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Abstract
Geometric structures such as points, lines, and surfaces play a vital role in scientific visualization. However, these visualizations
frequently suffer from visual clutter that hinders the inspection of important features behind dense but less important features.
In the past few years, geometric cluttering and occlusion avoidance has been addressed in scientific visualization with various
approaches such as opacity optimization techniques. In this paper, we present a novel approach for opacity optimization based
on recent state-of-the-art moment-based techniques for signal reconstruction. In contrast to truncated Fourier series, moment-
based reconstructions of feature importance and optical depth along view rays are highly accurate for sparse regions but also
plausible for densely covered regions. At the same time, moment-based methods do not suffer from ringing artifacts. Moreover,
this representation enables fast evaluation and compact storage, which is crucial for per-pixel optimization especially for large
geometric structures. We also present a fast screen space filtering approach for optimized opacities that works directly on
moment buffers. This filtering approach is suitable for real-time visualization applications, while providing comparable quality
to object space smoothing. Its implementation is independent of the type of geometry such that it is general and easy to integrate.
We compare our technique to recent state of the art techniques for opacity optimization and apply it to real and synthetic data
sets in various applications.

Categories and Subject Descriptors (according to ACM CCS): I.6.9 [Computer Graphics]: Picture/Image Generation—Viewing
algorithms

1. Introduction

Flow visualization is a branch of scientific visualization where sci-
entists and engineers are interested in exploring various phenom-
ena on 2D manifolds or inside 3D vector fields. Lines and sur-
faces [MLP∗10a, ELC∗12] are used by domain experts to detect
and classify important features inside the domain [BCP∗12]. Such
geometric structures are generated by integrating steady and un-
steady flows at specific or predefined locations. However, most of
the time a direct visualization results in a large number of lines and
surfaces. Without an appropriate visualization technique, cluttering
might be a problem, where important structures are surrounded and
hidden by less important structures.

In order to better study dense and cluttered flow structures, an
efficient visualization technique seeks to find a smaller, but repre-
sentative set of flow structures to preserve important features in a
fast and efficient way. One possible way to find a representative set
of lines is to use a suitable seeding algorithm, where carefully cho-
sen seed points are used to start the line integration. Good seeding
points for line integration can be found via density-based estimates
of local importance [MTHG03, SHH∗07], as locations of interest-
ing features [YKP05, YWSC11], or based on a similarity measure
of flow structures [MLP∗10b, MJL∗12].

An alternate approach to visualize important flow structures is to
optimize the opacity of each geometric structure based on its im-
portance. This class of algorithms models the opacity of each ren-
dered segment using an optimization problem and tries to maximize
the opacity of important structures inside cluttered regions while
minimizing the opacity of less important surrounding structures.
Günther et al. model the opacity optimization as a global optimiza-
tion process for 3D lines [GRT13,GRT14] and surfaces [GSE∗14].
Lastly, a fast per-pixel opacity optimization for points, lines, and
surfaces [GTG17] finds an analytic solution for opacity in screen
space, independently for each pixel. This is followed by an object
space smoothing step. However, such techniques come at the cost
of a large memory footprint due to the generation of a per-pixel
linked list on the GPU, and are relatively slow due to the need for
sorting a large number of linked lists in screen space.

In this paper, we present a novel technique for opacity optimiza-
tion using a moment-based representation. Moment-based recon-
structions [PK15, MKKP18] provide the means to recover mono-
tonic functions from a small number of coefficients. In our case,
they help recover the sum of squared importance values of surfaces
that contribute to the occlusion of any given fragment. They are
highly accurate for sparse regions in the visualization, where only
few structures are visible, and smooth and plausible for dense re-
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gions. Our approach enables screen-space filtering of this occlusion
information. Thus, no filtering in object space is needed. These de-
sirable properties lead to an efficient, reliable and general opacity
optimization technique. Our technique is not limited by the geo-
metric representation of input data and can be directly applied to
any kind of geometry that fits into the rasterization pipeline.

