
Computing Visibility for Triangulated Panoramas

Chi-Wing Fu† Tien-Tsin Wong‡ Pheng-Ann Heng†

cwfu@cse.cuhk.edu.hk ttwong@acm.org pheng@cse.cuhk.edu.hk

†The Chinese University of Hong Kong
‡Hong Kong University of Science and Technology

Abstract. A visibility algorithm for triangulated panoramas is proposed. The
algorithm can correctly resolve the visibility without making use of any depth
information. It is especially useful when depth information is not available, such
as in the case of real-world photographs. Based on the optical flow information
and the image intensity, the panorama is subdivided into variable-sized triangles,
image warping is then efficiently applied on these triangles using existing graph-
ics hardware. The visibility problem is resolved by drawing the warped triangles
in a specific order. This drawing order is derived from epipolar geometry. Using
this partial drawing order, a graph can be built and topological sorting is applied
on the graph to obtain the complete drawing order of all triangles. We will show
that the time complexity of graph construction and topological sorting are both
linear to the total number of triangles.

1 Introduction
In this paper, we focus on solving the visibility problem in warping a given reference
panorama to generate the desired panorama from a new viewpoint. Given an image
together with its depth information, image as viewed from another viewpoint can be
synthesized by reprojecting each pixel [2, 10]. Since multiple pixels may be mapped to
the same location in the new image, visibility has to be resolved. The most straightfor-
ward method is depth-buffering. However, in some cases, the depth information may
not be available or not accurate. This is especially common for real-worldphotographs.
In that case, only the correspondences or optical flow information can be determined.

McMillan [13, 12] proposed a clever solution to the visibility problem. Once the
mapping of pixels from the reference image to the desired image is known (either by
pixel reprojection [2, 10] or by finding the point correspondences [6] or optical flow [14,
5]), the image can be warped correctly.Nodepth-buffering is needed. The visibility is
solved by mapping pixels in a specific order. Due to the nature of the drawing order,
only small image entities, such as pixels, can be applied. However, warping images
in a pixel-by-pixel manner (pixel-based warping) is time-consuming and cannot utilize
existing graphics hardware. Moreover, gaps occur between adjacent pixels after they are
warped. If the image is subdivided into larger image entities (triangles) and the mapping
is then applied on them instead of pixels, we can make use of graphics hardware to
accelerate the image warping. The gap problem can also be solved at the same time. We
call this triangle-by-triangle image warping thetriangle-based warping. Unfortunately,
McMillan’s drawing order cannot be applied to larger entities. We introduce a visibility
sorting algorithm to find out the ordering of triangles for image warping. We will also
show that the time complexity of the algorithm is linear to the number of triangles.

In this paper, we propose a triangle-based visibilityalgorithm for image types which
satisfy themapping criteriondescribed in Section 5. Planar perspective images satisfy
this mapping criterion. Hence cube-based panoramas formed by six planar perspective
images can be warped correctly using the proposed algorithm. Although cylindrical
panoramas do not satisfy this criterion, approximated results can be obtained by apply-
ing the algorithm. The approximated results do not exhibit any noticeable artifact.

1



In Section 2, some related work are discussed and compared. We then have a brief
overview of epipolar geometry in Section 3. In Section 4, details of the image triangula-
tion are described. Based on the epipolar geometry, the drawing order of all triangles is
derived in Section 5. Section 6 shows the results of our implementation. Finally, some
conclusions and future directions are drawn in Section 7.

2 Related Work
Chen and Williams [2] warped images by reprojectingeach pixel onto the new image.
Depth-buffering is used to solve the visibility. Darsaet al. [3] subdivided the depth
image into variable-sized triangles and performed reprojection on each of them. Again
in their work, the visibility is solved by depth-buffering. Seitz and Dyer [16] intro-
duced the view morphing which can correctly interpolate two different views based on
image morphing [1]. Additional information such as the position of the camera and the
correspondences of some feature points are required.

