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Abstract

Automated identification of main arteries in Computed Tomography Angiography (CTA) scans plays a key role
in the initialization of vessel tracking algorithms. Automated vessel tracking tools support physicians in vessel
analysis and make their workflow time-efficient. We present a fully-automated framework for identification of
five main arteries of three different body regions in various field-of-view CTA scans. Our method detects the two
common iliac arteries, the aorta and the two common carotid arteries and delivers seed positions in them. After
the field-of-view of a CTA scan is identified, artery candidate positions are regressed slice-wise and the best
candidates are selected by Naive Bayes classification. Final artery seed positions are detected by picking the most
optimal path over the artery classification results from slice to slice. Our method was evaluated on 20 CTA scans
with various field-of-views. The high detection performance on different arteries shows its generality and future
applicability for automated vessel analysis systems.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene

Analysis—Object recognition

1. Introduction

Centerline extraction, labeling and segmentation of arter-
ies in CTA scans play a key role in clinical vessel analy-
sis. They are used to detect and quantify arterial diseases
such as stenosis and aneurysms, and therefore support physi-
cians in making a diagnosis. Carotid arteries and peripheral
arteries are well-known regions of occurrence of such dis-
eases [LAU* 06, FHRO6]. In order to start the vessel analysis
in a CTA scan physicians have to locate the artery of inter-
est first (e.g., the left common carotid artery), mark its cen-
terline and segment its lumen which is a highly time con-
suming procedure. For that reason, many recent works tar-
geted this problem and developed vessel analysis systems
which assist physicians by automated centerline tracking,
lumen segmentation [GYD*14,LL] and disease quantifica-
tion [TvWH™13]. However, the aforementioned systems re-
quire user interaction for setting an initial position into a
specific artery and its anatomical label. This information is
necessary to start tracking the artery tree, label it anatomi-
cally and map the disease quantification results to the cor-
responding arteries. Automating the manual user interaction
step would optimize the clinical workflow even more. Physi-
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cians would only need to review, and if necessary adjust
the automatically produced results before they make a di-
agnosis. We present a fully automated framework to iden-
tify and anatomically label five different main arteries from
three parts of the human body and place seed positions in
each of them. The detected seed positions and the label of an
identified artery serve as an automatic initialization of vessel
analysis systems. The five arteries we target are the two com-
mon iliac arteries in the pelvis, the descending aorta in the
abdomen and chest, and the two common carotid arteries in
the neck. Our approach recognizes first the field-of-view of
the scan and proceeds with the detection of arteries present
in the scanned body region. For each selected artery the cen-
terline positions are regressed using Nearest Neighbor re-
gression on slices where it is present. The regression result
is then refined by classifying the regressed positions using
a Naive Bayes classifier. For the classification we introduce
an anatomical feature which captures the distance between
the arteries and the spine. The slice-wise artery classifica-
tion results are finally transformed to costs and the positions
selected by a minimum cost path algorithm correspond to
seed positions within the artery of interest.
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Figure 1: Overview of the artery identification framework: The ROI is depicted as a transparent green box, the regressed
artery position candidates are visualized in aquamarine. After classification, the positions are shown in red in case of a highly
probable artery candidate and in blue in case of a highly probable non-artery candidate. The final artery seeds are yellow dots.