For compositing, we use moment-based order-independent
transparency [MKKP18], which scales well to scenarios with
strong overdraw. A recent work of Baeza Rojo et al. [BGG19]
introduces a similar approach with a truncated Fourier series for
reconstruction. The basic steps of their method for opacity opti-
mization are similar, but prior work on order-independent trans-
parency found that moment-based reconstructions are more robust
than truncated Fourier series [JB10, SML11, MKKP18]. Besides,
their technique still relies on object space filtering.

Our main contributions are:

• An application of moment-based approaches from prior
work [MKKP18] to the problem of opacity optimization for
points, lines, and surfaces,
• An efficient screen space filtering approach that works directly

on the moment buffers used for opacity optimization,
• An extensive comparison and analysis of our approach with cur-

rent state of the art solutions [GTG17, BGG19].

This paper is organized as follows: Section 2 introduces related
work. Section 3 presents our approach for opacity optimization us-
ing a moment-based formulation and introduces our screen space
filtering. Section 4 describes the integration into our visualization
framework. Section 5 compares our approach to state of the art so-
lutions for opacity optimization. We conclude with Section 6.

2. Related Work

In this section, we discuss recent work on occlusion avoidance,
opacity optimization and rendering of semi-transparent objects.

2.1. Transfer Functions

Transfer functions are an essential tool in visualization to highlight
important parts through high opacity. Since manual design of trans-
fer functions is a time-consuming task, there are many automatic
and semiautomatic techniques. For example, these employ geo-
metric derivatives [PRW11], surface curvature [HKG00, KSW06],
visibility histograms [CM10] and information theoretic strate-
gies [RBB∗11, SP13]. However, the core concept of mapping a
scalar attribute to opacity, is quite limiting. Either important struc-
tures remain occluded or less important structures are removed
everywhere, even when they do not occlude anything important.
Opacity optimization [Gün16] overcomes these limitations.

2.2. Decoupled Opacity Optimization

Opacity optimization is a selection algorithm that highlights impor-
tant geometric structures. It adjusts opacities to ensure that dense
but unimportant structures become transparent whenever they oc-
clude more important structures. Thus, it reduces visual clutter.
For streamlines, an importance value is assigned to each segment

and the optimization process finds the optimal opacity value for
each segment. Importance values of geometric structures are de-
rived from physical properties of the data such as density, geomet-
ric properties such as curvature, or based on user controlled pa-
rameters. Decoupled opacity optimization as originally proposed
by Günther et al. [GRT13, GRT14] is a global least squares mini-
mization process for line geometry within a 3D vector field. Later
the technique was extended to surface geometry [GSE∗14]. Ament
et al. [AZD17] extend and solve such an optimization process in ray
space for volumetric data. Günther et al. [GTG17] extend this ap-
proach to points, lines, and surfaces and perform the optimization
process in parallel for each pixel on the GPU.

Since the analytic solution proposed by Günther et al. [GTG17]
forms the basis for our formulations, we briefly recapitulate it here.
Consider a single pixel that is covered by n ∈ N fragments. Frag-
ment l ∈ {0, . . . ,n− 1} is associated with a depth zl ∈ [zmin,zmax]
and an importance gl ∈ [0,1]. An A-buffer [Car84] makes all of this
information available using per-pixel linked lists, albeit at a high
cost. To compute an optimized opacity for fragment l, we need the
sum of squared importance values up to depth zl and the full sum:

G(zl) :=
n−1

∑
k=0

zk<zl

g2
k , Gall :=

n−1

∑
k=0

g2
k . (1)

For each pixel in screen space, the opacity optimization algorithms
finds the optimized opacity for fragment l ∈ {0, . . . ,n− 1} along
the view ray as

αl :=
p

p+(1−gl)2λ
(
rG(zl)+q(Gall−G(zl)−g2

l )
) , (2)

where p,q,r,λ ≥ 0 are user controllable input parameters with the
following purpose:

• p is a regularization term that prevents empty renderings and
controls how close opacities get to one,
• q penalizes foreground clutter,
• r penalizes background clutter,
• λ steers the fall-off of importance from 1, which allows the user

to put further emphasis on the important structures.

