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Figure 1: A demonstration how different 2D transformations (top right insets) of the microsurface affect the reflection off a rough silver
plate. Top left: The original unmodified surface with shape-variant GTR distribution with tail γ = 1.7 and roughness α = 0.0121. A 10×10
grid covers the unit texture space to serve as a reference. Top right: The microsurface is stretched 5 times horizontally. This makes the surface
smoother in that direction, so the highlight is compressed accordingly. Bottom left: A skew transform M with (a,b,c,d) = (1,0,2,1), see
Equation (9). Bottom right: An example of a non-linear transformation: T (u,v) = (u,v+ 2u5). The Jacobian matrix JT (top right inset) is
a local linear approximation of T and we apply it as a local tangential transform in Equation (9). Notice that the prolonged shape of the
highlight to the right is due to more surface compression in that region.

Abstract
We derive a general result in microfacet theory: given an arbitrary microsurface defined via standard microfacet statistics, we
show how to construct the statistics of its linearly transformed counterparts. A common use case of such transformations is
to generate anisotropic versions of a given surface. Traditional anisotropic derivations based on varying the roughness of an
isotropic distribution in an ellipse have a general closed-form formula only for the subclass of shape-invariant distributions.
While our formulation is equivalent to these specific constructs, it is more general in two aspects: it leads to simple closed-
form solutions for all distributions, including shape-variant ones, and works for all invertible 2D transform matrices. The
latter is of particular importance in case of deformation of the macrosurface, since it can be approximated locally by a linear
transformation in the tangent plane. We demonstrate our results using the Generalized Trowbridge-Reitz (GTR) distribution
which is shape-invariant only in the special case of the popular Trowbridge-Reitz (GGX) distribution.
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1. Introduction

Microfacet theory is based on geometric optics [BS63; TS67]
and it has been adopted in computer graphics as a standard tech-
nique [Bli77; CT82; WMLT07]. It captures the statistical be-
havior of rough surfaces: microfacet surfaces (microsurfaces) are
represented by a microfacet distribution function and a proper
shadowing term is necessary for physically-correct microsurface
configurations [Smi67; APS00; Hei14]. A practically viable and
physically-based microfacet model requires both analytic formu-
las for evaluating and sampling the microfacet distribution, and
a simple and accurate formula for the shadowing term. Sampling
equations for the distribution of visible normals [HD14] are also
highly desirable. Unfortunately, they are available only for the two
most popular microfacet distributions [RBSM19] - the Beckmann
distribution [BS63] and the Trowbridge-Reitz distribution [TR75].
The latter distribution was popularized by Walter et al. [WMLT07]
with the alias "GGX". The important effect of multiple scattering
in microfacet surfaces has been addressed [HHdD16], but this is
out of the scope of our work. We restrict our results to the first scat-
tering event. Also, our work is based entirely in geometric optics,
and diffraction effects are ignored [HP17]. Lastly, a model that can
be extended to an anisotropic microfacet distribution is valuable in
practical applications, as this functionality adds substantial addi-
tional control over object appearance, besides the basic parameters
of the microfacet distribution function: many real-world objects ex-
hibit anisotropic reflections [Kaj85], so models that are capable of
describing their appearance are needed.

The current state of the art for creating analytic anisotropic dis-
tributions from existing analytic isotropic ones is based on vary-
ing the roughness of the isotropic distribution in an ellipse. This
idea can be traced back at least to the elliptical Gaussian model of
Ward [War92]. It was later adapted to microfacet models [APS00;
KSK10] and has been used since then in modern rendering sys-
tems [NVZJ19; PJH16; Bur12]. Heitz defined the class of shape-
invariant isotropic distributions for which this construction is al-
ways possible [Hei14]. Specifically, this class of distributions has
considerable practical advantages:

• Derivation of normalized anisotropic distributions by apply-
ing different roughness values in x and y direction. For shape-
invariant distributions this is equivalent to a non-uniform scaling
of the distribution.

• Extension of the 1D isotropic shadowing function to anisotropic
without increasing its dimension.

• Extension of the isotropic sampling equations (including distri-
bution of visible normals if available) to anisotropy.

Our work generalizes all of these advantages to all microfacet dis-
tributions and to all 2D invertible transformations, beyond sim-
ple scaling. We investigate how the microfacet distribution and the
shadowing function of an existing microsurface change when the
microsurface is linearly transformed in the tangent plane.

The related previous work is presented in the next section. Nec-
essary preliminary concepts from microfacet theory are provided
in Section 3. Our method is derived in Section 4: we first inves-
tigate which linear transformations of the microsurface result in
valid microsurfaces, then we show how to construct the statistics of
the transformed microsurfaces and finally we make the connection

of our technique with the classical anisotropy for shape-invariant
distributions. In Section 5 we demonstrate our technique by con-
structing anisotropic modifications of shape-variant distributions.
To enable the visualization of deforming objects we show how to
track the local deformation of an object using a tension texture.

2. Previous work

Kajiya derived anisotropic reflection models from the equations
of electromagnetism [Kaj85]. He pointed out that statistical mod-
els are desirable, but the anisotropic integrals are "extremely com-
plex". Poulin proposed an anisotropic model based on sampling
microscopic cylinders layered onto the surface [PF90]. Ashikhmin
et al. [APS00] introduced various anisotropic models to microfacet
theory, and developed matching shadowing equations.

Nagano et al. [NFA*15] studied the complex appearance of hu-
man skin under deformation. In addition to the meso-structure de-
tail represented by scanned normal maps they showed that micro-
structure dynamics play a vital role in the overall appearance.
Measurement of skin samples indicated that stretched skin ap-
pear shinier while compressed skin have rougher look. They in-
corporated this measurement data into their shader by blurring the
stretched portions of the surface and sharpening the compressed
ones. From appearance point of view this aspect is similar to
our work, although we present a mathematical framework for mi-
crofacet surfaces that is not based on measurements. Dupuy et
al. [DHI*13] presented a filtering technique for displaced surfaces
based on non-centred anisotropic Beckmann distributions. It is a
multi-scale representation for mapped surfaces that, similarly to our
work, can predict scaled surface appearance. However, our work is
focused on microsurface-related behavior for all distributions while
their work is targeted at filtering Beckmann surfaces. Non-centred
distributions can be used to modulate an arbitrary microsurface by a
normal or displacement map, and they can be applied to our model
as well. The shifted distribution remains normalized and only the
shadowing function requires alteration [Hei14].

