
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Interactive Texture Synthesis on Surfaces Using Jump Maps

Steve Zelinka and Michael Garland

Department of Computer Science, University of Illinois at Urbana–Champaign, Champaign, Illinois

Abstract
We introduce a new method for fast texture synthesis on surfaces from examples. We generalize the image-based
jump map texture synthesis algorithm, which partitions the task of texture synthesis into a slower analysis phase
and a fast synthesis phase, by developing a new synthesis phase which works directly on arbitrary surfaces. Our
method is one to two orders of magnitude faster than existing techniques, and does not generate any new texture
images, enabling interactive applications for reasonably-sized meshes. This capability would be useful in many
areas, including the texturing of dynamically-generated surfaces, interactive modelling applications, and rapid
prototyping workflows.
Our method remains simple to implement, assigning an offset in texture space to each edge of the mesh, followed by
a walk over the mesh vertices to assign texture coordinates. A final step ensures each triangle receives consistent
texture coordinates at its corners, and if available, texture blending can be used to improve the quality of results.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing
and texture

1. Introduction

The synthesis of texture images from examples has been a
well-studied problem in recent years, with numerous meth-
ods developed encompassing the spectrum of trade-offs be-
tween speed of synthesis and quality of results. The focus
of this work is the synthesis of textures directly on 3D sur-
faces at interactive speeds. The ability to efficiently synthe-
size high quality textures on surfaces would be a useful tool
for a variety of computer graphics tasks. Modelling systems
can benefit from rapid feedback, allowing the interactive se-
lection and fitting of textures to surfaces. Rapid prototyping
systems may also benefit from the added realism textures
can contribute, without any added impediment to the speed
of development. And, of course, any system which gener-
ates geometry on the fly can be made more interesting by
similarly generating textures on the fly.

Current methods for texture synthesis on surfaces may
generate high quality results10, 8, 11, 7, 6, but each of these
methods generally has its own set of drawbacks (as discussed
in Section 2). Our method is designed with a number of goals
in mind, foremost among them being high quality synthesis
results at interactive rates. In addition, since texture mem-
ory remains a scarce resource on graphics hardware, and the
texture is assumed to be adequately described by the sam-

Figure 1: 40000 face model textured in 0.15 seconds.

c© The Eurographics Association 2003.

90

http://www.eg.org
http://diglib.eg.org

Zelinka and Garland / Jump Maps on Surfaces

ple image, no texture memory beyond that for the sample
should be required. Further, the algorithm should be able to
generate good results for a wide range of textures and on
arbitrary manifold surfaces. In particular, remeshing the sur-
face should only be required if triangles of the surface do
not fit entirely within texture space (when, for example, the
scale of the texture with respect to the surface is too small).

We realize these goals by extending the image-based jump
map texture synthesis algorithm to surfaces. Jump maps
were recently introduced12 as a means to accelerate image-
based texture synthesis to near real-time speeds. The jump
map stores for each pixel of a sample image a small set of
similar pixels, weighted according to similarity. Texture syn-
thesis with jump maps amounts to a walk through the sample
image, copying successive pixels and occasionally selecting
a weighted jump stored at a pixel. Careful choice of pixel or-
der was shown to yield high quality results. While the jump
map computation may take a few seconds to a few minutes,
it need only be performed once for any particular texture.

To generalize this algorithm to surfaces, we note that the
image-based algorithm assigns a texel address to each pixel
of the output image; we instead wish to assign a texel address
to each vertex of the mesh. Thus, we walk over the mesh ver-
tices, performing a synthesis step at each. While this synthe-
sis step is slower than that for images, it remains extremely
fast, especially in comparison to existing techniques. Also,
our assignment of texture coordinates to vertices allows us
to reproduce a range of texture scales without remeshing the
surface, in contrast to some previous methods10, 8.

There are three problems in making this generalization.
First, the order of vertices within the walk must be tailored
to the surface (images have a comparatively simple topol-
ogy). As discussed in Section 4.1, we pre-compute a vertex
ordering for each surface to be synthesized. Secondly, there
is no longer a fixed neighbour set for a particular vertex,
and these neighbours are no longer simple, known distances
away from the vertex. Based on some user-defined inputs
(discussed in Section 3), we develop a method in Section 4.2
for assigning fixed 2D offsets in texture space to each edge
of the mesh. Finally, since we are assigning texture coordi-
nates to each vertex, the rendered results would be incorrect
any time a jump is taken from one vertex to its neighbour.
We show how to avoid this issue in Section 4.3 by appropri-
ately assigning consistent texture coordinates to the corners
of each triangle, or using texture blending (Section 4.4).

Our preliminary results (Section 5) demonstrate that our
method efficiently generates high quality textures on sur-
faces. Interactive rates may be achieved even for meshes
with tens of thousands of vertices. Since we generate tex-
ture coordinates within the sample texture, no extra texture
memory is required for the results. While the image-based
jump map texture synthesis algorithm is best for relatively
stochastic textures, we show how our approach provides
probabilistically good matching, and demonstrate good re-

sults even on relatively ordered textures. We conclude in
Section 6 with a discussion of directions for future work.

2. Related Work

In this section, we discuss recent alternative methods for
generating texture directly on a surface from an example.
While there are numerous techniques for generating images
from examples, work which focuses on generating texture
directly on a surface is more limited. For the most part, these
are generalizations of image-based techniques based on ei-
ther neighbourhood comparison9, 1 or patch pasting3, 4.