Decoupled opacity optimization [GTG17] solves Equation 6 us-
ing per-pixel linked lists that are sorted by depth for opacity op-
timization. This per-pixel optimization is followed by a geometric
filtering pass to smooth different opacity values out of the optimiza-
tion process along adjacent vertices. This parallel solution comes
at the cost of a relatively large memory footprint due to the cre-
ation of per-pixel linked lists. Moreover, sorting of the lists gets
prohibitively slow for dense geometry.

Fourier Opacity Optimization [BGG19] solves the opacity op-
timization process in the frequency domain using a Fourier series
approximation of the importance function along the view ray. By
doing so, per-pixel linked lists are replaced by a relatively small
number of frame buffers for storing the Fourier coefficients. The
cumulative importance per fragment along the view ray G(zl) is
reconstructed using a truncated Fourier series. Besides the large
memory reduction, a large processing gain is achieved by replac-
ing sorting with the order-independent Fourier series reconstruc-
tion. The output is shown to be a plausible approximation of the
reference solution using linked lists.
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2.3. Order Independent Transparency

In this paper, we transfer methods from moment-based order-
independent transparency [MKKP18] to opacity optimization.
These two problems are orthogonal. Opacity optimization com-
putes appropriate opacity values, thus providing input to the order-
independent transparency, which takes care of correct composit-
ing of transparent surfaces. Nonetheless, the problems have com-
monalities since both deal with an arbitrary number of fragments
per pixel, each associated with a scalar attribute (either impor-
tance or opacity). Both of these fields have seen approaches us-
ing A-buffers [Car84, GTG17] and truncated Fourier series [JB10,
BGG19] but thus far moment-based reconstructions have only been
used for order-independent transparency.

With carefully optimized GPU implementations [YHGT10],
A-buffers [Car84] are the most viable exact solution for order-
independent transparency. The linked list of all fragments cover-
ing a pixel is constructed in a single rasterization pass using atomic
reads and a large preallocated node buffer. Subsequently, each list
is sorted front to back in a shader. Once the fragments are sorted,
standard alpha blending suffices to composite them together cor-
rectly. In spite of the optimization efforts [YHGT10], A-buffers are
still expensive and scale poorly to scenarios with strong overdraw.

Fourier opacity mapping [JB10] uses a truncated Fourier series
to encode the transmittance from a light source to any point in
a scene. It stores Fourier coefficients per pixel of a shadow map.
Although this work focuses on shadows, it has been evaluated for
order-independent transparency as well with unsatisfactory results
on moderately large scenes [SML11]. Fourier opacity optimiza-
tion [BGG19] also uses this approach for order-independent trans-
parency.

Moment-based order-independent transparency [MKKP18] goes
back to a different technique for shadow mapping [PK15]. Like
Fourier opacity mapping, it stores a small number of coefficients
per pixel (typically five or seven). They are referred to as moments
and a non-linear reconstruction method uses them to recover the
monotonic function that maps depth values to transmittance. Once
the transmittance is known, correct compositing only requires addi-
tive blending. We provide further details throughout Section 3. The
used reconstruction method offers nearly perfect results when there
are few fragments covering a pixel. It also handles large sparsely
populated depth ranges well. In contrast, a truncated Fourier series
suffers from severe ringing in such cases. The authors also propose
an alternative to Fourier opacity mapping that compares favorably
for rendering shadows.

3. Moment-Based Opacity Optimization

In this section, we introduce our novel technique for opacity opti-
mization. Figure 1 shows the main processing steps of our method.
It computes optimized opacities per fragment for arbitrary raster-
ized geometry. To this end, it requires a representation of the im-
portance of each fragment covering a pixel. Decoupled opacity op-
timization [GTG17] uses an A-buffer [Car84], which incurs a high
overhead on graphics hardware [YHGT10]. We implement a more
efficient approach by adopting approximations from moment-based
OIT [MKKP18].

Our technique optimizes opacities in two passes. The first ren-
ders all transparent geometry to moment buffers to gather the im-
portance of all fragments per pixel (Section 3.1). The second ren-
ders all transparent geometry again and uses the information from
the first pass to perform the opacity optimization per fragment
(Section 3.2). In our case, compositing uses moment-based order-
independent transparency, which introduces a third pass (Sec-
tion 4.2). We also implement an A-buffer as reference solution.

