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Abstract

This paper describes a method for volume data compression and rendering which bases on wavelet splats. The
underlying concept is especially designed for distributed and networked applications, where we assume a
remote server to maintain large scale volume data sets, being inspected, browsed through and rendered inter-
actively by a local client. Therefore, we encode the server‘s volume data using a newly designed wavelet based
volume compression method. A local client can render the volumes immediately from the compression domain
by using wavelet footprints, a method proposed earlier. In addition, our setup features full progression, where
the rendered image is refined progressively as data comes in. Furthermore, framerate constraints are consid-
ered by controlling the quality of the image both locally and globally depending on the current network band-
width or computational capabilities of the client. As a very important aspect of our setup, the client does not
need to provide storage for the volume data and can be implemented in terms of a network application. The
underlying framework enables to exploit all advantageous properties of the wavelet transform and forms a
basis for both sophisticated lossy compression and rendering. Although coming along with simple illumination
and constant exponential decay, the rendering method is especially suited for fast interactive inspection of
large data sets and can be supported easily by graphics hardware.

Keywords: volume rendering, multiresolution, progressive compression, splatting, wavelets, networks, dis-
tributed applications

1. Introduction

Volume rendering, in general, has been a very important
subfield of research in computer graphics. Since its inven-
tion [12], [16], countless algorithms have been proposed,
[13], [14], most of which have been designed for providing
high quality images at low computational efforts. In this
context, recent advancements in graphics hardware help to
exploit individual capabilities of graphics workstations [2].
If real time performance constrains the method and image
quality can be relaxed, so-called splatting methods [15], [4]
have proved to provide good results. Here, footprints of a
volume primitive are computed in terms of a small pixmap
texture and are superimposed in the framebuffer to carry out
the final image. Introducing hierarchical basis functions,
such as wavelets [17], rendering is carried out progressively
by accumulating scaled and translated versions of self-simi-
lar textures.

Unfortunately, most rendering methods introduced so
far relate to local computation environments. The problems
arising with distributed environments and associated com-
pression domain rendering has hardly been addressed in the
literature [24], [10]. However, in times of distributed, world
wide information systems and exponentially increasing vol-
ume data sets, requirements for rendering such data have
changed. In many application scenarios, such as in medical
imaging and information systems, situations arise, such as
depicted in figure 1.

Often, volume data sets are stored and maintained by a
data base server, which can be accessed by one or more
local clients via a network. One of the fundamental tasks of
volume rendering is to inspect interactively and to browse
through the volume data base, where rendering quality can
be relaxed for the sake of real time performance. Moreover,
being a low end workstation, the computational power and
storage capacity of the client are limited and the network‘s
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bandwidth and latency might vary with its traffic load.
Obviously, when designing a rendering method for these
purposes, we have to consider the following issues:

• Progressivity:For enhanced interactivity, the image
should be refined progressively as data comes in
from the remote server. Image quality must be con-
trolled as a function of the network’s load and cli-
ent’s hardware setup.

• Compression domains: In order to store and trans-
mit large scale volume data sets, compression
schemes have to be employed. In order to avoid full
decompression, a sophisticated rendering method
should carry out computations in the compression
domain at the client side.

• Memory constraints:In particular with upcoming
network computers the capabilities of a local client
might be reduced significantly. Hence, a data repre-
sentation and rendering method is required, which
avoids full expansion of the volume in the clients
memory.

Along these lines, the research presented here aims at
providing a unified framework for data compression and
rendering in a distributed environment. Therefore, we first
propose a progressive volume data compression scheme. It
enables to store both RGB and intensity volume data effi-
ciently on the server in terms of a bitstream and allows fast
transmission over the network. To this end, we first decorre-
late the RGB volume data and transform the computed
intensities in a preprocess by using B-spline wavelets. The
coefficients and positions are arranged with decreasing
importance and proceed through various steps, such as

quantization, encoding and bit allocation. The compression
pipeline introduced essentially allows a progressive trans-
mission, where the information lost can be controlled
locally and globally. Second, the client carries out all ren-
dering immediately in the compression domain. That is we
do not need to perform full decompression of the data while
using wavelet splats [17], [9]. To increase performance and
visual quality of the images, we propose some significant
enhancements of the method. Especially, multiview images
can be carried out at low additional costs and constant expo-
nential transfer is incorporated by phase shifts in Fourier
domain.

Our paper is organized as follows: For reasons of read-
ability, we briefly review some fundamentals of wavelet
based splatting in section 2. In section 3 we describe some
significant extensions of the rendering method to gain
visual quality, such as multiviews, depth cueing and simple
shading. The proposed compression pipeline is described in
full detail in section 4. Results obtained with our setup are
illustrated in section 5.

2. Fundamentals of Wavelet Splats

In this section we describe how wavelet splats can be
defined and used for general volume rendering. Therefore,
we briefly summarize the mathematical fundamentals of
splat computation following the approach presented in [9].
In addition, a short description of low albedo rendering and
wavelets are given. We assume, however, the reader is
familiar with the mathematics of wavelets.

Figure 1: Volume-rendering in a distributed client/server environment.
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2.1. Low Albedo Volume Rendering

Volume rendering can be regarded as a composition of par-
ticles that, in addition to their own emission, receive light
from surrounding lightsources and reflect these intensities
towards the observer.

In classic volume rendering, the amount of light
received at pointx from directions up to a ray

lengthtL is computed as:

(1)

where q denotes the volume source term andα the
opacity function. For an isotropic medium with constant
opacity  equation (1) reduces to

(2)

In particular note that for we end up in a X-ray-
like image.

Especially in those cases, splatting has proved its
usability for fast volume rendering [15]. In contrast to ray-
casting, it allows to reduce the computational complexity
for interpolation and integration to a minimum, since the
preprojected footprints of high-order interpolation func-
tions can be stored as lookup tables. The projections them-
selves can be computed with an accurate quadrature
technique. Besides hierarchical splats [15], wavelet splat-
ting [17] is a sophisticated extension.

2.2. B-spline Wavelets

Since we aim at a unified data representation for both vol-
ume data compression and rendering, we use Chui and
Wang [3] B-spline wavelet bases of orderj. They have
many usefull properties, such as smoothness and vanishing
moments. In addition, analytic expressions for scaling- and
wavelet functions and their duals in the frequency- and spa-
tial-domain are given. The mother-scaling function of order
1 is defined as:

(3)

Compactly supported scaling functions of orderj can be
generated recursively in terms of cardinal B-splines:

(4)

In the frequency-domain the corresponding functions
collapse intosinc-polynomials of type:

(5)

In the upper termf denotes the frequency andi the com-
plex operator. Note, that the upper equation is fundamental
for splat computation in Fourier domain. The semiorthogo-
nality of the function system forj > 1 requires duals. For the
case of B-spline wavelets all primary and dual functions
have linear phase. Furthermore, only rational coefficients
have to be used for the fast wavelet transform.

To fully characterize the wavelet transform, we need to
determine the wavelet functions. For the corresponding
wavelets we obtain:

(6)

Note, that their support can be computed straightfor-
wardly as [0,2j-1]. Wavelets in three dimensions are
obtained easily by non-standard tensor-product extensions
[5].

Here volume decomposition is carried out with the
duals, whereas reconstruction is performed using the pri-
mary functions (4), (6). Note furthermore, that implementa-
tions of linear time algorithms [20] can be more
challenging, since additional basis transforms might be
required.

2.3. Construction of Wavelet Splats

In wavelet splatting, the renderer computes the projection
such as defined in (2). Taking into account the wavelet
decomposition levelm up toM and moving the summation
outside the integral, the formulation collapses to:

(7)

where denote the wavelet coefficients of decom-

position levelm at the spatial positionp, q, r and wavelet-
type typeand the coefficient of the scaling function

of level M. The computation of the line integrals for a par-
ticular view can be accomplished by Fourier projection slic-
ing (FPS). It allows to compute accurate projections of any
basis function. This theorem states that the 2D Fourier
transform of a projection of a functionf(x,y,z) onto a given
plane P equals a plane that slices the Fourier transform

 parallel toP and intersects the origin.