McMillan [11, 13, 12] first proposed a drawing order to solve the visibility without
using depth-buffering. The problem is solved by drawing pixels in a specific order.
The drawing order is derived from epipolar geometry. Mark and Bishop [7] studied the
memory access pattern of McMillan’s pixel drawing ordering. The difference between
McMillan’s and ours is that his drawing ordering isonly valid for pixel-sized image
entities. In our work, there is no restriction on the size of image entities. In this sense,
our work can be regarded as an extension of McMillan’s pixel drawing order.

If pixels are forwardly mapped to the new image, gaps will appear in between those
pixels. Laveau and Faugeras [6] used a backward mapping, which maps pixels from the
desired image back to the reference image, in order to prevent the appearance of gap. It
is similar to the backward texture mapping. Market al. [9] solved the gap problem by
two methods, namely splatting and modeling the image as a triangular mesh. To prevent
gap using splatting, the footprint of pixel must be large enough. However large footprint
may excessively blur the image. They also suggested to model the image as a triangular
mesh to prevent the gap. Since McMillan’s drawing order can only be applied to pixel-
sized entities, they have to subdivide the image into pixel-sized triangles by connecting
neighboring three pixel samples as in Figure 1(a). Hence a 512� 512 image may be
subdivided into more than five hundred thousand triangles. Even with the assistance of
graphics hardware, the warping is still slow. Note that their triangular mesh approach
is different from the one proposed in this paper. Their triangles are still in pixel size
while our triangles can be in arbitrary size and shape. Figure 1 shows the differences.
Shadeet al.[17] further extended the usage of McMillan’s drawing order to image with
multiple layers of depth values.

(a) (b)

Fig. 1. Comparison of the (a) pixel-sized and (b) arbitrary-sized triangulation.

2



3 Epipolar Geometry

Given a viewpoint (or center of projection), image synthesis is accomplished by firing
bundle of rays from the viewpoint to the surrounding and sampling radiances received
along the rays. If a rectangular plane is placed in front of the viewpoint, a planar
perspective image can be formed by projecting the radiance values onto this plane.
The rectangular plane is one kind ofprojection manifold, more specifically, a planar
projection manifold. Similarly, other geometry can be used as the projection manifold,
such as cylinder or sphere. Since the viewpoint is a point in space and the rays are
fired from the viewpoint, a sphere is the most natural and general form of projection
manifold which can record the radiance received along any ray. Radiances recorded by
any other projection manifold can always be reprojected onto the spherical projection
manifold.

From now on, we focus on the discussion of spherical projection manifold due to
its generality. Consider a spherical imageIc captured with the center of projection at ˙c.
We use the dot notation ˙a to denote a 3D position and the arrow notation~a to denote a
3D directional vector. A desired spherical imageIe is generated with a new center of
projection at ˙e. Figure 2 shows the geometry in both 3D and 2D.

(a) (b)

Fig. 2. The geometry of two cameras (a) in 3D and (b) in 2D.

Each pixeli in the imageIc stores the radiance along the ray~L which is fired from ˙c
passing through the pixel window associated withi. Now, let’s choose an arbitrary pixel
i1 from imageIc. A ray ~L1 is associated with it. The intersection point ˙p1 associated
with i1 must lie somewhere on the ray~L1. To generate a new view from ˙e, ṗ1 has to be
reprojected ontoIe. The plane constructed by ˙c, ė and ˙p1 is known asepipolar planein
computer vision literature. The vector,~ω, originated from ˙c pointing towards ˙e is called
positive epipolar raywhile the vector,�~ω, originated from ˙c pointing to the opposite
direction is callednegative epipolar ray.

Now let’s choose another pixeli2 from imageIc. Occlusion happens only when ˙p1
and ˙p2 are reprojected onto the same location inIe (see Figure 2). If ˙p2 does not lie on
the epipolar plane associated with ˙p1, ṗ1 and ṗ2 will never occlude each other. Hence
occlusion happens only when ˙c, ė, ṗ1 and ˙p2 all lie on the same plane. Moreover the
necessary condition of ˙p2 occluding ˙p1 is ė, ṗ1 and ˙p2 are collinear and ˙p2 is in between
ṗ1 andė, as illustrated in Figure 2.