There are a number of approaches for filtering reflectance from
microstructures [HSRG07; WDR11; JHY*14; WZYR19], includ-
ing a large amount of work for rendering glints following the frame-
work of Yan et al. [YHJ*14]. A model capable of large spectrum of
appearances based on tabulated piecewise linear distributions was
presented by Ribardière et al. [RBSM19]. Our work is targeted at
modifying existing distributions and as such is orthogonal to these
methods.

GGX is probably the microfacet distribution that is currently
most widely used in practice, as it has been consistently verified
to be a better all-around match for acquired data [TR75; Bli77;
WMLT07; DHI*15] than the Beckmann distribution: the main rea-
son for this seems to be the long tails of the distribution. How-
ever, many real materials have even longer tails, and therefore Dis-
ney developed the Generalized Trowbridge-Reitz (GTR) distribu-
tion as a natural extension to the GGX distribution [Bur12]: this
exposes an exponent γ that provides additional control of the tail.
This is especially attractive for exponents less than two, which
correspond to heavier tails that those of GGX. For example, a
GTR exponent γ = 3

2 results in the Henyey-Greenstein distribu-
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tion [HG41] evaluated at half-angles, while exponent of γ = 1 cor-
responds to the Berry distribution [Ber23] which is employed in
the coat layer of Disney’s material [Bur12]. We are not aware of
other tail-controllable distributions that are used in the industry. In-
terestingly, the GTR distribution is shape-variant for all tail expo-
nents γ ̸= 2, and the elliptical anisotropic formulation cannot be
integrated analytically in these cases [Bur12]. This makes it a prac-
tical use case to demonstrate our technique on.

Löw et al. [LKYU12] introduce isotropic models suited for
glossy reflections that allow control of the tail of the distribution.
Work has been done to develop shape-invariant distributions that
admit tail control. The STD [RBMS17] was proposed to span Beck-
mann and GGX distributions although the heavier than GGX tail
control was limited. The Hyper-Cauchy distribution was utilized
in the optics literature [WOB*06] and was later used for BRDF
fitting [BM14]. Ribardière et al. presented a hierarchical classifica-
tion of analytic distributions that generalize Beckmann and GGX
distributions until they reach the most general Skewed Generalized
T-Distribution (SGTD) [RBSM19]. They note that only the distri-
butions in the lower levels of this hierarchy are shape-invariant,
and therefore are guaranteed to have an anisotropic form. With our
framework an anisotropic version of any SGTD can easily be con-
structed. Notably, the GTR distribution is not part of this classifi-
cation. Recently, Barla et al. [BPV18] presented a technique that
combines two BRDFs to provide more control on the tails of the
distribution. Similarly, our technique modifies existing BRDFs and
can be employed on top of their technique when their input BRDFs
are microfacet-based.

It has been shown that genetic programming could be used
to find new analytic BRDFs, including microfacet ones that pro-
vide better fits to acquired data compared to existing micro-
facet BRDFs [BLPW14]. All of their microfacet distributions are
isotropic, and it is unlikely for their technique to generate shape-
invariant distributions. Our framework can directly extend them to
anisotropy.

Heitz et al. [HDHN16] introduced Linearly Transformed Spher-
ical Distributions (LTSD), and derived a closed-form formula for
them. However, their formula does not lead to normalized micro-
facet distributions, while our framework for linearly transformed
microsurfaces ensures this. In Section 4, we derive the Jacobian
that ensures the normalization of the transformed microfacet distri-
butions, and discuss the differences to the LTSD formulation.

Finally, there are examples of shape-variant distributions used in
the industry, like Phong [WMLT07], Sheen [EK17], discrete GGX
and Beckmann [AK16], and GTR [Bur12].

3. Preliminaries

In this section we review the relevant background. The main nota-
tion is collected in Table 1.

3.1. Microsurface statistics

In microfacet theory the shaded surface is referred to as the macro-
surface, while the microscopic details are represented by an infi-
nite collection of microfacets which form a continuous microsur-
face [WMLT07]. Features of the macrosurface are assumed to be

Table 1: Table of notation.

H2 Unit hemisphere
v (vx,vy,vz) = (sinθv cosφv,sinθv sinφv,cosθv) ∈H2

n Macrosurface normal (0,0,1)
m Microsurface normal (micro-normal)
D Microfacet distribution function
Dv Distribution of visible normals from direction v
G1 Monodirectional shadowing function
P22 Slope distribution
α Roughness of the microfacet distribution
αx,αy Roughness values along x and y for anisotropy
γ Tail falloff of the microfacet distribution
M Microsurface transformation matrix
DM Microfacet distribution of the transformed surface
DvM Visible normals distribution for the transformed surface
G1M Shadowing function of the transformed surface
P22M Slope distribution of the transformed surface

much larger than the microfacets, so from the standpoint of the mi-
crosurface the macrosurface can be assumed to be locally flat. In
our exposition all vectors are in the local frame of the macrosur-
face, and we assume its local normal as n = (0,0,1). A differential
area dA on the macrosurface is projected along a direction v ∈ H2

to differential area (v ·n)dA, Figure 2.

The microsurface is fully determined by its profile (commonly
Smith) and microfacet distribution D(m) [Hei14]. The latter is de-
fined in a coordinate system that is aligned with the macrosurface.
For a given micro-normal m ∈ H2 it evaluates to the differential
area of the microsurface oriented with m. In a valid configuration
the area of a non-flat microsurface is always greater than the macro-
surface area, and the signed projected area of the microsurface must
be equal to the projected area of the macrosurface along an arbitrary
direction v ∈H2 [WMLT07], Figure 2 a). This property enforces a
normalization constraint on the microfacet distribution:∫

H2
D(m)(v ·m)dm = (v ·n). (1)

Pointwise evaluation of microfacet-based BRDFs requires an
auxiliary function derived from D(m). The monodirectional shad-
owing G1(o,m) yields the fraction of the microfacets with normals
m that are visible from direction o, Figure 2 b). It is subject to a
normalization constraint [Smi67; APS00; Hei14]:∫

H2
D(m)G1(v,m)max(0,v ·m)dm = (v ·n). (2)

This equation is equivalent to the Weak White Furnace Test for
specular microfacets [Hei14] when the integration changes from
normals m to vectors on the sphere i with m = v+i

||v+i|| [TS67].
Notice the similarity between the two constraints. The negative
projected area from the back-facing microfacets in Equation (1)
(v ·m) < 0 is clamped in Equation (2), and instead the shadowing
is compensated by the G1 term. This resemblance is illustrated with
the two diagrams in Figure 2.