Several recent works aimed to find arteries automatically
in CTA or CT data. They can be categorized into approaches
which localize solely arteries as it is done in this work and
into methods which detect bifurcations and connected ar-
teries. Sanderse et al. [SMH*035] targeted the detection of
carotid arteries in CTA scans covering head and neck. First,
a shoulder landmark is detected and carotid arteries are then
extracted in a slice-wise manner by Circular Hough Trans-
form. Final artery landmarks are detected using a 3D hier-
archical clustering approach. The algorithm was evaluated
on 31 datasets and a detection rate of 88% was reported.
Zheng et al. [ZCG14] introduced an automatic aorta detec-
tion and tracking approach in non-contrast cardiac CT scans.
First, slice images containing the heart are selected based
on average intensities. As a next step, Generalized Hough
Transform is applied to find the aorta slice-wise and a 3D
k-means clustering approach helps to find the final seed po-
sitions for the ascending and descending aorta. The whole
aorta was successfully tracked from the seed positions us-
ing a Bayesian framework in 24 CT scans. Both aforemen-
tioned algorithms are designed to detect specific arteries
coming from a specific body region and their general appli-
cation to different artery types is consequently hard or im-
possible. The framework of Beck et al. [BBBD10] detects
carotid bifurcations with the surrounding arteries. The bifur-
cation Region of Interest (ROI) is localized using a machine
learning approach similarly to our method. Fast Marching
is applied to segment the arteries of interest. The segmenta-
tion skeletons are finally compared to a previously created
knowledge base in order to identify a bifurcation of inter-
est. The carotid bifurcations were detected in 50 CTA scans
with 74.47% success rate for the left part and 78.72% for the
right part. The algorithm of Brozio et al. [BGG™12] detects
the iliac bifurcations and connected arteries. First, the ROI
is detected similarly to Beck et al. [BBBD10] followed by
a slice-wise artery candidate detection using thresholding.
Connected Component Analysis and size prefiltering is per-

formed as a next step slice by slice. The candidates are then
connected to a squared distance graph which is traversed by
the Dijkstra algorithm to get the artery candidates. Finally,
the best candidates are chosen considering an additional set
of features. The method was tested on 119 datasets where the
iliac bifurcation was labeled in 75.63% of the cases correctly
and the common iliac and one of its branches were detected
in 82.77% of the cases correctly. The previous two works
presented detection results of specific bifurcations, but the
authors claim that their method is applicable to other bifur-
cations as well. However, modeling different types of bifur-
cations is more complex than modeling single arteries. In
this work we introduce a chain of machine learning tech-
niques with a simple set of features which is general enough
to successfully identify different kinds of single arteries.

Our main contributions are two-fold. First, we apply a
novel chain of machine learning techniques including a new
anatomical feature to identify specific arteries. Second, we
present results on five different arteries from three body re-
gions in scans with varying field-of-views, which proves the
robustness and generality of our method.

The rest of this paper is organized as follows: The steps
of our algorithm are described in Section 2 and evaluated in
Section 3. Our conclusion and future work are in Section 4.

2. Methods

Our artery identification framework detects five differ-
ent arteries: The left common iliac (LCI) and the right
common iliac (RCI) in the pelvis, the descending aorta
(AO) in the abdomen and chest, and the left common
carotid (LCC) and the right common carotid (RCC) ar-
teries in the neck, denoted in the following by o, where
o € {LCI,RCI,AO,LCC,RCC}. The input to our algo-
rithm is a CTA scan V = {Zj},j = 1,...,n given as an
ordered set of n slices. All CTA scans have a feet-to-head
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face-up orientation and intensities in Hounsfield Units (HU)
(see Section 3.1). The task is then to return a set of artery
seed positions {s%},i =I%,...,i" for every present artery of
interest o in the region R* = {z;},i =I*,....a% R* CV
with slice lower bound /* and upper bound #* where o was
localized. Our method starts with ROI detection and deliv-
ers aregion R* = {z;},k =1%,...,u*, R* C V for each a..
Possible artery candidate positions are regressed on every
detected slice in R*. The candidate positions are then clas-
sified into artery or non-artery classes. The ROI is refined to
R* = {z},i=1%...,i% R* C R based on the classifica-
tion result and the classification probabilities are finally used
to detect each sg. using the Minimum Cost Path (MCP) al-
gorithm. Figure 1 gives an overview of the framework, each
step is described in this section in detail.

