example of feed-
ing 100 vtkImageData objects into a linear pipeline with 10 fil-
ters now only requires keeping 100+100 objects in machine mem-
ory (the input and output of the for loop) compared to the 100×10
objects without the for loop structure.

5.2. Dependent Iterations

Another common use case is to feed the output of the current iter-
ation into the next iteration. For instance, consider a particle ad-
vection problem where the pipeline that performs the advection
needs to be performed multiple times until the particles converge
to a fixed position. Previously, such functionality was only possible
within a single filter (which contains the entire loop logic), or by
auxiliary code that interferes with the VTK pipeline execution.

For such use cases we provide two new classes called ttk-
While and ttkEndWhile. The ttkWhile filter consumes a
single data object that is forwarded as the output of the first iter-
ation (the first execution of the ttkWhile filter). This output is
processed through the subsequent pipeline until it reaches the ttk-
EndWhile filter, which checks a flag on the incoming data object
and then either forwards the output, or otherwise sends the output
of the current iteration to the ttkWhile filter (which is provided
to the ttkEndWhile filter as an input). The new output is then
fed from the ttkWhile filter as its output into the next iteration.

Currently, the stop criterion needs to be computed by some filter
between the ttkWhile and ttkEndWhile filters, and if the stop
criterion is not present then the while loop will exit after the first
iteration. We plan to add more pipeline logic filters such as ttkIf
to further abstract and modularize the VTK pipeline.

6. Case Studies

6.1. Multiview Flow Visualization

The first pipeline (c.f. Figure 7)—which exemplifies some of the
features of the node editor—is a flow visualization of a vector field
from a jet flow data set. It consists of a reader source, a filter com-
puting vorticity, two slices showing vorticity and velocity, respec-
tively, a contour filter of vorticity, a streamline filter with a cus-
tom source for the seed points (retrieved from the contour), and
some helper filters. For comparison, the tree view is included on
the screenshot at the bottom right. We first focus on the differences
of the presented interface to the tree view, while exemplifying pos-
sible advantages and new opportunities in the workflow afterwards.

The first advantage over the tree view is that the view edges from
nodes to the different render views make it directly obvious which
nodes constitute to each view, whereas the pipeline browser only
indicates the visible objects of the active view via an eye icon. This
realization of the visualized output of filters via links is closer in
its representation to the data flow that has to occur in order for the
output to appear on screen.

Furthermore, filters that have multiple input ports—such as
the StreamTracerWithCustomSource in this example or a
GroupDatasets filter—appear in the tree view as a new root
entry, and all their inputs are followed by a special reference entry

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

45



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

Figure 7: A visualization pipeline in ParaView showing a time step from a jet flow dataset, with two slices showing vorticity and velocity and
an iso-contour of vorticity in the bottom view and streamlines seeded on the contour in the top view. One can observe that the MaskPoints
and StreamTracer filter show a large difference in execution time between ranks (see the heat maps in the red boxes). Furthermore, the
streamlines in the top view all have the same process id, this coincides with a higher execution time for one rank in the streamline filter, as
shown by the white line in the heat map of the streamline filter on the left side. Although the load imbalance for the MaskPoints seems
larger in the heat map, comparing the blue bars below the heat maps of the two filters reveals the larger impact of the StreamTracer filter
and its load imbalance.

with an arrow icon. This multiplication of entries is unnecessary
in the node editor. Therefore, the structure of the pipeline and the
number of inputs in a filter becomes more readily apparent.

However, due to the occupied screen space and the size of the
nodes in the editor zooming and panning becomes necessary if the
pipeline consists of more modules. Especially, if parameters of the
nodes have to be changed. For example, changing the slice view’s
and the stream tracer’s parameters often could be laborious, al-
though this can be mitigated by arranging the often manipulated
nodes near each other. As already discussed, having the nodes next
to each other—or at least inside the view—also allows inspecting
and changing parameters without the parameters of the other filters
disappearing, which creates a more thorough overview in only one
image. Furthermore, it is still possible to use the properties panel
outside the node editor, since the displayed property widgets are
the same, which can be seen in Figure 7 with the StreamTracer
filter’s properties being shown on the left and in the node editor.