Microfacet BRDFs require a tool to evaluate what portion of mi-
crofacets with normal m are seen from both the incoming i and
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a) Constraint on D, Equation (1) b) Constraint on G1, Equation (2)

Figure 2: A differential area dA on the macrosurface with normal n. The projection of this area along direction v ∈ H2 is (n · v)dA. The
microsurface (green) is continuous and it is composed of microfacets with micro-normals m. Microsurface statistics are subject to constraints.
a) Microfacet distribution D: The projected areas along v of all forward-facing microfacets (blue) minus the projected areas of all backward-
facing microfacets must be equal to the projected area of the macrosurface (n · v)dA. b) Shadowing function G1: When the total projected
area along v of forward-facing microfacets (blue) is greater than the projected area of the macrosurface (n · v)dA the shadowing factor G1
must diminish it to compensate for the shadowed regions (red).

outgoing o light directions. This is achieved by the shadowing-
masking function G(o, i,m) which is based on the shadowing
G1 [WMLT07; Hei14]. In this paper, we exclusively use the height-
correlated shadowing-masking function [RDP05; Hei14].

We use these two constraints to validate our transformed micro-
surfaces. First we verify that D has a proper normalization. It is
sufficient to ensure that the projected microfacets along the macro-
surface normal do not overlap and perfectly cover the macrosur-
face. Hence, Equation (1) is substituted with v := n:∫

H2
D(m)(n ·m)dm = 1. (3)

Then to validate G1 we must ensure that Equation (2) is fulfilled
for each v ∈H2.

Finally, a microfacet distribution can be converted to a distribu-
tion of slopes

P22

(
−mx

mz
,−my

mz

)
= D(m)cos4

θm, (4)

where −mx
mz

and −my
mz

are the slopes of a microfacet with normal

m = (mx,my,mz). The factor cos3
θm is for the change of measure

from solid angle to slopes and the factor cosθm is for the projection
of the microfacets onto the macrosurface [WMLT07; Hei14].

3.2. Anisotropy

The classical anisotropy approach presented here is based on
Heitz’s extended report [Hei14]. Commonly, microfacet distribu-
tions D(m) have roughness parameter to control the spread of the
distribution which is usually denoted by α. Traditionally, isotropic
distributions are extended to anisotropy by varying the roughness
in the xy tangential plane. This is done by specifying roughness αx
along x axis and αy along y axis and replacing the isotropic argu-

ment 1
α2 with the ellipse

cos2
φm

α2
x

+
sin2

φm

α2
y

. (5)

This leads to a distribution which is not properly normalized. A
normalization factor can be computed if Equation (3) can be inte-
grated in closed-form. This is not always possible - for example the
GTR distribution does not have closed-form normalization except
for the special case of GGX distribution [Bur12].

3.3. Shape-invariant distributions

Shape-invariant isotropic distributions have the property that their
shape does not change when the roughness changes. They are an
important sub-class of distributions: for all roughness values the
distribution curves are scaled copies of each other. Such distribu-
tions take the form:

D(m) =
1

(m ·n)4
1

α2 f
(

tanθm
α

)
, (6)

where the function f is a 1D distribution. The anisotropic version
based on Equation (5) is

D(m) =
1

(m ·n)4
1

αxαy
f

(
tanθm

√
cos2 φm

α2
x

+
sin2

φm

α2
y

)
. (7)

To complete the anisotropic microsurface configuration the shad-
owing function G1(v,m) must be evaluated for the projected rough-
ness onto the direction v

αv =
√

cos2 φvα2
x + sin2

φvα2
y . (8)

4. Our framework

We take a different approach to altering microfacet distributions.
By investigating how linear transformations of the microsurface af-
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fect its statistics we arrive at a simple and general framework for
applying modifications to all valid microsurfaces.

4.1. Transforming the microsurface

Although the microfacets are infinitely small, we can still think of
the microsurface as a 3D object which is aligned with the macrosur-
face. For instance, Heitz et al. [HHdD16] validated their multiple
scattering model by ray-tracing a pre-generated Beckmann surface.
So it stands to reason that the microsurface can be transformed by a
3×3 matrix, just like regular geometry. We consider all such trans-
formations that lead to a valid microsurface. These are all invertible
matrices of the form

M =

a c 0
b d 0
0 0 1

 . (9)

• M performs an arbitrary linear transformation on the microsur-
face in the tangential plane, parallel to the macrosurface, Fig-
ure 3 b).

• The first two column vectors of M are restricted to the tangential
plane, because the microsurface must remain aligned with the
macrosurface, Figure 3 c).

• The first two row vectors of M are also contained in the tangen-
tial plane, because vertical shear could break the microsurface
configuration. Microfacet normals m could turn to the negative
hemisphere, Figure 3 d).

• Scaling the height of the microsurface h times results in the same
microsurface statistics as if we scale the xy plane by a factor
of 1

h . This is observed in the slopes of the transformed surface

− amx+bmy
mz

and − cmx+dmy
mz

where the scaling of the height hmz

is identical to modifying M using ( a
h ,

b
h ,

c
h ,

d
h ). Therefore, we al-

ways set the last entry of M to 1.

Compression

ShearMisalignment

a) b)

d)c)

⨉½

Figure 3: Valid (top row) and broken (bottom row) microsurface
configurations. Compression: a)→ b): Linear transformations par-
allel to the macrosurface lead to new valid microsurfaces. Mis-
alignment: a)→ c): Linear transformations outside the tangen-
tial plane break the micro-macrosurface alignment, as some micro-
facets sink below the macrosurface (red). Shear: b)→ d): Vertical
shear parallel to xy plane moves some microfacets into the negative
hemisphere (red).

A basic fact in computer graphics is that when an object is trans-
formed using a matrix M, the normal vectors to the surface must be

transformed by the inverse transpose of that matrix (M−1)T . This
transformation is derived by enforcing the transformed tangents to
be orthogonal to the transformed normals as they should be by def-
inition [PJH16]. Indeed this is directly verified

((M−1)T m)T (Mt) = mT (M−1M)t = mT t = 0, (10)

where t is a tangent to a microfacet with normal m.