Since many wavelet types such as B-splines come along
with closed form representations in the frequency domain,
it is straightforward to apply this theorem to get the
required splats. Figure 2 depicts the setting, where an
inverse FFT processes the slices to obtain the wavelet splat.
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The intersection plane spanned byu, v defines the 2D
Fourier transform of the texture splats

, whereas the

normal vectorn of the plane equals the direction of the pro-
jection. The definition of the viewing parameters is figured
out in spherical coordinates (α,β).

Once the renderer builds the viewpoint dependent inte-
gral tables, the screen position of the table is calculated,
mapped, weighted by the wavelet coefficient and accumu-
lated into the framebuffer. Since the basis functions of dif-
ferent iteration levelsm differ by dilation, only eight
different splats of depthM have to be calculated. All other
footprints are derived by subsampling in the spirit of a
mipmap. Correct sampling and optimized data-structures of
the calculated splats are discussed in [9].

3. Visual Enhancements

We are now in a position to discuss two significant render-
ing features which help to improve the visual quality of the
generated images. In particular, we introduce a method for
the computation of multiviews, being important in many
applications, such as medical imaging. Exploiting the sym-
metry of 3D tensor-product wavelets allows the additional
costs to be kept sufficiently low. Furthermore, we address
the problem of exponential transfer functions in Fourier
space. Phase shifts of the wavelet’s FT enable exponential
transfer to be incorporated and can be used to simulate
shading operations on the fly.

3.1. Multiviews

The rendered images, obtained by our splatting approach,
lack occlusion. Since this important visual cue is missing
for the calculated X-ray images, depth information is not
presented to the user. One way to overcome this drawback
is the introduction of a multiview arrangement. Here, the
volume is rendered simultaneously from different directions
and presented to the user in a single window. Exploiting the
coherence of different viewing angles given by the symme-
try of tensor-product constructions, the basic single-view
splatting approach can be extended to a multiview renderer
without computational overhead for splat computation. We
recall that the tensor-product functions are constructed from
permutations of the 1D basis functions and along the
x, y andz directions.

Figure 3 exemplifies the idea. The footprint of the basis

function (3D Haar scaling function of level 0,

aligned to the origin) from the first viewing-direction equals
the footprint from the second and third direction, e.g. the
calculated footprints can be reused for rendering different
views. Thus, we propose to generate a lookup table for the
basis functions types 1 to 7 to ensure correct footprint cal-
culation. A corresponding lookup table is given in Table 1
and illustrated in figure 4 for Haar functions respectively.

In order to combine the three footprints for the eight
different basis functions, eight textures are calculated for
view 1 by the FPS-theorem. The footprint for the basis
function is equal for view 1 and 2, whereas the splat

of the view 3 is given by the footprint of the function
(texture 4) of view 1. The corresponding permutations are

I u v,( ) F ω1 u v,( ) ω2 u v,( ) ω3 u v,( ), ,( )=

Figure 2: Illustration of the Fourier projection slicing theorem in 3D for an idealized Shannon wavelet.
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Figure 3: Illustration of the multiview concept.

Table 1: Permutations and negations for multi view arrange-
ments

PERMUTATIONS NEGATIONS

VIEW 1 [ 0 1 2 3 4 5 6 7 ] [ 1 1 1 1 1 1 1 1 ]

VIEW 2 [ 0 1 4 5 2 3 6 7 ] [ 1 1 -1 -1 1 1 -1 -1]

VIEW 3 [ 0 4 2 6 1 5 3 7 ] [ 1 1 1 1 -1 -1 -1 -1 ]
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given for all basis functions and for three views in Table 1.
In some cases it is also necessary to multiply the intensity
with -1. The same permutation tables can also be used for
higher order wavelets.

Note that these permutations are equal for each viewing
direction. Note furthermore that the angles between the
individual viewing planes are not constant. Moreover, they
depend on the initial selection of the camera parameters. A
little algebra reveals that the three projection-planesPi,
spanned by the vectors (ui,vi) are given by

View 1:  with

View 2:  with

View 3:  with

The triple view rendering is illustrated in figure 5,
where a classified data set is displayed from three direc-
tions. The image was grabbed directly from the screen as it
is displayed to the user. Skin is colored white, brain tissue
red and a tumor is colored in blue.

3.2. Depth Cueing

Up to now, only linear depth cueing has been considered in
the frequency domain [22]. In order to compute constant
exponential decay as in (2) we propose a depth cueing
approach implemented as a two step solution. In the first
step the cued footprints have to be calculated by the FPS-
theorem and an additional phase-shift. Second, the textures
have to be weighted according to the distance between the
projection plane and the basis functions.

Footprint Computation In order to set up the Fourier
relations for exponentially weighted functions, let’s first
consider the relations in the spatial domain. Let
denote the function that is depth cued alongt and letk be
the constant exponential extinction coefficient. We obtain

the new function  as:

(8)

In the frequency domain the Fourier transform of
can be written as:

(9)

Obviously, the Fourier transform of the exponentially

depth-cued function is computed by shifting
with the imaginary frequencyf0. This can be interpreted as

Figure 4: Different wavelet types figured out by non-standard
tensor-product extensions for the Haar case.
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Figure 5: Triple views seen from different viewing angles as ap-
plied to classified MR-data set (volume size: 256 x 128 x 256, max.
decomposition level M = 2) a)α = β = 0.0 b)α = 0.66,β = 0.91.
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a “frequency phase shift”. For the B-spline scaling func-
tions and wavelets of orderj in the frequency domain we
have

(10)

where

(11)

In 3D the direction of the shift operation in the spec-
trum can be chosen without any restriction and indepen-
dently from the viewing direction. It corresponds to the
depth-cueing direction in the spatial domain. We define the
cueing vectorL for any pair of viewing angles (αl , βl) as

(12)

to determine the cueing direction and extinction coeffi-
cient. Figure 6 shows the calculated splats resulting from
this method.

Distance Weighting For correct depth cueing of the vol-
ume, the computed footprints have to be weighted accord-
ing to their distance from a reference plane which can be
regarded as a planar light source, perpendicular to the
depth-cueing vectorL that points towards the volume mid-
point VM. Let L init represent the intersection point of the
volume’s bounding sphere and its tangent plane, the weight-
ing factorωd for each basis function centered atBM= P +
L init can be computed as:

(13)

During the accumulation process this factor is multi-
plied with the wavelet coefficient and the accumulation step
proceeds straightforwardly. The geometric relationships are
depicted in figure 7.

As a result we come up with smooth and correctly
depth-cued volumes, such as shown in figure 6.

To illustrate the performance of our method, we applied
the approach to the visible human CT-data set [18]. The
influence of different factors |k| and different cueing direc-
tions are displayed in figure 8 Note that exponential depth
cueing increases the rendering performance, since less tex-
tures have to be accumulated. Moreover, interactive manip-
ulation of the cueing direction allows us to simulate simple
shading operations in the wavelet domain and enhances the
visual quality significantly.

4. Progressive Compression and Transmission

As motivated earlier, our approach is targeted at networked
applications where, for instance, a local client with low
computational power browses through a remote database.
Thus, in order to transmit our volume data efficiently we
have to find appropriate compression strategies. It is clear
that the underlying framework of the wavelet decomposi-
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tion proposes to develop an optimized compression tech-
nique that allows progressive transmission, one pass
decompression and direct rendering at interactive frame
rates. Moreover, the wavelet domain rendering avoids full
decompression of the data prior to the splatting which itself
as an image based method does not require to store the full
volume data at the client’s side. Although much research
has been done on wavelet compression methods [21], [23]
the specific needs of compression domain rendering
encouraged us to develop a new compression pipeline
which will be explained below. For the sake of brevity we
restrict our description to the issues essential for our
method and recommend further readings in the fundamen-
tals of data compression [11].