3.1. Accumulation of Importance

As described in Section 2.2, we are interested in a pixel with n ∈N
fragments having importance values g0, . . . ,gn−1 ∈ [0,1] and depth
values z0, . . . ,zn−1 ∈ [zmin,zmax]. A-buffers are costly because all
of this information is made available explicitly. To optimize the
opacity of fragment l ∈ {0, . . . ,n−1}, we need to know

G(zl) =
n−1

∑
k=0

zk<zl

g2
k . (3)

Thus, the function G(z) with z ∈ [zmin,zmax] provides all the in-
formation that we need. It is constant between any two adjacent
fragment depths and increases by g2

l at depth zl .

To arrive at a faster opacity optimization technique, we seek a
compact approximate representation of this monotonic function.
Construction of this representation has to be efficient because it
happens per frame and per pixel. It has to be robust, even when frag-
ments are strongly localized in small parts of the depth range but
should also work for more uniform distributions. Moment-based
OIT [MKKP18] faces similar challenges and offers a compelling
solution. Thus, we opt to represent the function G(z) by a small
number of moments.

The moments describe the accumulated importance G(zl) as a
function of depth zl . Therefore, the accuracy depends on the def-
inition of depth values. For the sake of constant relative accuracy
across the depth range, moment-based OIT warps depth values in a
logarithmic fashion. We employ the same approach, i.e. we define

z′l :=
logzl− logzmin

logzmax− logzmin
2−1 ∈ [−1,1],

where l ∈ {0, . . . ,n− 1}. For this formula to be meaningful, zl
should be the linear view-space depth and zmin,zmax should be rea-
sonably tight bounds. We compute zmin,zmax using a bounding box
of the geometry and the near clipping plane.

Next, we define the moment of order j ∈ {0, . . . ,m} as

b j :=
n−1

∑
k=0

g2
kb j(z

′
k), (4)

where the moment-generating function b j is either

b j(z
′
k) := (z′k)

j ∈ R

for power moments or

b j(z
′
k) := exp

((
2π− π

10

)
i j

z′k +1
2

)
∈ C

for trigonometric moments. Power moments offer a faster but less
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Figure 1: Overview of our technique.

accurate approximation. Since Equation (4) defines moments as
summation over all fragments, a single rendering pass with addi-
tive blending lets us compute all moments. We simply compute
the warped depth z′k in a fragment shader and output b j(z′k) for all
j ∈ {0, . . . ,m} to the channels of our render targets. Note that

b0 =
n−1

∑
k=0

g2
kb0(z

′
k) =

n−1

∑
k=0

g2
k = Gall (5)

holds the total importance.

Viable values for the maximal order m are four or six for power
moments and three or four for the complex-valued trigonometric
moments. Typical visualization datasets have a high depth com-
plexity. Therefore, we select a high-quality variant of the moment-
based reconstructions. We use three trigonometric moments stored
in seven single precision floats for both opacity optimization and
OIT.

3.2. Opacity Optimization

Decoupled opacity optimization [GTG17] defines the optimized
opacity for fragment l ∈ {0, . . . ,n−1} as

αl :=
p

p+(1−gl)2λ
(
rG(zl)+q(Gall−G(zl)−g2

l )
) (6)

where p,q,r,λ ≥ 0 are user-defined parameters. We obtain the ex-
act Gall from the buffer storing the zeroth moment. The only re-
maining challenge is to get an approximation of G(zl) as defined
in Equation (3). For this purpose, we rely on the moment-based
reconstructions used by moment-based OIT [MKKP18].

These reconstructions use the moments b0, . . . ,bm to compute
two approximations to G(zl). In the case of power moments, one is
guaranteed to be less than G(zl) while the other is always greater.
These approximations are proven to be the best possible lower and
upper bounds to G(zl), considering that we only know the moments
b0, . . . ,bm [PK15]. Since we want an approximation to G(zl) that
excludes g2

l but do not want to be overly conservative, we weight
the lower bound with 75% and the upper bound with 25%. This
strategy is proven to work well in moment-based OIT [MKKP18].
For trigonometric moments the two approximations have a different
meaning but are used in the same way. Note that the code published
with moment-based OIT includes conversions to transmittance by
taking the exponential of the reconstruction. Since we want to accu-
mulate importance additively rather than multiplicatively, these are
not needed here. Other than that, the reconstruction code applies to
opacity optimization without modification.