Figure 1 demonstrates our method with non-uniform scaling and
skew transforms for shape-variant GTR. Note that the effect of
stretching in Figure 1 (top right) is observed using the elliptical
anisotropic formula for shape-invariant distributions, however in
this shape-variant case the linear stretching of the microsurface
does not result in linear stretching in the roughness parameter. The
effect of a general 2D linear transform in Figure 1 (bottom left) be-
yond stretching has not been shown so far even for the simpler case
of shape-invariant distributions. Furthermore, in Figure 1 (bottom
right) we demonstrate our method for a non-linear 2D transforma-
tion. The Jacobian matrix of this transformation is a local linear
approximation that we use within our framework.

4.2. Statistics of the transformed microsurface

In order to compute the statistics of the transformed microsurface
we transform the arguments of the initial valid microsurface statis-
tics. All arguments are unit vectors so a normalization is required
after the arguments are transformed.

Shadowing function G1M(v,m): When the vector v is trans-
formed with the microsurface the shadowing configuration does not
change. Note that the micro-normal m must be transformed with
the inverse transpose of M

G1M

(
Mv

||Mv|| ,
(M−1)T m

||(M−1)T m||

)
= G1(v,m), (11)

and therefore we can express the shadowing of the transformed mi-
crosurface G1M in terms of G1 by inverting the matrices before the
arguments and normalizing

G1M(v,m) = G1

(
M−1v

||M−1v||
,

MT m
||MT m||

)
. (12)

This is a generalization of the masking probability invari-
ance [Hei14]. Indeed, if an object is lit by a directional light and
some parts of it are self-shadowed, then a linear transformation ap-
plied both to the object and the light direction will preserve the
shadowed portions. This is because the linear transformations pre-
serve the projection along the transformed light direction.

Microfacet distribution DM(m): The input normal m is trans-
formed similarly, but the resulting distribution is not normalized in
general. To find proper normalization we investigate the non-linear
transformation N : H2 → H2 that applies linear transformation to
a normal and normalizes the result

u = N(m) =
MT m

||MT m|| . (13)

N is a bijection because MT is invertible. The product of MT and
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the micro-normal m = (mx,my,mz) is MT m = (amx + bmy,cmx +
dmy,mz) and has length

||MT m||=
√

(amx +bmy)2 +(cmx +dmy)2 +m2
z . (14)

Note that the microfacet distribution is two-dimensional: the nor-
mal m is on the hemisphere, and can be represented by the first two
components mx and my. The z component is projected on the hemi-

sphere mz =
√

1−m2
x −m2

y . In order to find a new distribution DM

by transforming the argument of D with N we need to normalize by
the absolute value of the Jacobian determinant of N [PJH16]

DM(m) = |detJN |D(u), (15)

where

detJN =

∣∣∣∣∣∣
∂ux
∂mx

∂ux
∂my

∂uy
∂mx

∂uy
∂my

∣∣∣∣∣∣= ∂ux

∂mx

∂uy

∂my
− ∂ux

∂my

∂uy

∂mx
. (16)

We proceed to compute the partial derivatives

∂ux

∂mx
=

m2
y(ad2 −bcd −a)+mxmy(acd +b−bc2)+a

||MT m||3
(17)

∂ux

∂my
=

m2
x(bc2 −acd −b)+mxmy(bcd +a−ad2)+b

||MT m||3
(18)

∂uy

∂mx
=

m2
y(cb2 −abd − c)+mxmy(abc+d −da2)+ c

||MT m||3
(19)

∂uy

∂my
=

m2
x(da2 −abc−d)+mxmy(abd + c− cb2)+d

||MT m||3
. (20)

After simplification of Equation (16) using Mathematica [Wol16]
we arrive at a concise result

detJN =
ad −bc
||MT m||4

=
detM

||MT m||4
. (21)

We use this result in Equation (15) to obtain the microfacet distri-
bution of the transformed microsurface

DM(m) =
|detM|
||MT m||4

D(u). (22)

We provide geometrical intuition behind Equation (22). The ma-
trix M transforms the xy plane and changes the projected micro-
surface area by a factor of |detM| = |detMT |. The microfacet dis-
tribution measures the microsurface differential area relative to the
macrosurface differential area, see Figure 4. Therefore, this factor
compensates for the change of projected area.

Furthermore, we observe in Figure 5 that

||MT m||= cosθm
cosθu

. (23)

Therefore, in Equation (22) the factor 1
||MT m||4 serves the purpose

to change the Jacobian 1
cos3 θu

and the inverse projection 1
cos θu

in
Equation (4), both with respect to the transformed micro-normal
u, to the Jacobian 1

cos3 θm
and the inverse projection 1

cos θm
with re-

spect to the original micro-normal m. Equation (22) is similar to the
Linearly Transformed Spherical Distributions (LTSD) [HDHN16],
however their formula does not include the inverse projections.
Hence, our formulation given with Equations (22) and (9) defines

М

dA

|detM|.dA

x

y

dA

Figure 4: The microsurface projection onto xy plane. Left: A
square patch (black) on the macrosurface has differential dA. Por-
tion of the microsurface that is inside this patch is coloured with
green while the rest is coloured red. Right: When this microsurface
is transformed using the matrix M, the portion of the microsur-
face which was previously in dA is transformed accordingly (gray
dashed region). The transform M changes the area by a factor of
|detM|= |detMT |.

mn

cosθm
u

cosθu

МТm

θu

θm

Figure 5: Geometry of micro-normal transformation. Let m
(green) be a micro-normal from the original microsurface. The
transformed vector MT m (blue, dashed) has the same z-component
as the original vector m because the transformation MT acts only
on the xy plane. This vector is normalized and labelled u= MT m

||MT m|| .

From the two similar right triangles with hypotenuses MT m and u
we find that ||MT m||= cos θm

cos θu
.

a different family of distributions which we name by analogy Lin-
early Transformed Microfacet Distributions (LTMD).

Finally, we express the slope distribution of the transformed mi-
crosurface P22M from the original slope distribution P22 by using,
in that order, Equations (4), (22) and (23)

P22M

(
−mx

mz
,−my

mz

)
= DM(m)cos4

θm

=
|detM|
||MT m||4

D(u)cos4
θm

= |detM| cos4
θu

cos4 θm
D(u)cos4

θm

= |detM|D(u)cos4
θu

= |detM|P22

(
−ux

uz
,−uy

uz

)
.