4.1. Overview

Figure 9 illustrates the data flow in our compression and
rendering setup. The data preprocessing comprises five
stages. It enables both intensity and RGB volumes to be
handled, which might be the result of an optional data clas-
sification step [1]. In case of RGB volumes the second step
consists of a colorspace optimization which essentially
decorrelates the data and allows color sensitive quantiza-
tion. Next, a wavelet transform is performed independently
on the three channels. Lossy compression is carried out by
an oracle [8] which operates locally or globally in the wave-
let domain. The final step includes a data compression and
encoding scheme to achieve a binary output stream that can
be stored locally or transmitted directly through a network.
Note that forward compression does not have any real-time
constraints as opposed to the decompression.

In our implementation the software decompressor
works at a rate of ~30 k wavelet-coefficients/sec. on an Indy
R4400 workstation and allows on-line decompression. The
renderer splats the computed footprints weighted with the
decoded wavelet-coefficients directly into a software or
hardware accumulation buffer. In addition, our framework
incorporates a local cache to store coefficients at the client’s
side. The required splats are computed locally. Since the
wavelet coefficients are transmitted in significance order the
rendering quality is fully controlled by a user-defined fra-
merate, the client’s hardware and, if no cache mechanism is
enabled, also by the bandwidth of the network. Hence, this

concept balances CPU, network and graphics performance
and allows scalability. In a minimum configuration we have
to provide client storage only for the eight mother-wavelet
splats and three Huffman tables. Together they take less
than 5KB of memory even for huge data sets. This even
allows the scheme to run on some of the upcoming network
computers.

4.2. Colorspace Transformations

If the initial volume is given in RGB, it is critical to trans-
form the volume into an optimized colorspace prior to com-
pression. Here, we assume the optimized space to be
spanned by the three vectorsC1, C2 andC3. This allows to
assign an additional significance to each vector. As a result
we get two independent significance weights per coefficient
which affect encoding and quantization. The first weight is
defined by the energy of the associated function [8]. The
second one is a global significance determined by the color-
space-coordinates. For instance, a coefficient with the coor-
dinates (1,0,0) is regarded as more relevant than a
coefficient (0,1,0) if the vectorC1 is considered to be more
significant thanC2.

In addition to RGB we employ two colorspaces: The
first one is data-independent and equals the YIQ-colorspace
obtained by a simple matrix transform [19]. TheY compo-
nent encodes the luminance information, whereas the chro-
maticity is encoded inI and Q. We followed the NTSC
bandwidth conventions and assigned a factor 4 toY, 1.5 toI
and 0.6 toQ. In practical use this colorspace allows to com-
pute a black and white image (Y) as a rough sketch and to
refine color progressively. Thus, progression is figured out
both in the spatialand in color domain. Alternatively, our
second colorspace is calculated by a statistically optimal
principle component analysis (PCA) or Karhunen-Loève
expansion [7] whose matrix has to be computed individu-
ally for each data set. Although the solutions of the eigen-
problems are computationally more challenging on offline
forward compression, yet they provide better results (see
section 5). In this case the absolute values of the eigenva-
lues are taken to describe the significance of the corre-
sponding eigenvector. Note that this step can be skipped for
intensity volumes, such as raw CT or MRI data sets.

Figure 8: Influence of different cueing parameters and directions.(data source: Visible Human Project, courtesy National Library of Med-
icine, copyright (C) 1995). Volume size: 2563, max. decomposition level M=3. a-c):α = αl = 2.5, β = βl = 0.1, a) |k| = 0, b) |k| = 0.1, c) |k|
= 0.2, d)α = 2.5, αl = π/4, β = 0.1,βl = 0.3, |k| = 0.2.

a) b) c) d)
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4.3. Data Compression Pipeline

The algorithmic steps for data compression are executed
sequentially in the pipeline summarized in figure 10 and
convert the wavelet transformed data sets into a sequential
bitstream.

Therefore, we start with a sorting operation that gener-
ates a sequence of coefficients and positional data in signif-
icance order. The significance scoreS is determined for
each color channel and coefficient

individually according to

its associated wavelet energyE and color channel impor-
tance I.

(14)

Table 2 summarizes the importance factors for the three
different colorspaces.

For each color channel (C), wavelet type (type) and
decomposition level (m) a deltacoding, normalization and
quantization operation is performed separately depending
on the individual ranges of the coefficientsw. More pre-
cisely, if quantization is restricted toP bits for a given

Figure 9: Setup for distributed compression domain rendering.
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sequence ofN+1 significance sorted non-zero wavelet and
scaling function coefficients ,

we compute the coefficient’s delta factor as:

(15)

This factor is used to store the coefficient’s range with
respect to the assigned bytes. Thus, it has to be transmitted
once for each wavelet type, decomposition level and color
coordinate. In contrast, the normalized and quantized dif-
ference of two coefficientsδ has to be transmitted for each
coefficient individually. It is computed as:

(16)

Upon reconstruction we end up with approximated
wavelet and scaling function coefficients ,

 which can be computed by:

(17)

Since the coefficients are sorted according to their indi-
vidual scores we optimize the residual approximation error
as a function of the parameters introduced above. Note that
the sign of each coefficient is encoded by an additional flag,
refered assign(n).

We choose to limit the quantizationP to eight bits,
since standard framebuffers use eight bits for RGBα each.
However, observations in practice encourage us to reduce
quantization to even three bits without significant lost of
visual quality (see section 5). The three data sequences are
merged and sorted according the scores of their wavelet
coefficients. In particular, the sorted sequence requires for
each coefficient to encode additionally its spatial position,
wavelettype and color-channel in a lossless scheme. In
order to overcome the drawbacks in compression perfor-

mance arising from this requirement we introduce the fol-
lowing spatial clustering mechanism, which balances
spatial and score constraints upon compression: Within a
predefined radius around the coefficient with the highest
score the algorithm selects a neighbor as a successor in the
bitstream if its score exceeds a threshold. If not, the coeffi-
cient with the highest score is selected independently of its
spatial position. The corresponding coefficients are labeled
to avoid multiple storage. Figure 11 illustrates the ordering
with and without clustering for the 2D case. The calculated
coefficient weights are given in the corresponding box and
the arrows denote the sorting order. Without clustering the
arrow length and therefore the positional deltas are nearly
equiprobable, whereas for clustered volumes mostly short
arrows (small differences in position) appear. This reduces
the entropy and brings up a better compression rate of the
Huffman-coded positional deltas. That is we balance spatial
coherence and the energy contribution sorting order of the
coefficients. Note that clustering also speeds up the render-
ing process, since splats outside the field of view can be
detected easily and skipped without further computation.

Additional runlength-codings of wavelettype, decom-
position depthmand colorchannel are performed and trans-
mitted as variable length Hufman tag codes. The third
Huffman-table encodes the deltasδ of wavelet-coefficients.
These three tables together take about 2kBytes and have to
be transmitted separately prior to the data. In addition the
transmitted meta-data includes information about the basis
vectors of the colorspace, maximum depth of the wavelet
transform (M), exact initial wavelet coefficients
( ) and the coefficient delta factors

( ).

The reconstruction scheme has to decode all required
information, such as the spatial position, wavelet type,
depthm, colorchannel and the data value. According to the
composition step, each tag is encoded as described in Table
3. For computational efficiency, we propose to precompute
10-bit Huffman look-up tables.

Figure 12 illustrates a fraction of the bitstream as gener-
ated by our method. Note, that the number of bits varies as a
function of the individual Huffman codes.