Thus, we have the means to implement opacity optimization in a
shader. The shader reads the moments from the render targets of the

first pass, reconstructs G(zl) as described above and then evaluates
Equation (6) to compute the optimized opacity αl . The remaining
problems are to filter these opacities (Section 3.3) and to perform
order-independent compositing (Section 4.2).

3.3. Screen Space Filtering for Smoothed Opacity

Since decoupled opacity optimization [GTG17] optimizes opaci-
ties per pixel, the results are discontinuous at first. To alleviate this
artifact, minimal opacity values are stored per segment. Then an
object space filtering, namely Laplacian smoothing, is applied to
smooth the opacity across adjacent segments [GTG17, BGG19].
The smoothing requires knowledge of the topology of the geometry
and the implementation in a compute shader is non-trivial. Points,
lines and surfaces need to be handled differently and additional data
structures need to be implemented.

We propose a more general approach with a less intricate imple-
mentation. Our technique allows us to smooth the moment buffers
directly. Recall that each moment b j is stored in a channel of a
texture for each pixel on screen. We simply apply a two-pass Gaus-
sian blur to each moment individually. Such blurs are a standard
operation in graphics and highly optimized implementations exist.
Since moments depend on the function G(z) linearly, this linear fil-
tering effectively smoothes the function values G(z) across pixels.
The result differs from linear filtering of opacities for three rea-
sons. Firstly, the moment-based reconstruction is non-linear and
thus the errors of the approximation change in a non-linear fashion
as we apply the filtering. Secondly, Equation (6) is a rational func-
tion with a non-linear dependence on G(zl). Finally, we use a fixed
screen space filter size rather than performing the filtering in object
space. Thus, the radius around important structures where clutter is
removed is constant in screen space. In spite of these differences,
our approach achieves the core goal of filtering in opacity optimiza-
tion: The removal of clutter is no longer limited to fragments that
occlude an important structure directly. Instead, nearby structures
are also made transparent with a smooth transition.

4. Implementation

In the following, we describe our visualization framework briefly
and detail the integration of moment-based opacity optimization
into the renderer. In particular, we discuss the combination with
moment-based OIT and A-buffers. Our visualization framework
uses OpenGL and we evaluate it on a machine with an NVIDIA
Geforce 1080 Ti. All aspects of the rendering are GPU-accelerated
using either the rasterization pipeline or compute shaders.
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4.1. Generating Visualization Primitives

To demonstrate the generality of our approach, we work with data
sets consisting of points, lines and arbitrary triangle meshes. Our
line data sets consist of streamlines. We use explicit Euler integra-
tion in a preprocessing step to obtain them from velocity fields.
Seed points are placed uniformly at random within a user-defined
volume. To define the importance for each line, we either com-
pute the average line curvature [Bob08] or we use the velocity at
this point in the field. Adjacency information is available for lines
only. Thus, the Laplacian smoothing used by decoupled opacity
optimization is not supported for points or triangle meshes in our
implementation. However, our screen space filtering is applicable
to all types of geometry.

4.2. Moment-Based OIT

Our method for opacity optimization is compatible with any
method for OIT. We have implemented a reference solution using
an A-buffer as well as moment-based OIT [MKKP18]. In the fol-
lowing, we briefly recapitulate how moment-based OIT works and
explain how to combine it with our opacity optimization.

Moment-based OIT renders all transparent geometry twice. The
first pass serves to generate moment buffers much like the ones that
we use for opacity optimization. This time, moment j ∈ {0, . . . ,m}
is defined as

b′j :=
n−1

∑
k=0
− log(1−αk)b j(z

′
k). (7)

Using the reconstruction methods described above, the moment
buffers allow us to approximate the transmittance at depth zl , which
is given by

T (zl) :=
n−1

∏
k=0

zk<zl

(1−αk) = exp
n−1

∑
k=0

zk<zl

log(1−αk).