2.1. ROI Detection

After loading slices of a CTA scan, the first step is to localize
the slices which contain the arteries o present in the scan. We
apply machine learning in this step. For training data gener-
ation, we first map the slice numbers j € Nof z; € V to a
global standardized body height space h: N — [0,1] C R,
based on manually set landmarks where h(j) = O corre-
sponds to the toes and /(j) = 1 to the top of the head. This
step gives information about the field-of-view of the scan. To
be able to decide if a field-of-view contains an artery ROI,
we capture the body height intervals covering the arteries in
the global standardized body height space. We use for this
purpose ground-truth annotations of transformed slice lower
h(1*) and upper bounds (1) in the data for each artery.

To be able to transform slice numbers to global standard-
ized body height space values in unseen data, we apply the
method of Graf et al. [GKS™11]. The authors compute im-
age descriptors of bone and soft tissues on every slice. The
mapping A(.) is finally learned by Nearest Neighbor regres-
sion using the slice descriptors and the global standardized
body height values of the training data. In order to local-
ize ROISs of arteries o in unseen data we use the method of
Cavallaro et al. [CGK*11]. Given a learned mapping k(.), a
ROI query is performed in an unseen scan by selecting initial
candidates A(j) which match 4(I*) and A(u®) with an initial
error e. It is continued with an iterative search for candi-
dates with smaller errors than e using an interpolation and
regression combination. The method finally delivers slice
lower and upper bounds /* and u®, and determines the ROI
R* = {zi},k=1%,...,u® for every present artery.

2.2. Slice-wise Regression of Artery Positions

After a ROI R% covering an artery of interest o
is detected, candidates for the artery slice-positions
{ag } sk = 1%,...,u® are localized slice-wise. Artery slice-
positions are derived from centerline annotations of medical
experts (see later in Section 3.1).
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First, the body boundary is detected on a slice z; by
applying the contour tracing algorithm proposed by Graf
et al. [GKS*11] on pixels with intensities greater than
—500 HU. This step helps us to concentrate solely on
the body region of a slice. Afterwards, M slice-positions
{r}},m=1,...,M are sampled via Gaussian sampling from
the center of the detected body boundary. As a next step,
we extract features around every sampled position. We com-
pute Histogram of Oriented Gradients (HOG) [DTO05] fea-
ture vectors in 80 x 80 mm image patches around each posi-
tion. We chose the HOG features due to their excellent per-
formance on medical images demonstrated in recent works
[EGK*10, LKZ14]. After features are extracted on a slice
27, the candidate positions {a}; },m = 1,...,M for ag. are
extracted based on a previously trained machine learning
model. We use a regression based technique for this task
where we capture the relationship between the feature vec-
tors and displacement vectors from each r, to ag( using
training data. Emrich et al. [EGK™*10] introduced an effec-
tive and simple regression technique called Instance-based
Nearest Neighbor regression. It performs Nearest Neighbor
search in a two-stage manner. First, k| nearest neighbor sam-
ples are collected from each instance in a training set where
they refer to a CT scan as an instance. Once they are col-
lected, the K, nearest neighbors are taken out of the k-
collection and regression is performed on them. We apply
the aforementioned method with the extension that we take
the K| nearest neighbors only from those CTA scan instances
which have the same value in the global standardized body
height space as h(k) of a query slice z;. To account for the
error of the mapping A(.), we subdivided each training scan
into overlapping consecutive sets of slices instead of single
slices and test whether h(k) falls into a region or not. To
accelerate the Nearest Neighbor search in our high dimen-
sional HOG feature space we apply the Priority Search K-
Means Tree (K-Means Tree) algorithm presented recently by
Muja et al. [ML14].