From Figure 2, we know that ˙p2 will never be occluded by ˙p1 as viewed from ˙e no
matter where the exact positions of ˙p1 and ˙p2 are. Therefore, if we always draw ˙p1
before ˙p2 during reprojection, the visibility problem is solved without comparing their
depth values. And hence, if we can identify those pixels whose intersection points may
occlude each other and derive the drawing order, the visibility problem can be solved
without depth-buffering.

3



To identify the pixels which may occlude each other, we first intersect the epipolar
plane with the spherical projection manifold (imageIc). The intersection curve on the
sphere is called theepipolar line. Figure 3(a) illustrates the terminologies graphically.
When the positive epipolar ray~ω intersects with the projection manifoldIc, the inter-
section point on the projection manifold is known aspositive epipole. Figure 3 denotes
it by a positive sign. On the other hand, the intersection point of the negative epipolar
ray and the sphere is known asnegative epipoleand denoted by a negative sign. Note
all epipolar lines terminated at two epipoles. Moreover, each epipolar line must be a
half of the great circle (Figure 3(c)) as the epipolar plane passes through the center of
the sphere, ˙c.

(a) (b) (c)

Fig. 3. (a) & (b): The epipolar line is the intersection of the projection manifold and the epipolar
plane. (c): The drawing order between two pixels that lie on the same epipolar line.

All pixels in Ic that lie on the same epipolar line have a chance to occlude each
other. Figure 3(c) shows two pixels,i1 andi2, lying on the same epipolar line. As their
associated intersection points ˙p1 and ˙p2 are on the same plane with ˙c andė, they may
occlude each other. Moreover, ˙p1 will never occlude ˙p2 as ˙p1’s angle of derivationθ1
is greater than,θ2 of ṗ2 (see Figure 3(c)). In other words, ifi2 is closer to the positive
epipole on the epipolar line thani1, i1 will never occludei2. Hence we should always
draw i1 first. Arrows on the epipolar line in Figure 3(c) indicate the drawing order of
pixels.

Based on the pattern of epipolar lines on the sphere, McMillan [11] derived a draw-
ing order for pixel-sized image entities. Since the epipolar line can only tell the ordering
of small image entities that lie on it, the drawing order only works for pixel-sized image
entities. The drawing order cannot be easily extended to larger entities such as triangles
which occupy a bundle of epipolar lines.

4 Image Triangulation

4.1 Optical Flow

Before the image is warped, the 2D image has to be first triangulated. To do so, we make
use of the optical flow. Consider two imagesIc(x;y) and Ie(x;y) of the same scene
but with different viewpoints ˙c and ė, one can determine the image correspondences
between two images using existing computer vision techniques. These correspondences
allow us to calculate the two dimensionaloptical flow vector[14, 5] for each pixel,i.e.
the 2D pixel movement fromIc to Ie. The optical flow of a pixeli is defined as

~f =

�
xe�xc
ye�yc

�
; (1)

4



where(xc;yc) is the image coordinate ofi in Ic,
(xe;ye) is the image coordinate ofi in Ie.

If the optical flow vectors of two neighboring pixels are close, it is very likely that
the intersection points associated with these pixels are on the same object. On the other
hand, if the optical flow vectors are not close, the intersection points are more likely
to be on different objects with different distances from the viewpoint. During image
warping, they are very likely to be moved away from each other. Hence, one criterion
of triangulating the image is to separate those pixels with large difference in optical
flows. Otherwise, serious distortion will result during image warping. Hence we want
to locate the regions with large variation in optical flow between neighboring pixels. To
do so, we calculate a functionF for each pixel,

F(x;y) = max(j
∂2~f
∂x2 j; j

∂2~f
∂y2 j): (2)

FunctionF is defined as the maximum of the magnitudes of two second order partial
derivatives of the optical flow vectors along dimensionsx andy.

4.2 Image Gradient

Besides the optical flow, image intensity is also used during triangulation. Regions with
edges (sharp intensity change) are perceptually more noticeable to humans. A distortion
in the edge region is more noticeable than the same distortion in thenon-edge region.
In other words, the tolerance of distortion in the region with different image content
should be different. To quantify this factor, we first convert the color image to grayscale
by transforming RGB to Yt IQ color space. The Yt is then used as the grayscale version
of the image. The standard grayscale conversion [4] is

I 0c = 0:299IR
c +0:587IG

c +0:114IB
c ; (3)

whereIR
c ; IG

c ; andIB
c are the R, G and B values from imageIc.

