
A Lab Exercise for 2D Line Clipping

Dr. David J Stahl, Jr.

US Naval Academy

stahl@usna.edu

Abstract: Line clipping is a fundamental topic in an introductory graphics course. The simplicity and

elegance of the classic Cohen-Sutherland 2D Line Clipping Algorithm makes it suitable for implementation

by the student in a lab exercise. An understanding of the algorithm is reinforced by having students write

actual code and see the results. A code framework is provided that allows an instructor to focus student

effort on the algorithm while avoiding the details of the visualization API used to render the results.

Keywords: 2D modeling, algorithm development, rendering.

1 Introduction

Fundamental graphics techniques are a core topic in the computing body of knowledge. Teaching these

techniques to today's computer science undergraduates presents a pedagogical challenge, however: theory

is not so captivating when the spectacular graphics seen in movies, advertising and games is viewed by the

typical graphics student as the expected norm. Course critiques reveal student dissatisfaction with the stale

nature of theory presented without "live" examples. The approach described here attempts to make the

mathematical and algorithmic aspects of computer graphics more palatable through short programming

exercises. Having gained a basic understanding of an algorithm or technique through lecture and reading, a

student typically can program an implementation during a one to two hour lab period when provided with

scaffold code. This active learning approach thus serves to put theory into practice in a manner that rewards

effort with immediate visual results. Moreover, the programming framework permits focusing student

effort on the algorithm rather than ancillary details of the visualization API. This paper describes one

exercise in a series.

2 Educational Goals

A student who completes this lab exercise will have demonstrated an understanding of 2D line clipping

by implementing the Cohen-Sutherland algorithm from pseudo-code. The student should be able to explain

how the algorithm works, discuss how the algorithm achieves its speed efficiency, and relate it to similar

algorithms such as the Midpoint Subdivision technique. As a practical benefit, the student will gain further

experience making the transition from a pseudo-code specification to an actual implementation. With

working code as an artifact, the student should then be able to extend the method by implementing the 3D

case, perhaps as a component of a 3D viewing pipeline.

3 Methodology

The target audience consists of undergraduate students taking an introductory computer graphics course.

The lab exercise is one component of the following general approach. Following an out-of-class reading

assignment, lecture material is used to motivate the general topic, as illustrated through pseudo-code with

examples worked by hand, as appropriate. The student is expected to take notes by fleshing out details on a

minimal handout that is provided. After this approximately one-hour classroom lecture, the lab assignment

is introduced and the students begin work. We have used this and similar exercises in a 3-credit hour course

meeting twice a week. The schedule is nominally one hour of lecture followed immediately by one hour of

lab with lecture topic and lab closely tied. This arrangement allows the flexibility of increasing or

decreasing either lecture or lab time as needed. The course has been taught in a Sun workstation lab using

g++ and make, and in a Windows PC lab using Microsoft Visual Studio C++ 6.0, with OpenGL/GLUT3.7

as the graphics API. Any platform that supports the latter could be used.

Figure 1. 2D line clipping assignment. Students are given scaffold code that must be completed.

Students are provided an archive (tar or zip) via the course website, containing the lab assignment

document, an executable example of a correct solution, and source code. The provided code is structured to

enforce separation by file according to logical purpose, with a separate header and source file pair for each

set of related GLUT callbacks. The typical set of files consists of:

main.[h, cpp] - event-driven loop entry

render[.h, cpp] - display and idle callbacks

view.[h, cpp] - reshape, visibility and entry callbacks

mouse.[h, cpp] - mouse interaction callbacks

keyboard.[h, cpp] - keyboard interaction callbacks

menu.[h, cpp] - menu callbacks

init.[h, cpp] - GLUT, OpenGL, and application setup

Course policy requires students to adhere to this organization. This arrangement allows everyone to

refer to a common framework, makes it easy to locate specific code according to its functionality, and

better affords collaborative work when such is desired. This code organization is introduced early in the

course in conjunction with the discussion of event-driven programming. As a practical matter it also makes

grading assignments much easier.

Figure 2. A clipping rectangle is defined by dragging the cursor. Resulting clipped lines.

Complete the code provided to implement the Cohen-Sutherland 2D line clipping algorithm.

// Returns the 'outcode' for point (x, y) with respect to

// the upright clipping rectangle (L,R,B,T).

GLubyte CSoutcode(double x, double y,

 double L, double R, double B, double T);

// Clips a line with endpoints (x0, y0), (x1, y1) to the upright

// clipping rectangle (L,R,B,T), setting the flag 'visible' if the

// line is not completely outside the clipping rectangle.

void CS_LineClip2D(double& x0, double& y0, double& x1, double& y1,

 double L, double R, double B, double T,
 bool& visible);

Figure 3. Example scaffold code given to the student.

The provided source code is typically created by the instructor from a fully commented, working

solution. Key parts of the algorithm are removed, requiring students to refer to notes or texts to finish the

implementation. We have found that giving the students all or most of the code not directly related to the

algorithm or technique in question avoids the frustration of getting bogged down in details ancillary to the

problem at hand. For the most part this also results in short lab exercises that students are able to complete

in the hour following presentation of the theoretical material.