5. Results

To investigate the performance of the proposed method, we
applied the approach to the RGB-Visible Human Dataset of
size 128x128x128 voxels (3 x 8 bits/voxel). In addition to

Figure 11: Effect of spatial clustering:
a) Without clustering
b) With clustering (position threshold: 3, coefficient threshold = 2)
c) With clustering (position threshold: 3, coefficient threshold = 4).
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Table 3: Coding schemes:

TAG CODING SCHEMES

SPATIAL POSITION
SPATIAL CLUSTERING, DELTA

CODING, HUFFMAN-TABLE

TYPE RUNLENGTH, HUFFMAN-TABLE

DEPTH RUNLENGTH, HUFFMAN-TABLE

COLOR CHANNEL RUNLENGTH, HUFFMAN-TABLE

SCALAR FACTOR (SIGN) SINGLE BIT

SCALAR FACTOR (VALUE) DELTA CODING, HUFFMAN-TABLE

w0 C m type, ,( )

∆ C m type, ,( )
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the RGB data set we generated a scalar representation of the
volume by extracting the intensitiesY from the RGB values.
The wavelet decomposition was performed with Haar
wavelets up to levelM=3.The effects of lossy data compres-
sion of the Y-data set are illustrated in figure 13. In order to
quantize image quality we define anL2 image measure QI
conforming to the signal-noise ratio (SNR) in [dB] well
known from signal processing applications as:

(18)

where, i im(pix, col) denotes the intensity of a given
pixel of the computed image for thecolor-component in
RGB-colorspace or the intensityY for the Y-data set, e.g.

or respectively. Note specifically
that in image compression ratios > 40 dB refer to reason-
able visual qualities and at ratios >60 dB images are per-
ceived as „noise-free“. The reference image was generated
by the proposed splatting method forM=0 and 100% of the
coefficients. We observe that ratios >60 dB are achieved at
compression gains of almost 95 %.

The colorplates in figure 14 display the image quality
achieved from the RGB data set for different colorspaces
and compression rates with respect to the original data size
of 6291456 bytes. The qualitative differences of the three
colorspaces reveal mostly for small datasizes. Note that
YIQ favourises theY-component and renders greyscale
images at high compression rates. This is contrasted by the
RGB color space where the method reconstructs the volume
both in the spatial and colorspace domain and ends up in a
poorer image quality. Finally the best results are obtained
by the PCA-based color representations. However, as pro-
gression proceeds the representations converge to each
other. It is clear that the entropy of the color information is
lower than in theY channel. Therefore, we observe higher
compression gains (SNRs) in figure 14 than in figure 13.

Nevertheless even on intensity based compression the
results are compelling and enable to use compressed ver-
sions of the volume as visual abstracts in large data bases.

We consider the volume’sL2 approximation energy
measureQV which is computed relatively to the uncom-
pressed volume from the underlying framework of the WT
as:

(19)

The PCA-based colorspace turns out to give the bestL2

approximations for a predefined compression rate as
depicted in table 4.

This table also sums the performance and fidelity of our
algorithm. Timings are given for a SGI-Indy workstation
(MIPS R 4400/150 MHz) and a SGI Maximum Impact
workstation (MIPS R10000/195 MHz). Both workstations
use our software-accumulation scheme as introduced in [9].
The resolution of the rendered image was 160x180 pixels.
For the delta-coding of the wavelet coefficients we assigned
three bits. The timings reveal, that we still achieve interac-
tive framerates for fast previewing. Note, in particular that
competitive high quality renderers, such as shear warp fac-
torization [14] are significantly slower at these data sizes
and require careful setting of the transfer function for
speed-up. Our proposed splatting technique is well-suited
for hardware support [17]. The hardware assisted accumu-
lation of the calculated splats is done within the accumula-
tion buffer or uses alpha-blending operations, depending on
the available hardware platform. Hardware support allows
to further increase the rendering speed significantly, espe-
cially for the generation of high resolution images.

In order to investigate compression gain achieved by
higher order spline wavelets we compared in Figure 15 the
Haar transform to linear and cubic B-spline wavelets, where
the MRI-volume data set of size 256x128x256 (8 bits/

Figure 12: Fraction of the bitstream generated by the compression scheme
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voxel) is displayed. The wavelet transform was performed
up toM=2. The blocky structure of the Haar wavelet clearly
leads to a blocky representation of the data set whereas the
higher order wavelets come up with a smooth, somewhat
blurry representation. Obviously, increasing numbers of

vanishing moments lead to higher compression rates. A
major drawback of higher order wavelets however is the
increasing support which affects the splat size. As a conse-
quence both FFT computation and the footprint accumula-

Figure 13: Compression of intensity data set. (data source: Visible Human Project, RGB-data set converted to Y). a) data size: 1496 bytes
(rel. data size: 0.07 %), QI = 19.19 dB. b) data size: 3164 bytes (rel. data size: 0.15 %), QI = 31.23 dB. c) data size: 26198 bytes (rel. data
size: 1.25 %), QI = 48.71 dB. d) data size: 122680 bytes (rel. data size: 5.85 %), QI = 61.17 dB.

Figure 14: Progressive compression in three different colorspaces. (data source: Visible Human Project, RGB-data set). Volume size: 1283,
max. decomposition level M=3.

a) b) c) d)

R
G

Bdf

R
G

B
C

O
M

P
U

T
E

D
B

Y
P

C
A

Y
IQ

C
O

LO
R

S
P

A
C

E

DATA SIZE
ABS: 4.6 KBYTE ABS: 9.4 KBYTE ABS: 79 KBYTE ABS: 368 KBYTE

QI = 16.22 DB

REL: 0.07 % REL: 0.15 % REL: 1.25 % REL: 5.84 %

QI = 15.24 DB

QI = 31.35 DB

QI = 29.67 DB

QI = 28.65 DB

QI = 46.01 DB

QI = 49.94 DB

QI = 51.29 DB

QI = 62.61 DB

QI = 68.65 DB

QI = 70.71 DBQI = 38.67 DB



Lippert et al. / Compression Domain Volume Rendering for Distributed Environments

© 1998 Department of Computer Science, ETH Zurich.

tion are computationally more expensive. Furthermore the
performance of spatial clustering drops in efficiency with
increasing support.

Thus a trade-off between compression gain and render-
ing time must be found, depending on the hardware used
and available network bandwidth. To compare performance
we compressed the data set using the lossless Lempel-Ziv
coding-scheme, such as implemented in the gzip-procedure.
The file size was reduced to 1586754 bytes (compression
rate: 18.91 %). However this scheme allows only lossless
compression and does not support hierachical decompres-
sion and compression domain rendering. Moreover, the data
set has to be reconstructed after transmission and requires
full volume memory space at the client side. Figure 16 illus-
trates how the data size can be adjusted by balancing the
trade-off between the amount of quantization bitsP and rel-
ative quantization errorQE. The error metric we used

counts for the relative energy difference of all wavelet coef-

ficients ( ) and their quan-

tized counterparts ( ) defined as:

(20)

where the residual termr(coeff) is given as

(21)

Figure 15: Images rendered with different basis functions and data-sizes. MRI-data set volume size: 256x128x256, 8 bits/voxel, max.
decomposition level M=2. Compressed datasizes (absolute/relative to original data set): upper row: Haar: 69241 bytes (0.825 %), linear:
69662 bytes (0.83 %), cubic: 77724 bytes (0.92 %), lower row: Haar: 273740 bytes (3.26 %), linear: 305972 bytes (3.65 %), cubic:
359603 bytes (4.29 %).
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Figure 16 shows a breakdown of the data size of a given
volume data set displayed on the right side for an increasing
number of quantization bits. The total length of each bar
represents the overall data size. Each bar is divided into
fractions representing the data sizes for positional data, type

and coefficient-value. Positional data and type are lossless
and hence not influenced by the amount of quantization
bits. The figure shows that the data size increases linearly
with the number of bits, whereas the quantization error
decreases exponentially.

6. Conclusions and Future Work

We have presented a method for progressive compression
domain volume visualization based on a unified wavelet
data representation and rendering framework. As an image
based approach we don‘t need to fully decompress and
store the 3D data set upon rendering. Moreover, the volume
can be rendered immediately from the compressed bitst-
ream, which features progressive organization and allows to
refine the image according to the provided data. The two
essential featuresprogressionand compressionmake the
framework especially suited for networked and distributed
environments. In particular the limited memory require-
ments of our image based method enable to run it even on
very low cost computers. In this context the framework
offers flexibility in balancing the trade-off between network
performance and local computational capabilities of client
and server. In addition, since the performance is mostly
driven by the underlying CPU capabilities we expect an
performance upscaling with each new generation of proces-
sors. However, although we proposed some further algo-
rithms to enhance visual quality the method is considered as
a fast and low quality rendering technique, which can oper-
ate as an interactive volume data browser.