(24)

Consequently, Equation (22) can be also derived from the slope
distribution.
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Sampling micro-normals: in order to implement practical mi-
crofacet materials we need sampling equations for the microfacet
distribution. In our work we assume that the original microsur-
face before transformation has sampling equations at least for
D(m)(n ·m). Based on these, a micro-normal u′ is sampled

u′ ∝ D(m)(n ·m). (25)

Then it is transformed to the modified microsurface using the in-
verse transpose of M

m′ =
(M−1)T u′

||(M−1)T u′||
∝ DM(m)(n ·m). (26)

If the original microfacet distribution has sampling equations for
the distribution of visible normals [HD14]

Dv(m) =
G1(v,m)(v ·m)D(m)

v ·n (27)

then we can use them to sample the distribution of visible normals
of the transformed surface

DvM(m) =
G1M(v,m)(v ·m)DM(m)

v ·n . (28)

To do that for a given direction v we first transform it to the space
of the original surface w = M−1v

||M−1v|| , generate a visible normal u′
w

using the available equations and then transform it to the modified

surface using the inverse transpose m′
v =

(M−1)T u′
w

||(M−1)T u′
w||

.

4.3. Numerical validation

In addition to the proof presented in this section we also validated
our technique numerically. Specifically, we applied random trans-
formations M on a large variety of microsurfaces with random pa-
rameters and verified that:

• The normalization constraint in Equation (3) is fulfilled for all
transformed microfacet distributions DM .

• The shadowing constraint in Equation (2) with random direc-
tions v ∈H2 is fulfilled for all transformed shadowing functions
G1M .

The list of tested distributions include GTR [Bur12], anisotropic
Beckmann and GGX [Hei14], STD [RBMS17], Phong [WMLT07],
Sheen [EK17], Discrete GGX distribution [JHY*14; AK16]. We
provide the source code for this numerical validation.

4.4. Equivalence with classical anisotropy for shape-invariant
distributions

Suppose that we have a shape-invariant isotropic distribution D(m)
with roughness α, defined by Equation (6). To construct the tradi-
tional anisotropic form we replace α with two roughness values αx
and αy and use Equation (7). In our framework this is equivalent to
applying the diagonal transformation matrix

M =

 α

αx
0 0

0 α

αy
0

0 0 1

 . (29)

Then substituting Equation (6) in Equation (22)

DM(m) =
|detM|
||MT m||4

1
cos4 θu

1
α2 f

(
tanθu

α

)

=

α
2

αxαy

cos4 θm
cos4 θu

1
cos4 θu

1
α2 f

 1
α

√
u2

x +u2
y

u2
z


=

1
cos4 θmαxαy

f

(
1
α

√
α2m2

x

α2
xm2

z
+

α2m2
y

α2
ym2

z

)

=
1

cos4 θmαxαy
f

(
sinθm
cosθm

√
cos2 φm

α2
x

+
sin2

φm

α2
y

)
(30)

we get to Equation (7) when we first convert tanθu to cartesian co-
ordinates, express u in terms of m from Equation (13) and convert
back to spherical coordinates, see Table 1.

An important point is that for shape-variant distributions the
scaling of the microsurface is not equivalent to the scaling of the
roughness coefficient. Scaling operations of the microsurface are
always possible within our framework, while formulas for scaling
of the roughness coefficient cannot always be derived.

4.5. Discussion

In summary, for a given microsurface (D,G1) and a linear trans-
formation M given in Equation (9) our technique defines the trans-
formed microsurface (DM ,G1M) using Equations (22) and (12). It
is noteworthy that in our derivation we do not make any assump-
tions on the input microsurface. Therefore the input distribution
can be both shape-invariant and shape-variant, as well as isotropic
or anisotropic. This means that it can be used as a black box - it can
be implemented in a base class and can be applied regardless of the
underlying microfacet distribution, including stochastic [JHY*14]
or data-driven [APS00; YHJ*14; RBSM19] approaches. Further-
more, the solution is in closed-form and its performance depends
mainly on the expressions for D and G1.

5. Results

We demonstrate our technique using the standard microfacet BRDF
for specular microfacets [WMLT07] with an appropriate Fresnel
term for dielectrics and conductors. All materials use the GTR dis-
tribution with different tail exponents. Dimov derived an accurate
Smith shadowing term for GTR tails γ ∈ [0,4] that is exact at the
integers [Dim15] which we provide in Appendix A. Due to the lack
of sampling formula for the distribution of visible GTR normals the
sampling efficiency deteriorates with roughness because of the in-
creased shadowing. We propose a sampling strategy to improve the
sampling of rough materials in Appendix B.

5.1. Deforming objects

In Figure 6 we apply our framework in a scene with deforming
objects. We track the deformations using a tension texture, based
on which we derive the local linear transformations and render the
corresponding anisotropic microsurface. The purpose of the tension
texture is to compute a 2D tension matrix that contains the local
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Ours

Isotropic

Figure 6: Decorative objects made from elastic dielectric material with microfacet BRDFs. All birds and all dogs have materials with
shape-variant GTR distributions with roughness values α = 0.25 and α = 0.16, and tail exponents γ = 2.2 and γ = 1.4, respectively. We
demonstrate how the objects reflections change due to deformation. When the object is stretched the microsurface becomes smoother and
therefore the reflection highlight becomes sharper. When the microsurface is compressed the reflection spreads out. Top row: A standard
isotropic material. Bottom row: Our method that tracks the deformation via a tension matrix and computes the corresponding anisotropic
reflection. The first and last objects in the composition are at "rest" state while all objects in between are deformed. Middle row: Alternating
zoomed-in regions of isotropic (top row) and deformed anisotropic (bottom row). A helpful analogy to understand the highlight changes that
occur with our model is a rubber balloon: as it gets inflated (stretched out), it gets to be smoother and more and more shiny. Our model can
replicate this behaviour even for anisotropic stretching.

surface transformation relative to a predefined “rest” state. In order
to compute this, we need a stable local space for each shading point
that is consistent between the rest state and the current deformed
state of the mesh. Then, at each shading point, we transform the
edges of the currently shaded triangle to this local space both for
the deformed mesh and for the “rest” mesh. Finally we compute a
transformation in local space that converts the “rest” edges to the
current deformed edges.