2.3. Slice-wise Candidate Classification

The artery position regression delivers M possible candidate
positions per artery o slice-wise. The task is to find the can-
didates on each slice in R* which hit the artery of inter-
est. Therefore, we first segment the underlying structure lo-
cally around each candidate a7, on a slice z;. We consider
60 x 60 mm regions around the points for the segmentation
which is big enough to accommodate any artery of interest.
Neila et al. [MNBA14] recently proposed a fast and pow-
erful approximation method to optimize the functional of
Active Contours Without Edges. We apply their method for
segmentation of the underlying structures. If a segmentation
Q is round, has an average intensity similar to injected con-
trast media and has a specific location we assume that it is
a cross-section of an artery of interest. For that reason, we
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Figure 2: Maximum intensity projection images of ROI detection results. Red rectangles mark the LCC and RCC slices, green
rectangles the AO slices and yellow rectangles the LCI and RCI slices.

model roundness (x1) and average intensity (x,) as follows:

xi = (4mA) /17, o))
n=t Y )
10 S0

A corresponds to the area of the segmentation and / to the
length of the contour of the segmentation in Equation 1, and
Iq is the intensity at a position q of the segmentation Q in
Equation 2. All our arteries of interest are located next to the
spine. For that reason we model their anatomical relationship
as a feature. HladGvka et al. [HMB15] presented an easy-to-
use and robust method for detecting the center of the spinal
canal in CT scan slices covering the spine. We apply their
method to detect the spinal canal center ¢, per slice. X- and
y-displacements from c¢;, to each vessel candidate position
a7, are then computed (see Equations 3 and 4).

X3 = c’zck — dgi’x 3)
IR
Xy = ey —ay” “)

The aforementioned features represent our feature vector
X = (x1,...,x4) for classification into an artery of interest C
or not C,. The classification models are trained on ground-
truth segmentations around artery slice-positions and arbi-
trary positions sampled outside the ground-truth segmen-
tations in the training data. The classification into the two
classes C1 or C; is performed by a Naive Bayes classifier
(see Equations 5 and 6).

4
P(Cy|x) = P(Cy) [ ] P(s|Cv) 3)
b=1

¥ = argmax P(Cy|x) (6)
ve{l,2}

2.4. Extraction of Artery Seeds

After classifying each candidate &7, into C; or Cy, we start
with a slice selection procedure in order to make sure that the
artery of interest is present. Therefore, we iterate through the
slices from [* to u®. We stop at the first slice which contains
at least one candidate classified into C; and save its position
into [%. We do the same starting from u® towards /* and save
the position of the first slice into #*. If the condition [* < #*
holds, 7* and #®* are our final slice lower and upper bounds
which determine our refined ROI R* = {z;},i = I[*,...,a%.
As a next step we iterate through all slices of R* and extract
the best candidate on every slice based on classification pos-
terior probabilities P(C| |x) and P(C;|x). A selection of can-
didates with maximum P(C |x) from slice to slice is a possi-
ble but not robust way due to intermediate slices with maxi-
mum probabilities at outlier positions. Therefore, we use an
MCP search algorithm which selects a minimum cost path
over slices considering one candidate per slice. The MCP
includes basic geometric constraints in order to avoid big
jumps from one slice to an other due to outliers. The costs ¢
for the MCP are defined as the transformed odds ratio (OR)
by Yule’s coefficient of colligation [Yul12, BFHO7]:

CVOR-1 . P(Cal)/(1— P(Cx))
= Vort1 MM OR= e pcy) "

The candidates selected by the MCP algorithm are the seed
positions {s%} i = 1% ..,d* per artery which is the final
output of our framework.
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[-deviation u-deviation

Overlap
LCI
RCT 14.66 +10.78 | 15.724+12.20 | 52.1 %
AO 22.55422.73 | 13.44+£10.07 | 869 %
LcC
RCC 10.20+5.51 9.45+4.69 68.8 %
All 16.87 £ 17.31 12.814£9.75 72.8 %

SRE [mm] | MCPE [mm] | AIDR
LCI | 17.80+£5.06 | 445+283 | 100 %
RCI | 14441054 | 585+547 | 983 %
AO | 1473£741 | 870£3.15 | 983 %
LCC | 1355£5.15 | 280+1.79 | 93.4 %
RCC | 1231%5.13 | 476+£3.90 | 71.5 %
All | 1466+£7.26 | 652+4.13 | 944 %
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Table 1: ROI detection results: Lower/upper bound devia-
tion statistics from ground-truth and average overlap.