At this point in time we are working on a Java-applet
[6] for further evaluations. In addition we will examine the
usefulness of an arithmetic coding scheme. Since hardware

accumulation boosts the performance significantly, we will
provide an OpenGL interface for 3D PC graphics boards.
Furthermore the transmission of selectively refined, view-
dependent data over a low-bandwidth network will be
investigated.
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Abstract

This paper describes a method for volume data compression and rendering which bases on wavelet splats. The
underlying concept is especially designed for distributed and networked applications, where we assume a
remote server to maintain large scale volume data sets, being inspected, browsed through and rendered inter-
actively by a local client. Therefore, we encode the server‘s volume data using a newly designed wavelet based
volume compression method. A local client can render the volumes immediately from the compression domain
by using wavelet footprints, a method proposed earlier. In addition, our setup features full progression, where
the rendered image is refined progressively as data comes in. Furthermore, framerate constraints are consid-
ered by controlling the quality of the image both locally and globally depending on the current network band-
width or computational capabilities of the client. As a very important aspect of our setup, the client does not
need to provide storage for the volume data and can be implemented in terms of a network application. The
underlying framework enables to exploit all advantageous properties of the wavelet transform and forms a
basis for both sophisticated lossy compression and rendering. Although coming along with simple illumination
and constant exponential decay, the rendering method is especially suited for fast interactive inspection of
large data sets and can be supported easily by graphics hardware.

Keywords: volume rendering, multiresolution, progressive compression, splatting, wavelets, networks, dis-
tributed applications

1. Introduction

Volume rendering, in general, has been a very important
subfield of research in computer graphics. Since its inven-
tion [12], [16], countless algorithms have been proposed,
[13], [14], most of which have been designed for providing
high quality images at low computational efforts. In this
context, recent advancements in graphics hardware help to
exploit individual capabilities of graphics workstations [2].
If real time performance constrains the method and image
quality can be relaxed, so-called splatting methods [15], [4]
have proved to provide good results. Here, footprints of a
volume primitive are computed in terms of a small pixmap
texture and are superimposed in the framebuffer to carry out
the final image. Introducing hierarchical basis functions,
such as wavelets [17], rendering is carried out progressively
by accumulating scaled and translated versions of self-simi-
lar textures.

Unfortunately, most rendering methods introduced so
far relate to local computation environments. The problems
arising with distributed environments and associated com-
pression domain rendering has hardly been addressed in the
literature [24], [10]. However, in times of distributed, world
wide information systems and exponentially increasing vol-
ume data sets, requirements for rendering such data have
changed. In many application scenarios, such as in medical
imaging and information systems, situations arise, such as
depicted in figure 1.

Often, volume data sets are stored and maintained by a
data base server, which can be accessed by one or more
local clients via a network. One of the fundamental tasks of
volume rendering is to inspect interactively and to browse
through the volume data base, where rendering quality can
be relaxed for the sake of real time performance. Moreover,
being a low end workstation, the computational power and
storage capacity of the client are limited and the network‘s
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bandwidth and latency might vary with its traffic load.
Obviously, when designing a rendering method for these
purposes, we have to consider the following issues:

• Progressivity:For enhanced interactivity, the image
should be refined progressively as data comes in
from the remote server. Image quality must be con-
trolled as a function of the network’s load and cli-
ent’s hardware setup.

• Compression domains: In order to store and trans-
mit large scale volume data sets, compression
schemes have to be employed. In order to avoid full
decompression, a sophisticated rendering method
should carry out computations in the compression
domain at the client side.

• Memory constraints:In particular with upcoming
network computers the capabilities of a local client
might be reduced significantly. Hence, a data repre-
sentation and rendering method is required, which
avoids full expansion of the volume in the clients
memory.

Along these lines, the research presented here aims at
providing a unified framework for data compression and
rendering in a distributed environment. Therefore, we first
propose a progressive volume data compression scheme. It
enables to store both RGB and intensity volume data effi-
ciently on the server in terms of a bitstream and allows fast
transmission over the network. To this end, we first decorre-
late the RGB volume data and transform the computed
intensities in a preprocess by using B-spline wavelets. The
coefficients and positions are arranged with decreasing
importance and proceed through various steps, such as

quantization, encoding and bit allocation. The compression
pipeline introduced essentially allows a progressive trans-
mission, where the information lost can be controlled
locally and globally. Second, the client carries out all ren-
dering immediately in the compression domain. That is we
do not need to perform full decompression of the data while
using wavelet splats [17], [9]. To increase performance and
visual quality of the images, we propose some significant
enhancements of the method. Especially, multiview images
can be carried out at low additional costs and constant expo-
nential transfer is incorporated by phase shifts in Fourier
domain.

Our paper is organized as follows: For reasons of read-
ability, we briefly review some fundamentals of wavelet
based splatting in section 2. In section 3 we describe some
significant extensions of the rendering method to gain
visual quality, such as multiviews, depth cueing and simple
shading. The proposed compression pipeline is described in
full detail in section 4. Results obtained with our setup are
illustrated in section 5.

2. Fundamentals of Wavelet Splats

In this section we describe how wavelet splats can be
defined and used for general volume rendering. Therefore,
we briefly summarize the mathematical fundamentals of
splat computation following the approach presented in [9].
In addition, a short description of low albedo rendering and
wavelets are given. We assume, however, the reader is
familiar with the mathematics of wavelets.

Figure 1: Volume-rendering in a distributed client/server environment.
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2.1. Low Albedo Volume Rendering

Volume rendering can be regarded as a composition of par-
ticles that, in addition to their own emission, receive light
from surrounding lightsources and reflect these intensities
towards the observer.

In classic volume rendering, the amount of light
received at pointx from directions up to a ray

lengthtL is computed as:

(1)

where q denotes the volume source term andα the
opacity function. For an isotropic medium with constant
opacity  equation (1) reduces to

(2)

In particular note that for we end up in a X-ray-
like image.

Especially in those cases, splatting has proved its
usability for fast volume rendering [15]. In contrast to ray-
casting, it allows to reduce the computational complexity
for interpolation and integration to a minimum, since the
preprojected footprints of high-order interpolation func-
tions can be stored as lookup tables. The projections them-
selves can be computed with an accurate quadrature
technique. Besides hierarchical splats [15], wavelet splat-
ting [17] is a sophisticated extension.

2.2. B-spline Wavelets

Since we aim at a unified data representation for both vol-
ume data compression and rendering, we use Chui and
Wang [3] B-spline wavelet bases of orderj. They have
many usefull properties, such as smoothness and vanishing
moments. In addition, analytic expressions for scaling- and
wavelet functions and their duals in the frequency- and spa-
tial-domain are given. The mother-scaling function of order
1 is defined as:

(3)

Compactly supported scaling functions of orderj can be
generated recursively in terms of cardinal B-splines:

(4)

In the frequency-domain the corresponding functions
collapse intosinc-polynomials of type:

(5)

In the upper termf denotes the frequency andi the com-
plex operator. Note, that the upper equation is fundamental
for splat computation in Fourier domain. The semiorthogo-
nality of the function system forj > 1 requires duals. For the
case of B-spline wavelets all primary and dual functions
have linear phase. Furthermore, only rational coefficients
have to be used for the fast wavelet transform.

To fully characterize the wavelet transform, we need to
determine the wavelet functions. For the corresponding
wavelets we obtain:

(6)

Note, that their support can be computed straightfor-
wardly as [0,2j-1]. Wavelets in three dimensions are
obtained easily by non-standard tensor-product extensions
[5].

Here volume decomposition is carried out with the
duals, whereas reconstruction is performed using the pri-
mary functions (4), (6). Note furthermore, that implementa-
tions of linear time algorithms [20] can be more
challenging, since additional basis transforms might be
required.