With the basic performance information displayed, there are sev-
eral behaviors of interest that we can observe. The ComputeD-
erivatives filter is easily identified as the filter with the overall
longest runtime, the contour’s influence on the runtime is negligible
and the measurements of the MaskPoints and StreamTracer
filter show a large difference in execution time between ranks, in-
dicating a load imbalance. In the top view, streamlines colored by

process id can be seen. All of them are bright yellow, meaning all
were assigned the same process id, which in this case is 119 and
matches with the increased runtime on this rank.

6.2. Viscous Fingers

In this second example we show the structure of a pipeline
that contains a for-loop. The pipeline at hand reads and queries
a cinema database—the viscous finger database provided by
TTK [TTK21]—and loops over the extracted time steps in order
to extract minima in the elevation of an iso-contour created from
the image data of the current time step. These minima are aggre-
gated via the TTKBlockAggregator and colored by the time
step in which they were extracted. Furthermore, the first time step
is extracted and its iso-contour is visualized with the elevation w.r.t
the z-axis, analogously to the procedure inside the for loop. The
structure and output of this pipeline is shown in Figure 8.

As already mentioned in Section 5, a pipeline working on a
vtkMultiBlockDataSet is able to achieve similar results,
computing the contours and minima for each of its blocks. How-
ever, this approach does not expose the iterative behavior. Using
the advanced control flow filters, this can be easily spotted in the
node editor. Furthermore, performing each loop iteration sequen-
tially potentially lessens memory requirements.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

46



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

Similar to the vtkStreamTracerWithCustomSource
node from the previous case, the TTKEndFor node has two inputs,
but the second input is used to connect it to the TTKForEach node
that has an additional output port for closing the loop. While Par-
aView’s tree view pipeline browser struggles to represent multiple
input nodes, it becomes even harder to indicate this cyclical behav-
ior. Especially for more complex pipelines with multiple for-loops
and several multi-input filters.

6.3. Subset Extraction

Another use case is the iterative process of creating a visualiza-
tion pipeline. We exemplify this again with a simple iso-contour
pipeline (see Figure 9). After extracting contours over the whole
data set (.pvti reader and Contour1), one identifies a region of inter-

est and extracts only a subset of the whole data to compute the con-
tours on (ExtractSubset1 and Contour2). After inserting the sub-
set extraction, we can observe a load imbalance inside the subset
extraction and in the contour filter that is recognizable as a steep
gradient on the left in both heat maps. To check whether a redistri-
bution of data is beneficial, a redistribution filter is added after the
subset extraction and before the iso-contour filter. Investigating the
execution time of the contour filter behind the redistribution filter,
one can still observe a gradient, but none of the ranks show black.
While in this case the load is more balanced the overall execution
time for the redistribution filter now dominates the runtime of the
pipeline. Accepting the small load imbalance leads to lower execu-
tion times in this case.

Figure 8: Node editor view of a visualization pipeline in ParaView that aggregates minima of multiple iso-contours stemming from time steps
of the viscous finger data set. The resulting visualization can be seen in the top left.

Figure 9: Multiple steps of creating an iso-contour pipeline visualizing the Q-criterion of a jet in cross flow [GGK∗12]. The provided
performance information helps to make decisions about the structure of the pipeline. The three steps, each ending in a contour filter, are
ordered vertically.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

47



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

Figure 10: Iso-contour pipeline showing two time steps of a flow simulation, colored by process id. The heat map reveals an increasing
execution time over the eight time steps and a higher usage of the 120 MPI ranks with each iteration in the contour filter. The last iteration
displayed in the contour filter heat map results from the extraction of the second to last time step for rendering.

6.4. Runtime Inspection for Time Series

Consider the iso-contour pipeline for the velocity magnitude for
multiple time steps of a flow simulation shown in Figure 10. Here,
the performance information is used to identify trends and interest-
ing points in time. The execution times of the contour filter show a
small increase in load and execution time with each processed time
step for the first six time steps and then increasing rapidly over the
last two. Rendering the contours of the last two time steps, one can
observe more geometry being created for the contour as the flow
reaches the boundary and propagates back. Due to the increase in
geometry and the more even spread across the domain, the execu-
tion time increases and more of the allocated resources are used.