3. Evaluation

In this section we show leave-one-out cross-validation re-
sults of our artery identification framework on 20 CTA scans.
First, we describe the CTA data, then we show intermediate
and final evaluation results.

3.1. Datasets

Our data contains 20 diversely cropped contrast-enhanced
CTA scans from three different vendors including 5 in-
stances with legs, 9 scans with torso and 6 scans with neck.
The CTA scans have feet-to-head face-up orientation and
contain intensities in HU. The leg scans contain artery cen-
terline annotations for LCI and RCI, the torso scans contain
AO centerline annotations and the neck datasets include an-
notations of LCC and RCC arteries. Ground-truth centerline
positions have been annotated in 3D by a medical expert.
Each artery slice-position aJ was finally generated through
linear interpolation of the ground-truth positions. Ground-
truth segmentations for all arteries were generated addition-
ally on each slice. The pixel sizes of the 512 x 512 axial
images range from 0.32 mm to 0.96 mm, and the slice dis-
tances vary from 0.3 mm to 1.5 mm. The smallest and largest
scan comprise of 277 and 1743 slices respectively. All slice
images were resampled to 1 X 1 mm. For the leg scans we
sampled slices every 1 mm, for the torso scans every 4 mm
and for the neck scans a slice spacing of 2 mm was used.

3.2. ROI Detection Performance

In order to measure how well the artery slices were de-
tected we performed leave-one-out cross-validation with all
20 CTA scans. First, we measured the performance of the
learned mapping 4(.) to the global standardized body height
space. The overall average error was 28.15 £ 45.28 mm for
slices where arteries o were present in all 20 CTA scans.
Second, the performance of the ROI detectors was evalu-
ated. The arteries LCI, RCI and LCC, RCC had nearly the
same h(I%) and h(u®) in all our scans, thus we detected only
LCI and LCC and assigned the detected regions also to RCI
and RCC. The ROI detection step returned for each left-out
scan [* and u® for the arteries present in the scan. After re-
jecting detections with missing lower and/or upper bounds
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Table 2: Slice-based artery seed detection results (SRE =
Slice regression error, MCPE = MCP error, AIDR = Artery
identification rate).

and checking if I* < u® and h(I*) < h(u®) holds we got
valid region detections for completely present arteries in all
20 scans. Furthermore, we evaluated the overlap between the
slices with artery ground-truth and our detections. The av-
erage slice overlap for all artery ROI detectors was 72.8%
with average distances to ground-truth of 16.87 +17.31 mm
for the lower bounds and 12.81 £9.75 mm for the upper
bounds. The ROI detection results are shown in Figure 2
and summarized in Table 1. We reached the highest over-
laps with ground-truth in the AO region, followed by LCC,
RCC and LCI, RCI. The low overlaps were due to ROI
detections which were subsets of the ground-truth regions.
This is more preferable than shifted detections outside of the
ground-truth.

3.3. Slice-wise Artery Regression Performance

We measured the regression performance by computing the
distance between ag. and the mean of the M regressed can-
didate positions {47} } on each slice of R* and refer to it as
slice regression error (SRE). We sampled M = 500 positions
on each slice via Gaussian sampling. The instance based re-
gression parameters K and kp were setto k] = 1l and kK, =3
as proposed by Graf et al. [GKS*11]. Altering these values
had no significant influence on the results. The K-Means
Tree showed the best performance with a branching factor
of 128 and number of iterations of 15, which have been pro-
posed by Muja et al. [ML14]. For extraction of the HOG
feature vectors the method of Dalal et al. [DT05] was used
where 324-dimensional feature vectors were extracted with
9 orientation bins and 4 x 4 cells for each 80 x 80 mm patch.
Leave-one-out cross-validation runs were set up among CTA
scans containing the same artery region, thus we took the
139 artery slices from the 5 leg scans to cross-validate the
artery position regression for the LCI arteries, the 483 artery
slices from the 9 torso scans to cross-validate the regression
for AO positions, etc. In each run the artery slices of a scan
were selected for testing and all artery slices of the remain-
ing scans were used for training. The overall average dis-
tance to ground-truth was 14.66 £ 7.26 mm considering all
cross-validation runs. The cross-validation performances per
artery are summarized in Table 2.
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Figure 3: (a)-(c): Regressed candidate position results for RCI, AO and RCC. Ground-truth positions appear as green dots,
the remaining dots have colors according to the costs c calculated based on classification probabilities (see Equation 7). Red
means low costs and blue high costs. (d)-(f): Slice seed positions computed by MCP for RCI, AO and RCC. Seed positions are
visualized by yellow dots and ground-truth points are shown in green.