To locate edge region, we simply apply the standard Laplacian operator,∇2, to the
grayscale imageI 0c and obtain functionG,

G(x;y) = ∇2I 0c(x;y) =
∂2I 0c
∂x2 +

∂2I 0c
∂y2 : (4)

Both optical flow and image gradient are important criteria for triangulating the
image. They are combined in the following potential functionP(x;y), which tells us
where should we place the vertices of triangles.

P(x;y) = αF�(x;y)+(1�α)G�(x;y); (5)

whereα 2 [0;1] is a weight,α = 0:7 is a good choice,
F� andG� are the normalizedF andG, they are normalized to range [0,1].

The larger the potential value of the pixel, the larger the potential that the pixel is
on the silhouette of an object. Figures 10(a) and (b) show the reference panorama and
the corresponding potential map calculated by Equation 5.

4.3 Triangulation

To triangulate the image, we stochastically distribute the vertices of triangles onto the
potential map. The pixel with larger potential value has a larger chance of receiving a
vertex. Then Delaunay triangulation [15] is applied to obtain the initial triangular mesh.

5



The initial triangular mesh is further refined to reduce the visual artifact during the
actual image warping. A triangle is split into two smaller triangles if itssum of potential
exceeds a pre-defined thresholdτp. The sum of potential,ρ, of a trianglet is defined as
the total sum of potential value of pixels within this trianglet.

ρ(t) = ∑
i

P(xpi ;ypi ) 8pi 2 t; (6)

where pi is a pixel inside the trianglet. The subdivision continues until all triangles
satisfy the sum of potential requirement. Figure 10(c) shows the final triangular mesh.

(a) (b) (c) (d)

Fig. 4. Excessive stretching near the object silhouette during the image warping due to the triangle
connectivity.

Note that all triangles are now connected. Therefore no gap can be found during im-
age warping. However, another artifact appears if all triangles are connected together.
Figures 4(a) and (b) show that triangles near the silhouette of the object are excessively
stretched. During image warping, some of the occluded regions become visible. Since
no information is available, these areas should be left blank instead of filling them with
the excessively stretched triangles. This kind of artifact usually appears near the sil-
houette of an object. Hence it can be reduced by disconnecting the triangles at object
silhouette. Again, the disconnection can be done with the guidance of functionF as
the map indicates object silhouette. If the common edge shared by two neighboring
triangles is located at a region with average potential value above a user-defined thresh-
old τc, these neighboring triangles shall be disconnected. Figure 4(c) and (d) show the
result. Mark and Bishop [8] proposed an efficient reconstruction technique for filling
this kind of holes. The process of triangulation can be done off-line. Once it has been
done, the triangular mesh will not be changed during the actual image warping.

5 Image-based Visibility Sorting
5.1 Ordering of Two Triangles

Epipolar geometry provides sufficient information for us to resolve the visibility prob-
lem when warping triangles. Our algorithm resolves the visibility problem of triangles
on the surface of the sphere. Hence, we need to project a triangle in the image to a
spherical triangle on the surface of the sphere which encloses viewpoint ˙c.

Each 2D image must be related to an implicit projection manifold. For examples,
a planar perspective image is related to a planar projection manifold. A cylindrical
panoramic image is related to a cylindrical projection manifold. As the image triangu-
lation algorithm discussed in the previous section triangulates the image in 2D, the va-
lidity of the proposed algorithm relies on one criterion of mapping (from 2D to sphere):
any straight line on the 2D surface must be mapped to one geodesic curve on the sphere
and vice versa(Figure 5). A geodesic curve connecting two points on the sphere is the

6



shortest path on sphere from one point to another. It must also be a segment of the
great circle of sphere. Two dimensional images resulted from planar projection mani-
fold satisfy the above mapping criterion. Hence the proposed algorithm is applicable to
cube-based panorama. On the other hand, a straight line on the 2D unfolded cylindrical
or spherical panoramic image may not be mapped to a geodesic curve on the sphere.