2.3. Construction of Wavelet Splats

In wavelet splatting, the renderer computes the projection
such as defined in (2). Taking into account the wavelet
decomposition levelm up toM and moving the summation
outside the integral, the formulation collapses to:

(7)

where denote the wavelet coefficients of decom-

position levelm at the spatial positionp, q, r and wavelet-
type typeand the coefficient of the scaling function

of level M. The computation of the line integrals for a par-
ticular view can be accomplished by Fourier projection slic-
ing (FPS). It allows to compute accurate projections of any
basis function. This theorem states that the 2D Fourier
transform of a projection of a functionf(x,y,z) onto a given
plane P equals a plane that slices the Fourier transform

 parallel toP and intersects the origin.

Since many wavelet types such as B-splines come along
with closed form representations in the frequency domain,
it is straightforward to apply this theorem to get the
required splats. Figure 2 depicts the setting, where an
inverse FFT processes the slices to obtain the wavelet splat.
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The intersection plane spanned byu, v defines the 2D
Fourier transform of the texture splats

, whereas the

normal vectorn of the plane equals the direction of the pro-
jection. The definition of the viewing parameters is figured
out in spherical coordinates (α,β).

Once the renderer builds the viewpoint dependent inte-
gral tables, the screen position of the table is calculated,
mapped, weighted by the wavelet coefficient and accumu-
lated into the framebuffer. Since the basis functions of dif-
ferent iteration levelsm differ by dilation, only eight
different splats of depthM have to be calculated. All other
footprints are derived by subsampling in the spirit of a
mipmap. Correct sampling and optimized data-structures of
the calculated splats are discussed in [9].

3. Visual Enhancements

We are now in a position to discuss two significant render-
ing features which help to improve the visual quality of the
generated images. In particular, we introduce a method for
the computation of multiviews, being important in many
applications, such as medical imaging. Exploiting the sym-
metry of 3D tensor-product wavelets allows the additional
costs to be kept sufficiently low. Furthermore, we address
the problem of exponential transfer functions in Fourier
space. Phase shifts of the wavelet’s FT enable exponential
transfer to be incorporated and can be used to simulate
shading operations on the fly.

3.1. Multiviews

The rendered images, obtained by our splatting approach,
lack occlusion. Since this important visual cue is missing
for the calculated X-ray images, depth information is not
presented to the user. One way to overcome this drawback
is the introduction of a multiview arrangement. Here, the
volume is rendered simultaneously from different directions
and presented to the user in a single window. Exploiting the
coherence of different viewing angles given by the symme-
try of tensor-product constructions, the basic single-view
splatting approach can be extended to a multiview renderer
without computational overhead for splat computation. We
recall that the tensor-product functions are constructed from
permutations of the 1D basis functions and along the
x, y andz directions.

Figure 3 exemplifies the idea. The footprint of the basis

function (3D Haar scaling function of level 0,

aligned to the origin) from the first viewing-direction equals
the footprint from the second and third direction, e.g. the
calculated footprints can be reused for rendering different
views. Thus, we propose to generate a lookup table for the
basis functions types 1 to 7 to ensure correct footprint cal-
culation. A corresponding lookup table is given in Table 1
and illustrated in figure 4 for Haar functions respectively.

In order to combine the three footprints for the eight
different basis functions, eight textures are calculated for
view 1 by the FPS-theorem. The footprint for the basis
function is equal for view 1 and 2, whereas the splat

of the view 3 is given by the footprint of the function
(texture 4) of view 1. The corresponding permutations are

I u v,( ) F ω1 u v,( ) ω2 u v,( ) ω3 u v,( ), ,( )=

Figure 2: Illustration of the Fourier projection slicing theorem in 3D for an idealized Shannon wavelet.
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Figure 3: Illustration of the multiview concept.

Table 1: Permutations and negations for multi view arrange-
ments

PERMUTATIONS NEGATIONS

VIEW 1 [ 0 1 2 3 4 5 6 7 ] [ 1 1 1 1 1 1 1 1 ]

VIEW 2 [ 0 1 4 5 2 3 6 7 ] [ 1 1 -1 -1 1 1 -1 -1]

VIEW 3 [ 0 4 2 6 1 5 3 7 ] [ 1 1 1 1 -1 -1 -1 -1 ]

y

z

x

view 2

vie
w 1

vi
ew

 3
view 1view 2

view 3φ0000
3 1[ ]

φ0000
3 1[ ]

φφψ
ψφφ



Lippert et al. / Compression Domain Volume Rendering for Distributed Environments

© 1998 Department of Computer Science, ETH Zurich.

given for all basis functions and for three views in Table 1.
In some cases it is also necessary to multiply the intensity
with -1. The same permutation tables can also be used for
higher order wavelets.

Note that these permutations are equal for each viewing
direction. Note furthermore that the angles between the
individual viewing planes are not constant. Moreover, they
depend on the initial selection of the camera parameters. A
little algebra reveals that the three projection-planesPi,
spanned by the vectors (ui,vi) are given by

View 1:  with

View 2:  with

View 3:  with

The triple view rendering is illustrated in figure 5,
where a classified data set is displayed from three direc-
tions. The image was grabbed directly from the screen as it
is displayed to the user. Skin is colored white, brain tissue
red and a tumor is colored in blue.

3.2. Depth Cueing

Up to now, only linear depth cueing has been considered in
the frequency domain [22]. In order to compute constant
exponential decay as in (2) we propose a depth cueing
approach implemented as a two step solution. In the first
step the cued footprints have to be calculated by the FPS-
theorem and an additional phase-shift. Second, the textures
have to be weighted according to the distance between the
projection plane and the basis functions.

Footprint Computation In order to set up the Fourier
relations for exponentially weighted functions, let’s first
consider the relations in the spatial domain. Let
denote the function that is depth cued alongt and letk be
the constant exponential extinction coefficient. We obtain

the new function  as:

(8)

In the frequency domain the Fourier transform of
can be written as:

(9)

Obviously, the Fourier transform of the exponentially

depth-cued function is computed by shifting
with the imaginary frequencyf0. This can be interpreted as

Figure 4: Different wavelet types figured out by non-standard
tensor-product extensions for the Haar case.
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a “frequency phase shift”. For the B-spline scaling func-
tions and wavelets of orderj in the frequency domain we
have

(10)

where

(11)

In 3D the direction of the shift operation in the spec-
trum can be chosen without any restriction and indepen-
dently from the viewing direction. It corresponds to the
depth-cueing direction in the spatial domain. We define the
cueing vectorL for any pair of viewing angles (αl , βl) as

(12)

to determine the cueing direction and extinction coeffi-
cient. Figure 6 shows the calculated splats resulting from
this method.

Distance Weighting For correct depth cueing of the vol-
ume, the computed footprints have to be weighted accord-
ing to their distance from a reference plane which can be
regarded as a planar light source, perpendicular to the
depth-cueing vectorL that points towards the volume mid-
point VM. Let L init represent the intersection point of the
volume’s bounding sphere and its tangent plane, the weight-
ing factorωd for each basis function centered atBM= P +
L init can be computed as:

(13)

During the accumulation process this factor is multi-
plied with the wavelet coefficient and the accumulation step
proceeds straightforwardly. The geometric relationships are
depicted in figure 7.

As a result we come up with smooth and correctly
depth-cued volumes, such as shown in figure 6.

To illustrate the performance of our method, we applied
the approach to the visible human CT-data set [18]. The
influence of different factors |k| and different cueing direc-
tions are displayed in figure 8 Note that exponential depth
cueing increases the rendering performance, since less tex-
tures have to be accumulated. Moreover, interactive manip-
ulation of the cueing direction allows us to simulate simple
shading operations in the wavelet domain and enhances the
visual quality significantly.

4. Progressive Compression and Transmission

As motivated earlier, our approach is targeted at networked
applications where, for instance, a local client with low
computational power browses through a remote database.
Thus, in order to transmit our volume data efficiently we
have to find appropriate compression strategies. It is clear
that the underlying framework of the wavelet decomposi-
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sis functions.
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tion proposes to develop an optimized compression tech-
nique that allows progressive transmission, one pass
decompression and direct rendering at interactive frame
rates. Moreover, the wavelet domain rendering avoids full
decompression of the data prior to the splatting which itself
as an image based method does not require to store the full
volume data at the client’s side. Although much research
has been done on wavelet compression methods [21], [23]
the specific needs of compression domain rendering
encouraged us to develop a new compression pipeline
which will be explained below. For the sake of brevity we
restrict our description to the issues essential for our
method and recommend further readings in the fundamen-
tals of data compression [11].