7. Limitations and Possible Extensions

A limitation of VTK—which becomes apparent in the node
editor—is that parameters cannot function as ports. However, in
many pipelines it is desirable to use computed values of other fil-
ters as parameter values of the current filter, which is for example
possible in Blender and Inviwo. The implementation of this feature
would require a serious modification of the VTK architecture, but it
is the opinion of the authors that such a modification will be very
beneficial in the long run.

Currently, it is possible in the node editor to connect modules
in a way that creates loops without the use of the mentioned for-
and while filters, since it is also possible in ParaView without the
node editor. This is not supported by VTK’s pipeline design and
will likely lead to errors. However, these cyclical dependencies are
easier to spot in the node editor than the tree view.

A limitation in the extraction of runtimes is given by the depen-
dency on VTK logging. Currently, multiple render views cannot be
distinguished inside the log. Furthermore, there are executions of
additional filters, e.g., the transformation of data into the right for-
mat for rendering, that are not part of the node graph and which
runtimes are therefore not visible.

Including the runtime annotation on very large pipelines reveals
a scalabilty issue, since the runtime annotation widget increases
the size of each module drastically if it was on the lowest verbosity
level beforehand. While grouping multiple filters as pipeline parts
into custom filters works and reduces the number of modules visi-
ble in the node editor, these custom filters do currently not display
performance information. Further future improvements to the inter-
face include the following:

• The ability to snapshot the state of the pipeline and the runtimes
of its filters for a comparative view.

• Grouping nodes and changing the visibility of whole groups.
• Exclude individual filters from maximum computation in the

performance annotation.
• Providing information about the output data at each output port.

8. Conclusion

We described the implementation of a visual programming inter-
face for ParaView and demonstrated its advantages over the existing
pipeline browser. The node editor portion of this work is already in-
tegrated into ParaView 5.11. The design of the node editor follows
other prominent interfaces such as the ones of Blender, Inviwo, Vis-
Trails, and so forth. We further enhanced the visual programming
interface with a performance annotation for each module, allowing
all users to obtain a basic understanding of their pipeline’s perfor-
mance and make more informed decisions about potential changes.
In addition to the node editor, we also contributed new VTK fil-
ters to support dependent and independent iterations of pipeline
segments. This enables explicit modeling of loops in the pipeline;
circumventing the need to break pipelines apart and to run batch
processes. Although our implementation makes heavy use of ex-
isting ParaView source code, it remains completely optional and
non-invasive to existing code.

Acknowledgments

This research was supported by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under project 398122172.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

48



M. Petersen, J. Lukasczyk, C. Gueunet, T. Chabat & C. Garth / Extended Visual Programming for Complex Parallel Pipelines in ParaView

References
[AGL05] AHRENS J., GEVECI B., LAW C.: Paraview: An end-user tool

for large data visualization. The Visualization Handbook (2005). 1, 3

[Aut] AUTODESK, INC.: Maya. https:/autodesk.com/maya.
[Online; accessed 24-April-2023]. 1, 2

[Ava] AVANCED VISUAL SYSTEMS INC.: AVS/Express.
https://www.avs.com/avs-express/. [Online; accessed 30-
November-2022]. 2

[BCC∗05] BAVOIL L., CALLAHAN S., CROSSNO P., FREIRE J., SCHEI-
DEGGER C., SILVA C., VO H.: Vistrails: Enabling interactive multiple-
view visualizations. In VIS 05. IEEE Visualization, 2005. (2005),
pp. 135–142. doi:10.1109/VISUAL.2005.1532788. 1, 2

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH
J. S., AHERN S., PUGMIRE D., BIAGAS K., MILLER M. C., HAR-
RISON C., WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON
A. R., GARTH C., BETHEL E. W., CAMP D., RÜBEL O., DURANT
M., FAVRE J. M., NAVRÁTIL P. A.: Visit. In High Performance Visual-
ization - Enabling Extreme-Scale Scientific Insight, Bethel E. W., Childs
H., Hansen C. D., (Eds.), Chapman and Hall / CRC computational sci-
ence series. CRC Press, 2012. URL: https://doi.org/10.1201/
b12985-21, doi:10.1201/b12985-21. 3

[Com] COMMUNITY B. O.: Blender - a 3d modelling and rendering
package. http://www.blender.org. [Online; accessed 24-April-
2023]. 1, 2