Fig. 5. Mapping criterion: a straight line in 2D can be mapped to a geodesic curve on the sphere.

If an image can be projected onto the sphere and the mapping satisfies the above
criterion, a triangle in the image can always be mapped to a spherical triangle on the
sphere. Each edge of the spherical triangle must be a geodesic curve. Consider two
arbitrary spherical triangles,t1 andt2, obtained by triangulating the 2D image and being
mapped onto the sphere. We can determine whether they may occlude each other, by
checking the bundles of epipolar lines they occupy. Let’s call the bundle of epipolar
lines occupied by a triangle theepipolar band. Figure 6(a) shows the epipolar bands
occupied by two spherical triangles in light gray. If their epipolar bands do not overlap
(Figure 6(a)), no occlusion will occur between them. There is no element (pixel) in
these two spherical triangles sharing any common epipolar line. Hence the order of
drawing these two spherical triangles is irrelevant. On the other hand, if the two epipolar
bands overlap (Figure 6(b)), some elements from these spherical triangles lie on the
same epipolar line. Hence occlusion may happen after image warping. Therefore, the
ordering of these triangle does matter. In the specific example of Figure 6(b),t1 may
occludet2 ast1 is closer to the positive epipole thant2 in the overlapping region.
We now define two ordering relations of spherical triangles:

Definition 1 If all elements in a spherical triangle t1 must be drawn before any element
in another spherical triangle t2 in order to preserve the correct visibility, we say t1 must
be drawn before t2 and denote this ordering relation as t1! t2.

Definition 2 If the drawing order between the elements in spherical triangle t1 and the
elements in another spherical triangle t2 is irrelevant, the drawing order between these
two spherical triangles are also irrelevant. We denote this ordering relation as t1$ t2.

Since all the spherical triangles are the result of triangulating an image as viewed
from the viewpoint ˙c, they all must be visible, non-overlapping and connected as viewed
from ċ. Instead of considering the ordering of any two arbitrary spherical triangles, we
first consider the ordering between each pair of neighboring spherical triangles which
share a common edge as in Figure 7. Now we will show that the ordering of any two
neighboring spherical triangles can be determined by the position and orientation of
spherical triangles.

Theorem 1 Given two neighboring spherical triangles which share a common edge,
a plane that passes through the center of projectionċ and the shared edge (which is
a geodesic curve) can be constructed (see Figure 8). It divides the sphere into two

7



(a) (b)
Fig. 6. Epipolar bands on the sphere.

(a) (b)

Fig. 7. a) The epipolar line starting from the negative epipole must always entertn beforetp if it
cuts bothtn andtp. b) If the epipoles and the shared edge lie on the same plane, the ordering of
tn andtp is irrelevant.

equal halves and separates two spherical triangles. The spherical triangle with the
positive epipole on its side should be drawn later during warping. On the other hand,
the triangle with the negative epipole on its side should be drawn first during warping.
If the epipoles (positive and negative) lie exactly on the constructed plane, the ordering
of these two triangles is irrelevant.

Proof: Due to the mapping criterion, all edges of spherical triangle must be geodesic
curves. These geodesic curves lie in the planes that pass through the center of the
sphere. Therefore one can always separate two neighboring spherical triangles by con-
structing a plane that contains the shared common edge and the sphere center. This is
also why we need the mapping criterion. Let’s denote the spherical triangle with the
positive epipole on its side astp and the other astn as shown in Figure 7(a). Now let’s
draw a geodesic curve from the negative epipole to the positive epipole. Since the nega-
tive epipole is on the same side astn, whenever this geodesic curve passes through both
tn andtp, it should first pass throughtn, then the shared edge and finallytp (Figure 7(a)).
Therefore whenever there are elements intn which are sharing a common epipolar line
(geodesic curve) with some elements intp, elements intn should be closer to the nega-
tive epipole than those elements intp. Hence, no element in triangletn will occlude any
element intp and we must drawtn beforetp during warping,i.e. tn! tp.