4.1. Overview

Figure 9 illustrates the data flow in our compression and
rendering setup. The data preprocessing comprises five
stages. It enables both intensity and RGB volumes to be
handled, which might be the result of an optional data clas-
sification step [1]. In case of RGB volumes the second step
consists of a colorspace optimization which essentially
decorrelates the data and allows color sensitive quantiza-
tion. Next, a wavelet transform is performed independently
on the three channels. Lossy compression is carried out by
an oracle [8] which operates locally or globally in the wave-
let domain. The final step includes a data compression and
encoding scheme to achieve a binary output stream that can
be stored locally or transmitted directly through a network.
Note that forward compression does not have any real-time
constraints as opposed to the decompression.

In our implementation the software decompressor
works at a rate of ~30 k wavelet-coefficients/sec. on an Indy
R4400 workstation and allows on-line decompression. The
renderer splats the computed footprints weighted with the
decoded wavelet-coefficients directly into a software or
hardware accumulation buffer. In addition, our framework
incorporates a local cache to store coefficients at the client’s
side. The required splats are computed locally. Since the
wavelet coefficients are transmitted in significance order the
rendering quality is fully controlled by a user-defined fra-
merate, the client’s hardware and, if no cache mechanism is
enabled, also by the bandwidth of the network. Hence, this

concept balances CPU, network and graphics performance
and allows scalability. In a minimum configuration we have
to provide client storage only for the eight mother-wavelet
splats and three Huffman tables. Together they take less
than 5KB of memory even for huge data sets. This even
allows the scheme to run on some of the upcoming network
computers.

4.2. Colorspace Transformations

If the initial volume is given in RGB, it is critical to trans-
form the volume into an optimized colorspace prior to com-
pression. Here, we assume the optimized space to be
spanned by the three vectorsC1, C2 andC3. This allows to
assign an additional significance to each vector. As a result
we get two independent significance weights per coefficient
which affect encoding and quantization. The first weight is
defined by the energy of the associated function [8]. The
second one is a global significance determined by the color-
space-coordinates. For instance, a coefficient with the coor-
dinates (1,0,0) is regarded as more relevant than a
coefficient (0,1,0) if the vectorC1 is considered to be more
significant thanC2.

In addition to RGB we employ two colorspaces: The
first one is data-independent and equals the YIQ-colorspace
obtained by a simple matrix transform [19]. TheY compo-
nent encodes the luminance information, whereas the chro-
maticity is encoded inI and Q. We followed the NTSC
bandwidth conventions and assigned a factor 4 toY, 1.5 toI
and 0.6 toQ. In practical use this colorspace allows to com-
pute a black and white image (Y) as a rough sketch and to
refine color progressively. Thus, progression is figured out
both in the spatialand in color domain. Alternatively, our
second colorspace is calculated by a statistically optimal
principle component analysis (PCA) or Karhunen-Loève
expansion [7] whose matrix has to be computed individu-
ally for each data set. Although the solutions of the eigen-
problems are computationally more challenging on offline
forward compression, yet they provide better results (see
section 5). In this case the absolute values of the eigenva-
lues are taken to describe the significance of the corre-
sponding eigenvector. Note that this step can be skipped for
intensity volumes, such as raw CT or MRI data sets.

Figure 8: Influence of different cueing parameters and directions.(data source: Visible Human Project, courtesy National Library of Med-
icine, copyright (C) 1995). Volume size: 2563, max. decomposition level M=3. a-c):α = αl = 2.5, β = βl = 0.1, a) |k| = 0, b) |k| = 0.1, c) |k|
= 0.2, d)α = 2.5, αl = π/4, β = 0.1,βl = 0.3, |k| = 0.2.

a) b) c) d)
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4.3. Data Compression Pipeline

The algorithmic steps for data compression are executed
sequentially in the pipeline summarized in figure 10 and
convert the wavelet transformed data sets into a sequential
bitstream.

Therefore, we start with a sorting operation that gener-
ates a sequence of coefficients and positional data in signif-
icance order. The significance scoreS is determined for
each color channel and coefficient

individually according to

its associated wavelet energyE and color channel impor-
tance I.

(14)

Table 2 summarizes the importance factors for the three
different colorspaces.

For each color channel (C), wavelet type (type) and
decomposition level (m) a deltacoding, normalization and
quantization operation is performed separately depending
on the individual ranges of the coefficientsw. More pre-
cisely, if quantization is restricted toP bits for a given

Figure 9: Setup for distributed compression domain rendering.
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sequence ofN+1 significance sorted non-zero wavelet and
scaling function coefficients ,

we compute the coefficient’s delta factor as:

(15)

This factor is used to store the coefficient’s range with
respect to the assigned bytes. Thus, it has to be transmitted
once for each wavelet type, decomposition level and color
coordinate. In contrast, the normalized and quantized dif-
ference of two coefficientsδ has to be transmitted for each
coefficient individually. It is computed as:

(16)

Upon reconstruction we end up with approximated
wavelet and scaling function coefficients ,

 which can be computed by:

(17)

Since the coefficients are sorted according to their indi-
vidual scores we optimize the residual approximation error
as a function of the parameters introduced above. Note that
the sign of each coefficient is encoded by an additional flag,
refered assign(n).

We choose to limit the quantizationP to eight bits,
since standard framebuffers use eight bits for RGBα each.
However, observations in practice encourage us to reduce
quantization to even three bits without significant lost of
visual quality (see section 5). The three data sequences are
merged and sorted according the scores of their wavelet
coefficients. In particular, the sorted sequence requires for
each coefficient to encode additionally its spatial position,
wavelettype and color-channel in a lossless scheme. In
order to overcome the drawbacks in compression perfor-

mance arising from this requirement we introduce the fol-
lowing spatial clustering mechanism, which balances
spatial and score constraints upon compression: Within a
predefined radius around the coefficient with the highest
score the algorithm selects a neighbor as a successor in the
bitstream if its score exceeds a threshold. If not, the coeffi-
cient with the highest score is selected independently of its
spatial position. The corresponding coefficients are labeled
to avoid multiple storage. Figure 11 illustrates the ordering
with and without clustering for the 2D case. The calculated
coefficient weights are given in the corresponding box and
the arrows denote the sorting order. Without clustering the
arrow length and therefore the positional deltas are nearly
equiprobable, whereas for clustered volumes mostly short
arrows (small differences in position) appear. This reduces
the entropy and brings up a better compression rate of the
Huffman-coded positional deltas. That is we balance spatial
coherence and the energy contribution sorting order of the
coefficients. Note that clustering also speeds up the render-
ing process, since splats outside the field of view can be
detected easily and skipped without further computation.

Additional runlength-codings of wavelettype, decom-
position depthmand colorchannel are performed and trans-
mitted as variable length Hufman tag codes. The third
Huffman-table encodes the deltasδ of wavelet-coefficients.
These three tables together take about 2kBytes and have to
be transmitted separately prior to the data. In addition the
transmitted meta-data includes information about the basis
vectors of the colorspace, maximum depth of the wavelet
transform (M), exact initial wavelet coefficients
( ) and the coefficient delta factors

( ).

The reconstruction scheme has to decode all required
information, such as the spatial position, wavelet type,
depthm, colorchannel and the data value. According to the
composition step, each tag is encoded as described in Table
3. For computational efficiency, we propose to precompute
10-bit Huffman look-up tables.

Figure 12 illustrates a fraction of the bitstream as gener-
ated by our method. Note, that the number of bits varies as a
function of the individual Huffman codes.