[DHJ07] DEROSE L., HOMER B., JOHNSON D.: Detecting applica-
tion load imbalance on high end massively parallel systems. In Euro-
Par 2007 Parallel Processing (Berlin, Heidelberg, 2007), Kermarrec A.-
M., Bougé L., Priol T., (Eds.), Springer Berlin Heidelberg, pp. 150–159.
doi:10.1007/978-3-540-74466-5_17. 3

[EGK∗02] ELLSON J., GANSNER E., KOUTSOFIOS L., NORTH S. C.,
WOODHULL G.: Graphviz— open source graph drawing tools. In Graph
Drawing (Berlin, Heidelberg, 2002), Mutzel P., Jünger M., Leipert S.,
(Eds.), Springer Berlin Heidelberg, pp. 483–484. doi:10.1007/
3-540-45848-4_57. 4

[EHWS10] EICHELBAUM S., HLAWITSCHKA M., WIEBEL A.,
SCHEUERMANN G.: OpenWalnut - An Open-Source Visualization
System. In Proceedings of the 6th High-End Visualization Workshop
(2010), Benger W., Gerndt A., Su S., Schoor W., Koppitz M., Kapferer
W., Bischof H.-P., Pierro M. D., (Eds.), pp. 67–78. 1, 2

[GGK∗12] GROUT R. W., GRUBER A., KOLLA H., BREMER P.-T.,
BENNETT J. C., GYULASSY A., CHEN J. H.: A direct numerical sim-
ulation study of turbulence and flame structure in transverse jets anal-
ysed in jet-trajectory based coordinates. Journal of Fluid Mechanics 706
(2012), 351–383. doi:10.1017/jfm.2012.257. 9

[IGJ∗14] ISAACS K. E., GIMÉNEZ A., JUSUFI I., GAMBLIN T.,
BHATELE A., SCHULZ M., HAMANN B., BREMER P.-T.: State of
the Art of Performance Visualization. In EuroVis - STARs (2014),
Borgo R., Maciejewski R., Viola I., (Eds.), The Eurographics Associ-
ation. doi:10.2312/eurovisstar.20141177. 3

[JJT∗07] JASAK H., JEMCOV A., TUKOVIC Z., ET AL.: Openfoam:
A c++ library for complex physics simulations. In International work-
shop on coupled methods in numerical dynamics (2007), vol. 1000, IUC
Dubrovnik Croatia, pp. 1–20. 2

[JSS∗19] JÖNSSON D., STENETEG P., SUNDÉN E., ENGLUND R., KOT-
TRAVEL S., FALK M., YNNERMAN A., HOTZ I., ROPINSKI T.: In-
viwo - a visualization system with usage abstraction levels. IEEE Trans-
actions on Visualization and Computer Graphics 26, 11 (2019), 3241–
3254. doi:10.1109/TVCG.2019.2920639. 1, 2

[LB08] LINGARAJU G., BAGEWADI C.: Animation of scientific data
using vtk designer. International Journal of Computer Science and Net-
work Security (2008), 318–325. 1

[Mes17] MESSINA P.: The exascale computing project. Computing in
Science Engineering 19, 3 (2017), 63–67. doi:10.1109/MCSE.
2017.57. 2

[MeV] MEVIS MEDICAL SOLUTIONS AG AND FRAUNHOFER
MEVIS, BREMEN, GERMANY: Mevislab – development en-
vironment for medical image processing and visualization.
http://www.mevislab.de. [Online; accessed 24-April-2023]. 2

[NAW∗96] NAGEL W. E., ARNOLD A., WEBER M., HOPPE H.-C.,
SOLCHENBACH K.: Vampir: Visualization and analysis of mpi re-
sources. Supercomputer 63 XII (1996), 69–80. 3

[NBJ∗21] NGUYEN H. T., BHATELE A., JAIN N., KESAVAN S. P.,
BHATIA H., GAMBLIN T., MA K.-L., BREMER P.-T.: Visualizing hi-
erarchical performance profiles of parallel codes using callflow. IEEE
Transactions on Visualization and Computer Graphics 27, 4 (2021),
2455–2468. doi:10.1109/TVCG.2019.2953746. 3

[PJ95] PARKER S., JOHNSON C.: Scirun: A scientific programming envi-
ronment for computational steering. In Proc. ACM/IEEE Conference on
Supercomputing (1995), pp. 52–52. doi:10.1109/SUPERC.1995.
241689. 2