When both epipoles and the shared edge lie on the same plane, epipolar bands oftn
andtp have no intersection (Figure 7(b)). One can always separate the epipolar bands
of these two spherical triangles by a plane that contains the shared edge, the center of
sphere, and the two epipoles. In other words, no element intn andtp shares any common

8



epipolar line. Therefore, their ordering is irrelevant and we saytn $ tp.
Hence, the drawing order of two spherical trianglest1 andt2 can be determined by

checking on which side of the constructed plane the negative epipole resides. This can
be done with some simple vector mathematics. Figure 8 illustrates the mathematical
symbols used in the following equations. Vectors~ea and~eb are the vectors from the
center of projection, ˙c, to the two endpoints of the shared common edge. Vectors~v1
and~v2 are the vectors from ˙c to the unshared vertices of spherical trianglest1 andt2
respectively.

Fig. 8. Mathematical symbols used for the calculation of drawing order.

~n= ~ea�~eb β =~n �~ω γ =~n �~v1

Based on the values ofβ andγ, the drawing order is determined as follows:

1. If β = 0 ,~ω is orthogonal to~n. In other words, the epipoles and the shared edge
must be on the same plane. Hence, the drawing order oft1 andt2 is irrelevant,i.e.
t1$ t2.

2. If β andγ have the same sign (either both are positive or negative),t2 is on the
same side as the negative epipole. Hencet2! t1.

3. If β andγ have the different signs,t1 is on the same side as the negative epipole.
Hencet1! t2.

5.2 Graph Construction

Using the method described, one can always derive the drawing order of two neighbor-
ing triangles. This ordering can be further extended to cover any two arbitrary triangles
from mesh by constructing a drawing order graph. By representing each triangle as a
node and the relation! as a directed edge in the graph, we can construct a graph of
drawing order. No edge is needed to represent the relation$ as the ordering is irrele-
vant. Note the constructed graph may contain disjointed subgraphs. Figure 9(a) shows
seven connected triangles. The drawing order of each pair of neighboring triangles are
shown as arrows crossing the shared edges between neighboring triangles. The con-
structed graph is shown in Figure 9(b). Figure 9(c) shows two valid drawing orders
derived from the example graph. Note there is no unique ordering for the same graph.

In the actual implementation, there is no need to construct the graph explicitly. The
graph can be implicitly represented as a set of ordering relation betweeneach pair of
neighboring triangles. Hence, foreach shared edge, we determine the drawing order
between neighboring triangles using Theorem 1. The time complexity of graph con-
struction is obviouslyO(E) whereE is the number of shared edges. As each triangle

9



(a) (b) (c) (d)

Fig. 9. (a), (b) & (c):Construction of drawing order graph. (d): Cycle may exist in the graph.

has three edges,E is at most 3N whereN is total number of triangles. Hence, the time
complexity should be linear to the total number of triangles.

5.3 Topological Sorting

The final step to find out the ordering of all triangles is to perform a topological sort
on the drawing order graph. Basically it is a two-pass algorithm. Before describing the
algorithm in detail, let’s define the terminology. A triangle (node) is called degree zero
if there is no triangle needed to be drawn before it,i.e. it is not on the right hand side of
any! relation. It is called degree 1 if one of its three neighbors has to be drawn before
it. A triangle is at most of degree three.

In the first pass of algorithm,
it looks for all zero-degree triangles
and put them into a pool. In the sec-
ond pass, one trianglet1 in the pool
is picked, output and removed from
the pool. Then foreach neighboring
triangle t2 of t1, such thatt1 ! t2,
decrease the degree oft2 by one. If
the degree oft2 drops to zero after
deduction, put it into the pool. The
process of picking and drawing con-
tinues until no more triangle is left.
The algorithm is shown on the right.
The example graph in Figure 9(b) is
sorted using this algorithm.