5. Results

To investigate the performance of the proposed method, we
applied the approach to the RGB-Visible Human Dataset of
size 128x128x128 voxels (3 x 8 bits/voxel). In addition to

Figure 11: Effect of spatial clustering:
a) Without clustering
b) With clustering (position threshold: 3, coefficient threshold = 2)
c) With clustering (position threshold: 3, coefficient threshold = 4).
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Table 3: Coding schemes:

TAG CODING SCHEMES

SPATIAL POSITION
SPATIAL CLUSTERING, DELTA

CODING, HUFFMAN-TABLE

TYPE RUNLENGTH, HUFFMAN-TABLE

DEPTH RUNLENGTH, HUFFMAN-TABLE

COLOR CHANNEL RUNLENGTH, HUFFMAN-TABLE

SCALAR FACTOR (SIGN) SINGLE BIT

SCALAR FACTOR (VALUE) DELTA CODING, HUFFMAN-TABLE

w0 C m type, ,( )

∆ C m type, ,( )
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the RGB data set we generated a scalar representation of the
volume by extracting the intensitiesY from the RGB values.
The wavelet decomposition was performed with Haar
wavelets up to levelM=3.The effects of lossy data compres-
sion of the Y-data set are illustrated in figure 13. In order to
quantize image quality we define anL2 image measure QI
conforming to the signal-noise ratio (SNR) in [dB] well
known from signal processing applications as:

(18)

where, i im(pix, col) denotes the intensity of a given
pixel of the computed image for thecolor-component in
RGB-colorspace or the intensityY for the Y-data set, e.g.

or respectively. Note specifically
that in image compression ratios > 40 dB refer to reason-
able visual qualities and at ratios >60 dB images are per-
ceived as „noise-free“. The reference image was generated
by the proposed splatting method forM=0 and 100% of the
coefficients. We observe that ratios >60 dB are achieved at
compression gains of almost 95 %.

The colorplates in figure 14 display the image quality
achieved from the RGB data set for different colorspaces
and compression rates with respect to the original data size
of 6291456 bytes. The qualitative differences of the three
colorspaces reveal mostly for small datasizes. Note that
YIQ favourises theY-component and renders greyscale
images at high compression rates. This is contrasted by the
RGB color space where the method reconstructs the volume
both in the spatial and colorspace domain and ends up in a
poorer image quality. Finally the best results are obtained
by the PCA-based color representations. However, as pro-
gression proceeds the representations converge to each
other. It is clear that the entropy of the color information is
lower than in theY channel. Therefore, we observe higher
compression gains (SNRs) in figure 14 than in figure 13.

Nevertheless even on intensity based compression the
results are compelling and enable to use compressed ver-
sions of the volume as visual abstracts in large data bases.

We consider the volume’sL2 approximation energy
measureQV which is computed relatively to the uncom-
pressed volume from the underlying framework of the WT
as:

(19)

The PCA-based colorspace turns out to give the bestL2

approximations for a predefined compression rate as
depicted in table 4.

This table also sums the performance and fidelity of our
algorithm. Timings are given for a SGI-Indy workstation
(MIPS R 4400/150 MHz) and a SGI Maximum Impact
workstation (MIPS R10000/195 MHz). Both workstations
use our software-accumulation scheme as introduced in [9].
The resolution of the rendered image was 160x180 pixels.
For the delta-coding of the wavelet coefficients we assigned
three bits. The timings reveal, that we still achieve interac-
tive framerates for fast previewing. Note, in particular that
competitive high quality renderers, such as shear warp fac-
torization [14] are significantly slower at these data sizes
and require careful setting of the transfer function for
speed-up. Our proposed splatting technique is well-suited
for hardware support [17]. The hardware assisted accumu-
lation of the calculated splats is done within the accumula-
tion buffer or uses alpha-blending operations, depending on
the available hardware platform. Hardware support allows
to further increase the rendering speed significantly, espe-
cially for the generation of high resolution images.

In order to investigate compression gain achieved by
higher order spline wavelets we compared in Figure 15 the
Haar transform to linear and cubic B-spline wavelets, where
the MRI-volume data set of size 256x128x256 (8 bits/

Figure 12: Fraction of the bitstream generated by the compression scheme
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voxel) is displayed. The wavelet transform was performed
up toM=2. The blocky structure of the Haar wavelet clearly
leads to a blocky representation of the data set whereas the
higher order wavelets come up with a smooth, somewhat
blurry representation. Obviously, increasing numbers of

vanishing moments lead to higher compression rates. A
major drawback of higher order wavelets however is the
increasing support which affects the splat size. As a conse-
quence both FFT computation and the footprint accumula-

Figure 13: Compression of intensity data set. (data source: Visible Human Project, RGB-data set converted to Y). a) data size: 1496 bytes
(rel. data size: 0.07 %), QI = 19.19 dB. b) data size: 3164 bytes (rel. data size: 0.15 %), QI = 31.23 dB. c) data size: 26198 bytes (rel. data
size: 1.25 %), QI = 48.71 dB. d) data size: 122680 bytes (rel. data size: 5.85 %), QI = 61.17 dB.

Figure 14: Progressive compression in three different colorspaces. (data source: Visible Human Project, RGB-data set). Volume size: 1283,
max. decomposition level M=3.
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tion are computationally more expensive. Furthermore the
performance of spatial clustering drops in efficiency with
increasing support.

Thus a trade-off between compression gain and render-
ing time must be found, depending on the hardware used
and available network bandwidth. To compare performance
we compressed the data set using the lossless Lempel-Ziv
coding-scheme, such as implemented in the gzip-procedure.
The file size was reduced to 1586754 bytes (compression
rate: 18.91 %). However this scheme allows only lossless
compression and does not support hierachical decompres-
sion and compression domain rendering. Moreover, the data
set has to be reconstructed after transmission and requires
full volume memory space at the client side. Figure 16 illus-
trates how the data size can be adjusted by balancing the
trade-off between the amount of quantization bitsP and rel-
ative quantization errorQE. The error metric we used

counts for the relative energy difference of all wavelet coef-

ficients ( ) and their quan-

tized counterparts ( ) defined as:

(20)

where the residual termr(coeff) is given as

(21)

Figure 15: Images rendered with different basis functions and data-sizes. MRI-data set volume size: 256x128x256, 8 bits/voxel, max.
decomposition level M=2. Compressed datasizes (absolute/relative to original data set): upper row: Haar: 69241 bytes (0.825 %), linear:
69662 bytes (0.83 %), cubic: 77724 bytes (0.92 %), lower row: Haar: 273740 bytes (3.26 %), linear: 305972 bytes (3.65 %), cubic:
359603 bytes (4.29 %).
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Figure 16 shows a breakdown of the data size of a given
volume data set displayed on the right side for an increasing
number of quantization bits. The total length of each bar
represents the overall data size. Each bar is divided into
fractions representing the data sizes for positional data, type

and coefficient-value. Positional data and type are lossless
and hence not influenced by the amount of quantization
bits. The figure shows that the data size increases linearly
with the number of bits, whereas the quantization error
decreases exponentially.

6. Conclusions and Future Work

We have presented a method for progressive compression
domain volume visualization based on a unified wavelet
data representation and rendering framework. As an image
based approach we don‘t need to fully decompress and
store the 3D data set upon rendering. Moreover, the volume
can be rendered immediately from the compressed bitst-
ream, which features progressive organization and allows to
refine the image according to the provided data. The two
essential featuresprogressionand compressionmake the
framework especially suited for networked and distributed
environments. In particular the limited memory require-
ments of our image based method enable to run it even on
very low cost computers. In this context the framework
offers flexibility in balancing the trade-off between network
performance and local computational capabilities of client
and server. In addition, since the performance is mostly
driven by the underlying CPU capabilities we expect an
performance upscaling with each new generation of proces-
sors. However, although we proposed some further algo-
rithms to enhance visual quality the method is considered as
a fast and low quality rendering technique, which can oper-
ate as an interactive volume data browser.

At this point in time we are working on a Java-applet
[6] for further evaluations. In addition we will examine the
usefulness of an arithmetic coding scheme. Since hardware

accumulation boosts the performance significantly, we will
provide an OpenGL interface for 3D PC graphics boards.
Furthermore the transmission of selectively refined, view-
dependent data over a low-bandwidth network will be
investigated.
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