[SBT∗23] SAKIN S. A., BIGELOW A., TOHID R., SCULLY-ALLISON
C., SCHEIDEGGER C., BRANDT S. R., TAYLOR C., HUCK K. A.,
KAISER H., ISAACS K. E.: Traveler: Navigating task parallel traces
for performance analysis. IEEE Transactions on Visualization and Com-
puter Graphics 29, 1 (2023), 788–797. doi:10.1109/TVCG.2022.
3209375. 3

[Sci16] SCIENTIFIC COMPUTING AND IMAGING INSTITUTE (SCI):
Scirun: A scientific computing problem solving environment. http:
//www.scirun.org", 2016. [Online; accessed 24-April-2023]. 1, 2

[Sid] SIDEFX: Houdini. https://www.sidefx.com/products/
houdini/. [Online; accessed 30-November-2022]. 1, 2

[SLB∗11] SCHULZ M., LEVINE J. A., BREMER P.-T., GAMBLIN T.,
PASCUCCI V.: Interpreting performance data across intuitive domains. In
2011 International Conference on Parallel Processing (2011), pp. 206–
215. doi:10.1109/ICPP.2011.60. 3

[SML06] SCHROEDER W., MARTIN K., LORENSEN B.: The Visualiza-
tion Toolkit, 4 ed. Kitware, 2006. 1

[TFL∗18] TIERNY J., FAVELIER G., LEVINE J. A., GUEUNET C.,
MICHAUX M.: The topology toolkit. IEEE Trans. Vis. Com-
put. Graph. 24, 1 (2018), 832–842. URL: https://doi.org/
10.1109/TVCG.2017.2743938, doi:10.1109/TVCG.2017.
2743938. 1, 6, 7

[TTK21] TTK CONTRIBUTERS: TTK Data Repository.
https://github.com/topology-tool-kit/ttk-data/
tree/dev, 2021. [Online; accessed 24-April-2023]. 8

[Udu15] UDUPA P. N.: VTK Designer.
https://vtkdesigner.sourceforge.io/, 2015. [Online; ac-
cessed 22-October-2021]. 2, 3

[VSLNMS20] VERONEZE SOLÓRZANO A. L., LEANDRO NESI L.,
MELLO SCHNORR L.: Using visualization of performance data to in-
vestigate load imbalance of a geophysics parallel application. In Practice
and Experience in Advanced Research Computing (New York, NY, USA,
2020), PEARC ’20, Association for Computing Machinery, p. 518–521.
URL: https://doi.org/10.1145/3311790.3400844, doi:
10.1145/3311790.3400844. 3

[Wik21] WIKIPEDIA: IBM OpenDX — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=
IBM%20OpenDX&oldid=1017374869, 2021. [Online; accessed 22-
October-2021]. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

49

https:/ autodesk.com/maya
https://www.avs.com/avs-express/
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1201/b12985-21
https://doi.org/10.1201/b12985-21
https://doi.org/10.1201/b12985-21
http://www.blender.org
https://doi.org/10.1007/978-3-540-74466-5_17
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1017/jfm.2012.257
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/MCSE.2017.57
https://doi.org/10.1109/MCSE.2017.57
http://www.mevislab.de
https://doi.org/10.1109/TVCG.2019.2953746
https://doi.org/10.1109/SUPERC.1995.241689
https://doi.org/10.1109/SUPERC.1995.241689
https://doi.org/10.1109/TVCG.2022.3209375
https://doi.org/10.1109/TVCG.2022.3209375
http://www.scirun.org"
http://www.scirun.org"
https://www.sidefx.com/products/houdini/
https://www.sidefx.com/products/houdini/
https://doi.org/10.1109/ICPP.2011.60
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2017.2743938
https://github.com/topology-tool-kit/ttk-data/tree/dev
https://github.com/topology-tool-kit/ttk-data/tree/dev
https://vtkdesigner.sourceforge.io/
https://doi.org/10.1145/3311790.3400844
https://doi.org/10.1145/3311790.3400844
https://doi.org/10.1145/3311790.3400844
http://en.wikipedia.org/w/index.php?title=IBM%20OpenDX&oldid=1017374869
http://en.wikipedia.org/w/index.php?title=IBM%20OpenDX&oldid=1017374869