The sum inside the exponential is estimated from the moments.
This way, the second pass estimates the transmittance for each frag-
ment and multiplies the fragment color by transmittance and opac-
ity before adding it to the pixel color using additive blending.

In the context of our opacity optimization, this means that
we render transparent geometry that requires opacity optimiza-
tion three times (Figure 1). All three passes use additive blending.
The first pass implements Equation (4) to compute the moments
needed for opacity optimization. It renders to multiple render tar-
gets holding single-precision floats. For three trigonometric mo-
ments, they have one, two and four channels for a total of seven.
Screen space filtering applies to the moments produced by this first
pass. It is implemented as separable Gaussian blur in two frag-
ment shader passes exploiting hardware acceleration for bilinear
filtering [Wol18]. The second pass computes optimized opacities
αl for each fragment and implements Equation (7) to compute the
moments needed for OIT. The third pass reads from both moment
buffers to compute the optimized opacity once more as well as the
appropriate transmittance. It also implements shading and multi-
plies the fragment color by transmittance and opacity. A final pass
executes one thread per pixel to composite the foreground with the
background color using b′0.

4.3. A-Buffers

Our implementation also supports A-buffers. They allow us to
implement decoupled opacity optimization and give us a ground
truth for OIT. Their GPU implementation follows along the lines
of [YHGT10]. Thus, construction of the whole A-buffer only re-
quires a single draw call that fills the per-pixel linked lists. To com-
bine our moment-based opacity optimization with OIT using an
A-buffer, we still generate the moments in an additive render pass
and filter them. One thread per pixel loads each linked list, sorts it
by depth and performs blending using opacities that are computed
on the fly based on the moment-buffers. In the same manner, we
can use the A-buffer to compute optimized opacities according to
Equation (6) on the fly. This approach is not the same as decoupled
opacity optimization because it does not filter opacities in any way.
Screen space filtering is not applicable to A-buffers. However, it is
useful for a validation of our moment-based approximation that we
perform in Section 5.2.

Decoupled opacity optimization [GTG17] takes a different route.
After construction of the A-buffer, one thread per pixel loads each
linked list, sorts it by depth and performs opacity optimization for
each fragment. The A-buffer stores indices of line segments per
fragment, which allow us to store the minimal opacity encoun-
tered for each segment using atomic instructions. Once these min-
imal opacities are known, a compute shader filters them along the
line. Since the filter kernel of repeated Laplacian smoothing of
lines eventually approximates a Gaussian kernel, we perform this
smoothing in a single pass with a Gaussian filter. With these opaci-
ties available, we load and sort all linked lists once more to perform
blending.

4.4. Fourier Opacity Optimization

Fourier opacity optimization [BGG19] proposes to use the same
object space filtering as decoupled opacity optimization. Since it
does not use an A-buffer, this implies rendering all geometry four
times, twice for opacity optimization and twice for OIT. Our ap-
proach with screen space filtering only takes three geometry passes
because opacity optimization is merged into OIT. For the sake of
a more fair comparison, our implementation of Fourier opacity
optimization also uses screen space filtering. In our experiments,
we use nine real Fourier coefficients for Fourier opacity optimiza-
tion, because the authors reported artifacts when using fewer coef-
ficients [BGG19].

5. Results

In this section, we compare our moment-based opacity opti-
mization (MBOO) to decoupled opacity optimization (DOO) and
Fourier opacity optimization (FOO) on a number of datasets fea-
turing points, lines and surfaces. We begin by assessing how well
the techniques highlight important structures (Section 5.1). Next
we perform a direct comparison of all techniques without filtering
to assess the approximation error of the moments (Section 5.2). An
in-depth analysis of the effect of our screen space filtering follows
(Section 5.3). Finally, we discuss run times of all tested techniques
(Section 5.4).
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(a) OO disabled (b) Moment-based OO (ours)

Figure 2: The tornado vector field visualized using 100 k points.
Colors and importance are derived from the velocity magnitude.
Rendering uses moment-based OIT. Note how opacity optimization
reveals the vortex in the center but keeps unimportant structures
elsewhere.