We use the UV mapping coordinates assigned to the surface as
the stable local space. For each shading point, we can compute
an orthonormal matrix that converts from world space to the lo-
cal UVW space for the deformed mesh, and another orthonormal
matrix that converts from world space to the local UVW space for
the “rest” mesh. Using these two matrices, we can rotate the edges
of the currently shaded triangle in the deformed mesh and the edges
of the same triangle in the "rest" mesh to local space. Note that in
general the local UVW spaces are not orthonormal [PJH16] but we
force them to be by preserving the U direction and then orthog-
onalizing and normalizing the matrices. In this way we retain the
shape of the triangles and only align them with the U direction in
the tangent plane. Let r1 and r2 be the transformed edges in lo-
cal space of the "rest" triangle, and d1 and d2 be the transformed
edges in local space of the deformed triangle. These edges are 2-

dimensional, because we are only interested in the projection to the
tangent UV space. Then the 2 × 2 tension matrix is T = DR−1,
where R = (r1 r2) and D = (d1 d2), see Figure 7. For shading, we
embed the tension matrix in the matrix M, see Equation (9). The
tension texture is applied to the deformed object and keeps a refer-
ence to the "rest" object. During texture evaluation the matrices R
and D are computed for the shaded triangle and the tension matrix
T is returned.

This method computes per-face tension matrices and requires
relatively fine geometry tessellation to achieve smooth results. An-
other option is to pre-process the "rest" mesh and the deformed
mesh and to store a weighted average of the face tension matrices
in the vertices. Upon rendering, vertex tension matrices are inter-
polated along the triangles to facilitate continuous shading.

5.2. Stretch anisotropy

We have established that traditional anisotropy can be reproduced
as a special case of our framework by using a non-uniform scaling
matrix, see Equation (29). For our stretch anisotropy we use a con-
venient scaling transform that is defined by a single scaling factor
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u

v
r1

r2

d1

d2

R=(r1 r2) D=(d1 d2)

T=DR-1

Deformation

Figure 7: A triangle of the "rest" mesh (blue) and its correspond-
ing triangle in the deformed mesh (red). The edges of these tri-
angles are rotated to UV space (yellow): the edges of the "rest"
triangle r1 and r2 form the matrix R that converts to the space of
the "rest" triangle, and the edges of the deformed triangle d1 and
d2 form the matrix D that converts to the space of the deformed tri-
angle. Therefore, the matrix T = DR−1 encodes the local tension
of the deformation.

s ∈ (−1,1):

Ms =


diag

(
1

1−s ,1− s,1
)
, s ∈ [0,1)

diag
(

1+ s, 1
1+s ,1

)
, s ∈ (−1,0)

. (31)

For positive values of s it stretches the x-coordinate and shrinks
the y-coordinate while for negative values of s it does the opposite.
Moreover, detMs = 1, MT

s = Ms, M0 = I and M−1
s is constructed

by swapping the first two diagonal entries of Ms. Note that a 2D
rotation can be concatenated with the matrix Ms, but we choose
to keep the matrix simple, and perform anisotropy rotation via the
shading frame rotation.

We showcase our technique in Figure 8. The vases have brushed
aluminum material, and all of them have anisotropic shape-variant
distributions that do not have analytic elliptical anisotropic equa-
tions, given in Equation (5).

6. Conclusion

We propose a change in how one goes about the construction of
anisotropic microfacet distributions. Performing these derivations
based on the transformations that need to be done to the micro-
geometry, instead of based on the directional variation of surface
roughness, offers desirable advantages: our approach works with
all planar linear transformations (including skew), and with all
slope distribution functions, regardless of whether they are shape-
invariant, or not. This offers artists a wider range of creative control,
both in terms of the highlight shapes they can create, and the types
of surfaces that can be made anisotropic.

Figure 8: Brushed aluminum vases rendered with GTR distri-
bution. Columns from left to right have roughness values α =
0.01,0.04,0.16. The top row has the Berry distribution γ = 1 and
the bottom row has a tail exponent γ = 3.5. All materials have
shape-variant anisotropic distributions with scaling factor s = 5

2 ,
see Equation (31).
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grant 22-22875S.

References
[AK16] ATANASOV, ASEN and KOYLAZOV, VLADIMIR. “A Practical

Stochastic Algorithm for Rendering Mirror-like Flakes”. ACM SIG-
GRAPH 2016 Talks. SIGGRAPH ’16. Anaheim, California: Associa-
tion for Computing Machinery, 2016. ISBN: 9781450342827. DOI: 10.
1145 / 2897839 . 2927391. URL: https : / / doi . org / 10 .
1145/2897839.2927391 3, 7.

[APS00] ASHIKMIN, MICHAEL, PREMOŽE, SIMON, and SHIRLEY, PE-
TER. “A Microfacet-Based BRDF Generator”. Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co.,
2000, 65–74. ISBN: 1581132085. DOI: 10.1145/344779.344814.
URL: https://doi.org/10.1145/344779.344814 2, 3, 7.

[Ber23] BERRY, EUGENE M. “Diffuse Reflection of Light from a Matt
Surface”. J. Opt. Soc. Am. 7.8 (Aug. 1923), 627–633. DOI: 10.1364/
JOSA . 7 . 000627. URL: http : / / opg . optica . org /
abstract.cfm?URI=josa-7-8-627 3, 11.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

113

https://doi.org/10.1145/2897839.2927391
https://doi.org/10.1145/2897839.2927391
https://doi.org/10.1145/2897839.2927391
https://doi.org/10.1145/2897839.2927391
https://doi.org/10.1145/344779.344814
https://doi.org/10.1145/344779.344814
https://doi.org/10.1364/JOSA.7.000627
https://doi.org/10.1364/JOSA.7.000627
http://opg.optica.org/abstract.cfm?URI=josa-7-8-627
http://opg.optica.org/abstract.cfm?URI=josa-7-8-627


A. Atanasov, V. Koylazov, R. Dimov & A. Wilkie / Microsurface Transformations

[Bli77] BLINN, JAMES F. “Models of Light Reflection for Computer Syn-
thesized Pictures”. SIGGRAPH Comput. Graph. 11.2 (July 1977), 192–
198. ISSN: 0097-8930. DOI: 10 . 1145 / 965141 . 563893. URL:
https://doi.org/10.1145/965141.563893 2.