// First pass
Pool 0 = /0
For each triangle t of degree zero

Pool 0 = Pool 0
S

{ t}
For each triangle t of degree one

Pool 1 = Pool 1
S

{ t}

// Second pass
While there exists triangle not output

If Pool 0 6= /0
Pick a triangle t1 from Pool 0 and output

else there is cycle
Randomly pick a triangle t1 from Pool 1
and output it

For each neighbor triangle of t2 s.t. t1! t2
Decrease the degree of t2 by one.
If the degree of t2 is zero

Pool 0 = Pool 0
S

{ t2}
If the degree of t2 is one

Pool 1 = Pool 1
S

{ t2}

It seems that the graph will be a directed acyclic graph. However cycles do exist in
extremely rare cases. Figure 9(d) shows one special example of triangulation such that
cycle exists. If the projected epipole (projected onto reference image) locates inside the
gray region, cycle will occur. In practice, cycles seldom occur and no cycle was found
in all our experiments. However, the above algorithm does handle the case when cycle
is found. It randomly picks a triangle of degree one, draws it on the screen and hence
breaks the cycle. A pool of degree-one triangle is setup for this purpose. This approach
may result in visual artifact.

The time complexity of the first pass of algorithm isO(N). Since each triangle will
be put into the pool and picked out from the pool at most once, the time complexity
of the second pass is also linear. Hence the topological sorting is linear. The time
complexity of the whole visibility sorting algorithm is also linear to the number of
triangles.

10



6 Results
In our implementation, we use a cylindrical panorama to record the environment. Al-
though we have mentioned before that cylindrical panorama does not satisfy the map-
ping criterion, approximated results without noticeable artifacts can be obtained. To
apply the proposed algorithm to cylindrical panorama, the edges of triangles should not
be too long, especially horizontal edges near the top and the bottom of the unfolded
panorama.

Determining accurate optical flow is a well-known hard problem. Since our work
mainly concentrates on solving visibility, we obtain theaccurate optical flow map by
reprojecting pixels using depth values. But no depth value is used in the following
visibility determination.

As the image is being warped, originally occluded regions become visible and these
areas are left blank as there is no information. To minimize the unfilled region, mul-
tiple reference panoramas are warped to the same position and then blended together.
Figures 13(a) and (c) show the warped results of two reference panoramas. They are
warped to the same position. The green regions highlight the blank areas. Figure 13(e)
shows the result of blending Figures 13(a) and (c). Figures 13(b) and (d) show the cor-
responding warped triangulation together with the drawing order. To distinguish one
triangle from another, three distinct colors are used to color the neighboring triangles.
The intensity of the triangle indicates the drawing order. The darker the color, the earlier
is the triangle in the drawing order.

Table 1 shows the timing for visibility sorting and rendering. The desired image is
a planar perspective image while the reference image is a cylindrical panorama. All the
timings are recorded on an SGI Octane with CPU MIPS R10000/250MHz and MXE
graphics accelerator. As expected, major computation is spent on visibility sorting
(graph construction + topological sorting). Rendering only occupies a minor portion
of the time as it is assisted with graphics accelerator. Nevertheless, the overall image
warping can still be done at interactive speed. Note that the visibility sorting is not
necessary if the user does not change the walking direction~ω.

Figure 11 shows the result of warping and blending panoramas of an attic scene.
Note how the pillars and the chair correctly occlude the background objects. The cor-
rectness of resultant visibility demonstrates the validity of the proposed algorithm. The
times below the images indicate how far the image has been warped. When the time
equals to zero, no warping is done. The image is simply the first reference panorama.
When the time equals to 0.5, both the first and the second reference panoramas are
warped to the middle position. When the time equals to 1.0, the image is simply the
second reference panorama. Another set of warping panoramas of a city scene is shown
in Figure 12. Note how forwardly moving buildings occlude neighboring buildings.

Reference Desired Average
Data pano. image pers. image Number of Build Topology Rendering
set resolution resolution triangles graph (sec.) sort (sec.) time (sec.)

attic 1024� 256 512� 512 54611 0.1190 0.0879 0.0577
city 1024� 256 512� 512 53550 0.1160 0.0853 0.0557

Table 1. Timing of triangle-based image warping.