5.1. Quality of Opacity Optimization

We begin with the simple point dataset in Figure 2 to observe the
basic functionality of our opacity optimization. The points are dis-
tributed uniformly at random in a synthetic tornado vector field
of resolution 1283 [MCHM10]. There are interesting structures in
the central vortex, which should not be obscured by points for the
slowly moving surrounding air. Our opacity optimization success-
fully reveals these structures without removing unimportant struc-
tures elsewhere.

Figure 3 provides a more comprehensive evaluation with chal-
lenging streamline datasets. All datasets use the average curva-
ture to derive the importance of lines for opacity optimization. The
transfer function visualizes the magnitude of the velocity. In the
first row, we show streamlines for the tornado dataset used above.
Lines of high curvature mostly occur in the central vortex and all
opacity optimization techniques succeed in revealing those.

The second row shows magnetic field lines in the decay of mag-
netic knots [CB11]. We show a close-up of one of the two sym-
metric rings in this dataset. Without opacity optimization, it is hid-
den by foreground clutter. Opacity optimization reveals this ring
and also emphasizes other lines of high curvature. The Rayleigh-
Bénard convection shown in the third row arises when a thin layer
of fluid is heated from below. Opacity optimization achieves good
visibility for the resulting convection cells but keeps slower flows
where they do not occlude important structures. The trefoil knot
dataset [CB11] in the fourth row is another magnetic field. It con-
tains three interlocked magnetic rings that decay over time and
opacity optimization emphasizes the structures near these rings.

In all visualizations, opacity optimization greatly improves the
clarity. Results of Fourier opacity optimization and our moment-
based opacity optimization are similar. The largest differences are
in the second row where Fourier opacity optimization fails to re-
move some foreground clutter at the left top. Results of decou-
pled opacity optimization differ substantially from our technique
because of the differences in filtering. The filter size of the object
space filtering on screen depends on the tesselation of the lines and
the perspective. In most cases, it winds up being larger than our
screen space filter. At the size at which the results are shown in the

figure, this may provide greater clarity. However, our screen space
filter with a footprint of 21× 21 pixels provides details at a finer
scale, which convey more information when the image is observed
in fullscreen. The size of the filter on screen is intuitive to control
and efficient to apply.

5.2. Validation Against Ground Truth

To compare decoupled opacity optimization to the other techniques
more directly, we disable filtering. Decoupled opacity optimization
is done on the fly during OIT compositing as described in Sec-
tion 4.3. Screen space filtering is disabled as well. As importance
measure, we use the velocity magnitude such that the importance
is visible through the transfer function. In this setting, decoupled
opacity optimization becomes our ground truth and all differences
are errors introduced by the truncated Fourier series or the moment-
based reconstruction. Both techniques come close to ground truth.
The greatest errors occur in regions with important lines near unim-
portant lines and strong overdraw. In these regions, the advantage
of moment-based reconstructions diminishes. The error of our tech-
nique is slightly greater than that of Fourier opacity optimization.
Note however, that Fourier opacity optimization uses nine coeffi-
cients, whereas our technique uses seven.

5.3. Screen Space Filtering

Since screen space filtering for opacity optimization is novel in our
work, we provide a more extensive comparison to alternatives in
Figure 5. Without filtering, foreground clutter is only removed if
it directly occludes important structures. Thus, there is no visible
separation between clutter and important lines, which leads to an
unclear visualization. The object space filtering of decoupled opac-
ity optimization addresses this problem. However, the apparent size
of the filter on screen is difficult to control and the implementation
of the method is complicated. Our screen space filtering removes
foreground clutter in a region whose size is fixed on screen (21×21
pixels in this case). In situations with a greater density of geometry
(Figure 5 bottom), it adds detail to the visualization that aids the
perception of the streamlines.

Figure 6 demonstrates another benefit of our screen space filter-
ing. We use two triangle meshes with complicated topology. The
bunny and the bush have constant importance of 0.9 and 0.2, re-
spectively. Computing the adjacency information that is needed for
Laplacian smoothing would be difficult since the meshes are not
designed with such requirements in mind. Nonetheless, our screen
space filtering is trivially applicable without adding anything spe-
cial to the implementation. Any geometry that can be rendered by
the rasterization pipeline is compatible with our method. Thus, we
get a good opacity optimization result in a situation that would be
difficult to address with decoupled opacity optimization.