[BLPW14] BRADY, ADAM, LAWRENCE, JASON, PEERS, PIETER, and
WEIMER, WESTLEY. “GenBRDF: Discovering New Analytic BRDFs
with Genetic Programming”. ACM Trans. Graph. 33.4 (July 2014). ISSN:
0730-0301. DOI: 10.1145/2601097.2601193. URL: https:
//doi.org/10.1145/2601097.2601193 3.

[BM14] BUTLER, SAMUEL D. and MARCINIAK, MICHAEL A. “Ro-
bust categorization of microfacet BRDF models to enable flexi-
ble application-specific BRDF adaptation”. Reflection, Scattering, and
Diffraction from Surfaces IV. Ed. by HANSSEN, LEONARD M.
Vol. 9205. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series. Sept. 2014, 920506, 920506. DOI: 10.1117/12.
2061134 3.

[BPV18] BARLA, PASCAL, PACANOWSKI, ROMAIN, and VANGORP, PE-
TER. “A Composite BRDF Model for Hazy Gloss”. Comput. Graph. Fo-
rum 37.4 (2018), 55–66. DOI: 10.1111/cgf.13475. URL: https:
//doi.org/10.1111/cgf.13475 3.

[BS63] BECKMANN, PETR and SPIZZICHINO, ANDRE. The Scattering
of Electromagnetic Waves from Rough Surfaces. New York: Pergamon,
1963 2.

[Bur12] BURLEY, BRENT. “Physically-Based Shading at Disney”.
2012 2–4, 7, 11.

[CT82] COOK, R. L. and TORRANCE, K. E. “A Reflectance Model for
Computer Graphics”. ACM Trans. Graph. 1.1 (Jan. 1982), 7–24. ISSN:
0730-0301. DOI: 10.1145/357290.357293. URL: http://doi.
acm.org/10.1145/357290.357293 2.

[dBoo01] De BOOR, C. A Practical Guide to Splines. Applied Mathemat-
ical Sciences. Springer New York, 2001. ISBN: 9780387953663. URL:
https://books.google.bg/books?id=m0QDJvBI%5C_
ecC 11.

[DHI*13] DUPUY, JONATHAN, HEITZ, ERIC, IEHL, JEAN-CLAUDE, et al.
“Linear Efficient Antialiased Displacement and Reflectance Mapping”.
ACM Transactions on Graphics. Proceedings of Siggraph Asia 2013 32.6
(Nov. 2013), Article No. 211. DOI: 10.1145/2508363.2508422.
URL: https://hal.inria.fr/hal-00858220 2.

[DHI*15] DUPUY, JONATHAN, HEITZ, ERIC, IEHL, JEAN-CLAUDE, et al.
“Extracting Microfacet-based BRDF Parameters from Arbitrary Materi-
als with Power Iterations”. Computer Graphics Forum (2015), 10. URL:
https://hal.inria.fr/hal-01168516 2.

[Dim15] DIMOV, ROSSEN. “Deriving the Smith shadowing function G1
for γ ∈ (0,4]”. 2015 7, 11.

[EK17] ESTEVEZ, ALEJANDRO CONTY and KULLA, CHRISTOPHER.
“Production Friendly Microfacet Sheen BRDF”. 2017 3, 7.

[HD14] HEITZ, ERIC and D’EON, EUGENE. “Importance Sampling
Microfacet-Based BSDFs using the Distribution of Visible Normals”.
Computer Graphics Forum 33.4 (July 2014), 103–112. DOI: 10 .
1111/cgf.12417. URL: https://hal.inria.fr/hal-
00996995 2, 7, 11.

[HDHN16] HEITZ, ERIC, DUPUY, JONATHAN, HILL, STEPHEN, and
NEUBELT, DAVID. “Real-Time Polygonal-Light Shading with Linearly
Transformed Cosines”. ACM Trans. Graph. 35.4 (July 2016). ISSN:
0730-0301. DOI: 10.1145/2897824.2925895. URL: https:
//doi.org/10.1145/2897824.2925895 3, 6.

[Hei14] HEITZ, ERIC. “Understanding the Masking-Shadowing Function
in Microfacet-Based BRDFs”. Journal of Computer Graphics Tech-
niques (JCGT) 3.2 (June 2014), 48–107. ISSN: 2331-7418. URL: http:
//jcgt.org/published/0003/02/03/ 2–5, 7.

[HG41] HENYEY, L. G. and GREENSTEIN, J. L. “Diffuse radiation in the
Galaxy.” Astrophysical Journal 93 (Jan. 1941), 70–83. DOI: 10.1086/
144246 3.

[HHdD16] HEITZ, ERIC, HANIKA, JOHANNES, D’EON, EUGENE, and
DACHSBACHER, CARSTEN. “Multiple-Scattering Microfacet BSDFs
with the Smith Model”. ACM Trans. Graph. 35.4 (July 2016). ISSN:
0730-0301. DOI: 10.1145/2897824.2925943. URL: https:
//doi.org/10.1145/2897824.2925943 2, 5.

[HP17] HOLZSCHUCH, NICOLAS and PACANOWSKI, ROMAIN. “A Two-
Scale Microfacet Reflectance Model Combining Reflection and Diffrac-
tion”. ACM Transactions on Graphics 36.4 (July 2017). Article 66, 12.
DOI: 10 . 1145 / 3072959 . 3073621. URL: https : / / hal .
inria.fr/hal-01515948 2.

[HSRG07] HAN, CHARLES, SUN, BO, RAMAMOORTHI, RAVI, and
GRINSPUN, EITAN. “Frequency domain normal map filtering”. ACM
Trans. Graph. 26 (July 2007), 28. DOI: 10 . 1145 / 1275808 .
1276412 2.

[JHY*14] JAKOB, WENZEL, HAŠAN, MILOŠ, YAN, LING-QI, et al. “Dis-
crete Stochastic Microfacet Models”. ACM Trans. Graph. 33.4 (July
2014). ISSN: 0730-0301. DOI: 10.1145/2601097.2601186. URL:
https://doi.org/10.1145/2601097.2601186 2, 7.

[Kaj85] KAJIYA, JAMES T. “Anisotropic Reflection Models”. SIGGRAPH
Comput. Graph. 19.3 (July 1985), 15–21. ISSN: 0097-8930. DOI: 10.
1145/325165.325167. URL: https://doi.org/10.1145/
325165.325167 2.