7 Conclusions and Future Directions
In this paper, we propose a triangle-based visibility algorithm without using depth in-
formation. Grouping pixels to form triangles allows image warping to be done in an ef-

11



ficient manner. Hardware graphics board can further accelerate the rendering of warped
image. Moreover, the gap problem due to pixel-based image warping is also removed
simultaneously. Both graph construction and topological sorting in the visibility algo-
rithm have a linear time complexity and only need to be performed whenever the user
changes~ω.

We have only described how image warping can be done correctly for triangles. The
merging of two warped images usually exhibits visual discontinuity due to the surface
properties of the objects and illumination configuration during image capturing. There-
fore, how to merge two warped images seamlessly is another important issue. In some
cases (especially complex scene), holes (unfilled pixels) will still exist even multiple
images are warped and merged. The sampling scheme (placement of the panorama
nodes) requires further investigation.

Acknowledgements
This work is supported by Hong Kong Government RGC CRCs Scheme Grant No.
CRC4/98. We would like to thank all anonymous paper reviewers for their valuable
comments and pointing out the error.

Web Availability
The warped images and movies of tested scenes can be found at the following web
pages:http://www.cs.ust.hk/ �ttwong/papers/panowalk/panowalk.html

andhttp://www.cse.cuhk.edu.hk/ �cwfu/papers/panowalk/panowalk.html

References

1. T. Beier and S. Neely. Feature-based image metamorphosis. InComputer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 35–42, July 1992.

2. S. E. Chen and L. Williams. View interpolation for image synthesis. InComputer Graphics
(SIGGRAPH ’93 Proceedings), pages 279–288, 1993.

3. L. Darsa, B. C. Silva, and A. Varshney. Navigating static environments using image-space
simplification and morphing. InProceedings of the 1997 Symposium on Interactive 3D
Graphics, pages 25–34, April 1997.

4. R. Hall. Illumination and Color in Computer Generated Imagery. Springer-Verlag, 1988.
5. B. Horn.Robot Vision. MIT Press, 1986.
6. S. Laveau and O. Faugeras. 3-D scene representation as a collection of images. InPro-

ceedings of the Twelfth International Conference on Pattern Recognition (ICPR ’94), pages
689–691, October 1994.

7. W. R. Mark and G. Bishop. Memory access patterns of occlusion-compatible 3d image warp-
ing. In Proceedings of the 1997 Siggraph/Eurographics Workshop on Graphics Hardware,
pages 35–44, August 1997.

8. W. R. Mark and G. Bishop. Efficient reconstruction techniques for post-rendering 3d image
warping. Technical report, University of Northern Carolina at Chapel Hill, March1998.
UNC CS #TR98-011.

9. W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. InProceedings of the
1997 Symposium on Interactive 3D Graphics, pages 7–16, April 1997.

10. N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views. InEurographics
Rendering Workshop 1995. Eurographics, June 1995.

11. L. McMillan. Computing visibility without depth. Technical report, University of North
Carolina, October 1995. UNC Computer Science TR95-047.

12. L. McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. PhD
thesis, Department of Computer Science, University of North Carolina at Chapel Hill,1997.

12



13. L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. In
Computer Graphics (SIGGRAPH ’95 Proceedings), pages 39–46, August 1995.

14. K. Prazdny. On the information in optical flows.Computer Vision, Graphics and Image
Processing, 22(9):239–259, 1983.

15. F. P. Preparata and M. I. Shamos.Computational Geometry, An Introduction. Springer-
Verlag, 1985.

16. S. M. Seitz and C. R. Dyer. View morphing. InComputer Graphics (SIGGRAPH ’96 Pro-
ceedings), pages 21–30, 1996.

17. J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. InComputer Graphics
(SIGGRAPH ’98 Proceedings), pages 231–242, July 1998.

(a)

(b)

(c)

Fig. 10. Triangulation of the panorama. a) The reference panorama, b) the potential map, and c)
the triangulated mesh.

13



(a) time = 0.2

(b) time = 0.5

(c) time = 0.8
Fig. 11.Warping the attic scene.

(a) time = 0.1

(b) time = 0.5

(c) time = 0.8
Fig. 12.Warping the city scene.

14



(a)

(b)

(c)

(d)

(e)

Fig. 13.Blending of two warped panoramas.

15