3.4. Artery Seed Extraction Performance

After the regressed position candidates were calculated on
each slice of R*, we evaluated the seed detection perfor-
mance. Here we used the same cross-validation setup as in-
troduced in Section 3.3. In each cross-validation run, Naive
Bayes classifiers were trained using 50 artery slice positions
sampled from the ground-truth segmentations and 50 non-
artery slice positions sampled from outside of the ground-
truth segmentation area. The learned classifiers were then
applied to the slices of the left-out scan. Slice images show-
ing the regressed candidate positions weighted by the nor-
malized odds ratios (see Equation 7) are visible in Fig-
ure 3. The ROI detectors delivered regions completely in-
side ground-truth and so no further slice selection was per-
formed using the method described in Section 2.4. Thus, the
slices of R were identical to the slices of R* due to equal
lower I* = [* and upper bounds #* = u®. The last step in
a cross-validation run was the MCP computation, which re-
turned a final seed position s% on each detected artery slice

(see Figure 3). We used the following metrics to measure the
slice-based seed detection performance:

1. MCP error (MCPE): The statistics of detected seed posi-
tion sg to the ground-truth slice position ag distances.

2. Artery identification rate (AIDR): The ratio of sg inside
the artery and all detected positions expressed in percent-
age. We used the artery ground-truth segmentations to de-
cide on positions falling inside the artery.

Both measures are calculated for slices within each artery
cross-validation run separately and all runs together (over-
all performance). The overall AIDR was 94.4 % with an
MCPE of 6.52 +4.13 mm. All slice-based seed detection
performances are shown in Table 2. Our MCPE results are
well conform with arterial statistics coming from anatomi-
cal studies in the literature. Valecchi et al. [VBG™10] report
mean calibers of 16.041.1 mm for AO and 9.2 4+ 1.3 mm for
LCI and RCI based on a study with 250 subjects. Moreover,
we achieved high AIDR performances for LCI, RCI, AO and
LCC. For AO there was only 1 dataset out of 9 where seed
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positions did not completely follow the artery due to out-
liers. For RCI there was a small deviation in 1 scan out of 5,
LCI was correct in all 5 cases and LCC seeds were affected
by outliers in 1 out of 6 datasets. RCC arteries showed the
lowest performance with 2 problematic cases out of 6. This
was due to vein outlier positions next to RCC in 2 datasets.
Veins have very similar appearance to RCC in these datasets,
which led to a complete vein detection in the first and to a
partial RCC and vein detection in the second case. All in all,
seeds were detected in all artery slices inside ground-truth
segmentations for 26 out of 31 arteries in the 20 scans yield-
ing an overall success rate of 83.8 %.

4. Conclusion and Future Work

In this work we presented a fully-automated artery identifi-
cation and seed detection approach applied on varying field-
of-view CTA scans. Our approach identifies five main ar-
teries using a chain of machine learning steps and includes
an anatomical feature capturing the spatial artery-spine rela-
tionship. Our results on 20 CTA scans are competitive to re-
cent works and demonstrate its good applicability for the ini-
tialization of automated vessel analysis systems. As a future
work, we will evaluate our method with a larger set of data
and investigate the problematic cases, especially the vein
outliers. More than that, we will explore additional features
for artery candidate classification such as the cross-sectional
diameter in order to increase the robustness of our frame-
work.
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