[KSK10] KURT, MURAT, SZIRMAY-KALOS, LÁSZLÓ, and KŘIVÁNEK,
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Appendix A: A Smith shadowing term for GTR γ ∈ [0,4], which
is exact for the integer tails

Burley [Bur12] introduced the isotropic GTR distribution

Dγ (m) =
(γ−1)(α2 −1)
π(1− (α2)1−γ)

1
(1+(α2 −1)cos2 θm)γ

, (32)

where α ∈ [0,1] controls the roughness and γ ≥ 0 is the tail expo-
nent. The distribution has a 0

0 singularity at γ = 1, and it converges
to the Berry distribution [Ber23; Bur12] at the limit

D1 (m) = lim
γ→1

Dγ (m) =
(α2 −1)
π logα2

1
(1+(α2 −1)cos2 θm)

. (33)

A plot of the GTR distribution for a fixed roughness α = 0.6 and
tails γ ∈ {0,1,2,3,4} is presented in Figure 9 a).

Dimov [Dim15] followed the derivation procedure of Smith
shadowing that is described by Walter et al. [WMLT07]. With this
approach he was not able to find a general analytic formula G1γ,
perhaps due to the singularity at γ = 1. Fortunately, he found an-
alytic formulas for a few special values - γ ∈ {0,1,3,4}. Here we
express these results in terms of the average visibility Sγ(µ), with
µ = |cotθv|, where the monodirectional shadowing formula is

G1γ(v,m) = χ
+
(v ·m

v ·n

)
Sγ(µ) (34)

[WMLT07]. Follows a list of formulas for the GTR average visi-
bility for integer tails, including the GGX average visibility S2 for
completeness:

S0 (µ) =
2

1+
√

1
µ2 +1

, (35)

S1 (µ) =
µ logα

2

A1 −B1 +µ log
(

α2(µ+B1)
µ+A1

) , (36)

where A1 =
√

µ2 +α2 and B1 =
√

µ2 +1,

S2 (µ) =
2

1+
√

α2

µ2 +1
, (37)

S3 (µ) =
4B3µA3

α2(3α2 +1)+2µB3(µ+A3)
, (38)

where A3 =
√

µ2 +α2 and B3 = α
2 +1 and

S4 (µ)=
2A4µB3

4
A4µ(B3

4 +µ3)+3α2(α2(5α4 +2α2 +1)+4µ2(2α4 +α2 +1))
,

(39)
where A4 = 8α

4 +8α
2 +8 and B4 =

√
µ2 +α2.

In Figure 9 b) we show these shadowing curves for a fixed rough-
ness α = 0.6. In order to compute an accurate approximation for all
non-integer tails γ ∈ (0,4) all five integer formulas are evaluated
and a cubic spline interpolation [dBoo01] is performed. Natural
boundary conditions are suggested in order to minimize the oscil-
lations. We have verified that with this approach the constraint in
Equation (2) is closely met.

Appendix B: An improved sampling for the GTR distribution

Rendering microfacet BRDF with GTR distribution with high
roughness has inherent high variance due to the lack of sampling
equations from the distribution of visible normals [HD14]. The re-
duced effectiveness of the sampling from D [WMLT07] is due to
increased shadowing. When the roughness is approaching 1 the sin-
gle scattering term gets darker and more diffuse. We found that
stochastic mixing of the sampling strategy with uniform sampling
improves the sampling of rough surfaces. A random number and
the roughness α determine whether uniform sampling or sampling
from D will be used for the direction. The balance heuristic is
finally applied for probability computation[VG95]. Render time
comparison can be seen in Figure 10.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

115

https://doi.org/10.1109/TAP.1967.1138991
https://doi.org/10.1364/JOSA.65.000531
http://www.osapublishing.org/abstract.cfm?URI=josa-65-5-531
http://www.osapublishing.org/abstract.cfm?URI=josa-65-5-531
http://www.graphics.cornell.edu/~westin/pubs/TorranceSparrowJOSA1967.pdf
http://www.graphics.cornell.edu/~westin/pubs/TorranceSparrowJOSA1967.pdf
http://www.graphics.cornell.edu/~westin/pubs/TorranceSparrowJOSA1967.pdf
https://doi.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498
https://doi.org/10.1145/142920.134078
https://doi.org/10.1145/142920.134078
https://doi.org/10.1145/142920.134078
https://doi.org/10.1145/2070781.2024179
https://doi.org/10.1145/2070781.2024179
https://doi.org/10.1145/2070781.2024179
https://doi.org/10.1145/2070781.2024179
https://doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
https://doi.org/10.1088/1464-4258/8/10/014
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1145/2601097.2601155


A. Atanasov, V. Koylazov, R. Dimov & A. Wilkie / Microsurface Transformations

D2
D3
D4

D1

D0

0-2 -1 1 2

1

2

��������
���

0 1 2 3 4

1

μ

S2
S3
S4

S1
S0

a) GTR Microfacet distribution Dγ b) GTR Average visibility Sγ

Figure 9: Plots of the microfacet distribution Dγ and the average visibility Sγ for γ = {0,1,2,3,4} and for a fixed roughness α =0.6. Note
that limα→0,γ>0(Dγ,Sγ) = (δ,1) and limα→1(Dγ,Sγ) = (D0,S0).
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Figure 10: Left: Torus knot with GTR roughness α = 0.3, tail exponent γ = 1 and anisotropy s = 0.75, lit by a rectangular light. Right:
Charts for the torus knot scene showing how much render times improve for the same image quality when switching from classic sampling to
our sampling described in Appendix B. We use variance-based image sampler which samples each pixel until a given noise level is reached.
Top left chart is for isotropic material (s = 0) with 95 average samples per pixel (aspp) for the classical sampling vs. 84 aspp for our
sampling. The top right, bottom left and bottom right charts represent anisotropic materials with s = {0.25, 0.5, 0.75} and 91 vs. 79 aspp,
95 vs. 89 aspp and 131 vs. 119 aspp, respectively. Therefore, our sampling technique reduces the number of samples per pixel by 10% on
average for this scene. Moreover, the charts demonstrate that this technique helps with very different distribution tails: GTR with γ = 0.1 has
much heavier tail than GGX while the tail of GTR with γ = 4 is much "lighter", see Figure 9 a).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

116