4 Assessment

The pedagogical approach we describe has met our goals. In several offerings of an introductory graphics

course using the approach described here, not a single student has been unable to complete the lab exercise

on 2D line clipping. With theoretical material presented first, being able to work exclusively on

implementing an algorithm and having immediate visual feedback - whether it indicates error or success in

the implementation - seems to make students more willing to absorb the underlying theory. The latter

conclusion has been evidenced by a steady decrease in the number of complaints about "too much theory!",

in comments made on student course critiques as the number of course topics employing this approach has

increased, year to year. Furthermore, after completing the 2D clipping exercise, students are able to extend

the algorithm to 3D with minimal additional guidance.

Figure 4. A correct implementation will clip any number of random lines.

GLubyte CSoutcode(double x, double y,

 double L, double R, double B, double T)

{

 GLubyte code = 0x0;

 if(x < L) code = LEFT; // x can't be both < L and > R

 else ; // RIGHT

 if(y > T) code |= TOP; // y can't be both > T and < B

 else ; // BOTTOM

 return (code);

}

Figure 5. Cohen-Sutherland 2D line clipping algorithm in pseudo-code.

5 Conclusions

Developing graphics course content so as to present theory in a palatable, engaging manner via short lab

exercises is no small task. Yet we have discovered the payoff is worth the effort: while perhaps not

enthusiastically embracing the theoretical underpinnings of key graphics techniques and algorithms,

undergraduate students are at least able to apply theoretical knowledge to create real implementations. The

specific lab exercise topic described here, the 2D Cohen-Sutherland Line Clipping Algorithm, is one such

example. Other fundamental techniques such as polygon rasterization and clipping could lend themselves to

this approach as well.

References

Foley, J.D., Van Dam, A., Feiner, S. K., Hughes, J.F., Phillips, R.L., 1994. Introduction to Computer
Graphics, Addison-Wesley, New York, Chapter 3.9, pp. 101-107.

Simple line clipping algorithm:

Clip line (xa,ya)→(xb, yb) to the rectangle (l,r,b,t)

1. Try to trivially accept. Test these conditions:

 (xa < l || xa > r)

 (xb < l || xb > r)

 (ya < b || ya > t)

 (yb < b || yb > t)

 If ALL tests FAIL then If ANY test SUCCEEDS then

 line is TOTALLY visible line may be PARTIALLY visible

 i.e., trivial accept i.e., might have to clip

 (done) (goto 2)

2. Try to trivially reject. Test these conditions:

 (xa < l && xb < l)

 (xa > r && xb > r)

 (ya < b && yb < b)

 (ya > t && yb > t)

 If ANY test SUCCEEDS then If ALL tests FAIL then

 line is TOTALLY invisible line may be PARTIALLY visible

 i.e., trivial reject or TOTALLY invisible

 (done) (go to 3)

3. Calculate the intersection of the line with the clipping edges.

Figure 6. Minimal handout a student must fill in during the lecture.

 1 1 1

 1 1 1

 1 1 1

a

b

"______________"

Follow the lecture to label this diagram. Then fill in the table below.

? A line is completely inside if both endpoints are inside ? T / F

? A line is completely outside if both end endpoints are outside ? T / F

TA = "_________________ " TR = "_________________ "

Which do we do?

Line code1 code2 code1 | code 2 code1 & code2
TA TR

Calc.

intsx

ab

ij 1

ij 2

ij 3

ij 4

cd

ef

gh

kl

Figure 7. Scaffold code for the Cohen-Sutherland 2D line clipping algorithm.

void CS_LineClip2D(double& x1, double& y1, double& x2, double& y2,

 double L, double R, double B, double T,

 bool& visible)

{

 // Get the 'outcodes' for the line endpoints

 GLubyte code1 = 0; // Outcode for (x1,y1)

 GLubyte code2 = 0; // Outcode for (x2,y2)

 // code1 == 0000 => (x1,y1) is inside the clipping rectangle

 // code2 == 0000 => (x2,y2) is inside the clipping rectangle

 GLubyte code; // Indicates an outside endpoint

 visible = false; // Start by assuming we can trivial reject

 // 1. Try to trivially accept. If we can trivially accept,

 // the loop exits. What should the 'while' test be?

 while (0)

 {

 // 2. Try to trivially reject (if we can, we're done):

 // Can't accept or reject => at least one endpoint is outside

 code = code1 ? code1 : code2; // code1 == 0 => (x2,y2) outside

 // code1 != 0 => (x1,y1) outside

 // 'code' is now the outcode of the outside endpoint. Use it to

 // determine which edge to intersect. Intersection will be (x,y)

 double x,y;

 if(code & LEFT) // Derivation done in class

 {

 x = L; // intersection with left edge

 y = y1 + ((y2-y1)/(x2-x1))*(x-x1);

 }

 else if(1) { ; } // You must derive and implement RIGHT

 else if(1) { ; } // You must derive and implement TOP

 else if(1) { ; } // You must derive and implement BOTTOM

 if(code == code1) // (x1,y1) was outside.

 {

 // Discard this part of the line: (x1,y1) -> (x,y)

 x1 = x;

 y1 = y;

 // Get the outcode for new endpoint:

 code1 = CSoutcode(x1, y1, L, R, B, T);

 }

 else // (x2,y2) was outside. What part of the line gets discarded?

 { // What is the outcode for new endpoint?

 }

 }

 visible = true; // We get here via TRIVIAL ACCEPT if the line was

 // COMPLETELY VISIBLE to begin with, or it was

 // PARTIALLY VISIBLE but we clipped it.
}