5.4. Performance Evaluation

Table 1 provides timings for most figures measured on an NVIDIA
Geforce 1080 Ti. All images are rendered at a resolution of 1920×
1080. The timings where an A-buffer is used for OIT are less infor-
mative because of its high overhead. Thus, we focus our analysis
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OO disabled DOO [GTG17] FOO [BGG19] MBOO (ours)
A-buffer OIT A-buffer OIT Fourier OIT (9 coeffs.) MBOIT (3 trig. moments)

Figure 3: Comparison of three opacity optimization techniques using four challenging streamline datasets: Tornado, Borromean rings,
Rayleigh-Bénard convection and trefoil knot. Note the overall improvement in clarity through opacity optimization and the differences in
filtering between DOO and FOO or MBOO. Our technique achieves comparable quality to DOO at a substantially lower cost.

Table 1: Total frame times in milliseconds and primitive counts for the results in the figures above. Our techniques are marked with an aster-
isk. The fastest technique in each comparison is marked bold. Note that our technique clearly outperforms decoupled opacity optimization
and performs similar to Fourier opacity optimization.

Dataset Figure Geometry Run-time
Num. lines Max. num. segments Num. vertices

Tornado Fig. 3 first row 1728 110592 691200 6.8 12.0 5.8 5.6*
Fig. 5 top 512 204800 32768 3.1 3.7

2.2* 3.0*
Fig. 5 bottom 4096 1638400 262144 32.5 35.7

23.1* 24.0*
Borromean Fig. 3 second row 2845 182080 2845000 60.0 100.0 30.5 26.9*
Rayleigh-Bénard Fig. 3 third row 863 55232 161721 25.5 40.9 7.9 8.2*
TrefoilKnot Fig. 3 fourth row 1293 82752 258600 18.7 31.3 8.7 9.4*

Fig. 4 32.2 21.2 20.9*
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DOO ground truth FOO MBOO
[GTG17] [BGG19] (ours)

Figure 4: A comparison of opacity optimization techniques on the
trefoil knot with both object space filtering and screen space fil-
tering disabled. OIT uses A-buffers. In this setting, all differences
are due to the approximation of the truncated Fourier series or the
moment-based reconstruction. The bottom row shows L1-difference
images with Viridis colormap.

on Figure 3. We observe that our moment-based opacity optimiza-
tion outperforms decoupled opacity optimization clearly. The ben-
efit grows with the scene complexity. Compared to Fourier opac-
ity optimization, we achieve a similar speed. While our technique
uses seven channels rather than nine, Fourier opacity optimiza-
tion performs fewer arithmetic operations. Apparently, these ef-
fects roughly cancel out. In our implementation, both techniques
use single-precision floating point values for each channel.

6. Conclusions and Future Work

Our moment-based opacity optimization is a useful new tool for
visualization pipelines. It is faster and easier to implement than de-
coupled opacity optimization but just as capable of removing clut-
ter. While the quality and speed is similar compared to Fourier
opacity optimization, our technique achieves this with a lower
memory footprint and inherits positive traits from moment-based
OIT. Our screen space filtering decouples the implementation of
opacity optimization from particular geometric primitives. Without
the need for topological information, our method is easier to inte-
grate into visualization pipelines.

Our method interacts with the geometry through three sequen-
tial additive rendering passes. Addition is of course embarrassingly
parallel. This parallelism does not need to end within a GPU. Ren-
dering with opacity optimization of a single dataset across multiple
nodes is just as feasible, as long as the bandwidth suffices for an
exchange of framebuffers. Thus, our work could enable the visual-
ization of still greater datasets on multiple GPUs.
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Figure 5: The tornado dataset with two different line counts and
different methods of filtering for opacity optimization. OIT uses A-
buffers. Note how screen space filtering removes clutter in a fixed
radius around important structures.
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Figure 6: Two complicated triangle meshes with different impor-
tance. Opacity optimization removes foreground clutter that would
otherwise hide the bunny in the bush. OIT uses an A-buffer.
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