Neighbourhood comparison techniques were generalized
to surfaces by both Wei and Levoy10 and Turk8. These meth-
ods reproduce the input texture by synthesizing colours at
each vertex. Vertices are coloured by flattening their lo-
cal neighbourhoods and regularly sampling the already-
synthesized texture. The best match for this regular sam-
pling is found in the sample image, and copied over to the
vertex. More recently, Tong et al. 7 have generalized this
approach to work with bi-directional texture functions (6D
functions capturing spatially-varying reflectance and texture
information), which, although being more difficult to dis-
play on current hardware, are much more realistic than flat
textures. They also develop k-coherent search, a generaliza-
tion of Ashikhmin’s method1 which provides higher quality
matching results at modest additional cost, and for which the
jump map provides a natural acceleration data structure.

An important contribution of these works is the optional
use of orientation fields for aligning the texture on the mesh,
including faster orientation methods which only guarantee
a certain measure of symmetry. However, the scale of the
texture on the mesh is predetermined by the edge lengths of
the mesh, which must be roughly uniform for good results.
Ying et al. 11 instead build a chart-based parameterization
of the surface, allowing texture synthesis at different scales
on the same mesh. However, the charts may use excessive
texture memory, especially if a small scale is used.

Patch pasting methods were first generalized by Praun et
al. 5, who iteratively paste an overlapping irregular patch
on a surface, and use texture blending to help hide bound-
ary artifacts. More recently, Soler et al. 6 assign a consis-
tent patch in texture space to hierarchical face clusters, re-
fining as necessary to minimize boundary mismatch. Since
only texture coordinates are generated, no additional tex-
ture space is required. While generating excellent results, the
method requires significant computation time, despite accel-
erated boundary matching in Fourier space.

3. Texture Specification

A certain degree of user interaction is required in order
to specify how the texture is to be mapped onto the sur-
face. First, a scale factor for the texture must be given by

c© The Eurographics Association 2003.

91

Zelinka and Garland / Jump Maps on Surfaces

Figure 2: Left: Orientation vectors (blue) within the local
tangent plane specify “up” in texture space. This field was
generated using only sinks and sources at extremities. Right:
Textured result.

the user which essentially fixes the size of each mesh tri-
angle in texture space. The rotation of each mesh triangle
in texture space may also need to be fixed. Like previous
approaches10, 8, we use a vector field defined at each vertex
of the mesh, the vectors of which correspond to the “up” di-
rection in texture space, as illustrated in Figure 2. The user
typically supplies a few “anchor” vectors at key points of
the vector field, and these anchors are relaxed over the mesh
to assign orientation vectors to the remaining vertices. We
have found it especially useful to allow the specification of
sinks and sources within the vector field, giving the user a
greater degree of control over where these singularities oc-
cur, which allows their visual impact to be minimized. This
is especially important as the genus of the mesh increases,
since higher genus surfaces inherently require more singu-
larities. Note that a full orientation field is primarily neces-
sary for anisotropic textures; as previous researchers have
noted10, optimizations of the relaxation process exist if the
texture only requires two- or four-way symmetry, and it may
be skipped altogether (assigning a random orientation field)
if the texture is isotropic.

4. Texture Synthesis on Surfaces

In this section, we develop our new method for texture syn-
thesis on surfaces at interactive rates, by generalizing the
image-based jump map texture synthesis algorithm. We first
(§4.1) show a simple approach to selecting a vertex ordering
for synthesis which may be pre-computed in fractions of a
second. We then develop the process for choosing texture
coordinates at a vertex (§4.2). Our probabilistically good
matching algorithm allows a wide range of textures to be
used, while avoiding the cost of run-time neighbourhood
comparisons. Finally, we derive consistent texture coordi-
nates at triangle corners based on these vertex texture co-
ordinates (§4.3), optionally employing texture blending for
improved quality (§4.4). Since our final output is a set (or
sets) of texture coordinates, no new texture memory is re-

Figure 3: Left to right: textured results; sample texture;
patches visualized by texturing with a colour ramp.

quired beyond that for the sample image, and the scale of
the texture is not tied to the meshing of the surface.

4.1. Vertex Ordering

The order in which pixels are synthesized is key to generat-
ing high quality images using jump maps. A Hilbert path or-
dering was found to give highest quality results, as it allows
an even distribution of directions from which patches may
be extended. In contrast, we have achieved highest quality
results on surfaces by maximizing the number of available
neighbours from which to continue synthesis. We therefore
adopt a simple region growing approach, iteratively select-
ing the unsynthesized vertex whose proportion of already-
synthesized neighbours is greatest. As shown below (§4.2.5),
selecting this vertex makes it more likely a good match is
selected. This simple, greedy approach effectively grows the
texture out from a seed point, producing almost surprisingly
good results (Figure 3). Since this ordering is constant for
a given mesh topology and seed vertex, it may be precom-
puted, typically in a fraction of a second.

It should be noted that recent work by Bagomjakov and
Gotsman2, which aims is to optimize the use of vertex caches
on recent graphics hardware, may also be of use here. As
Hilbert paths optimize locality of reference, they develop
a surface analogue called a Universal Rendering Sequence
(URS), which reorders the faces of a mesh such that vertex
accesses will exhibit high locality. A Hilbert path ordering
provides high quality results for the image-based synthesis
algorithm12, and as might be expected, a URS similarly pro-
vides a good vertex ordering for our surface-based synthe-
sis algorithm. In our experiments, the URS-based ordering
and our above region growing approach yield comparably
good results. There are trade-offs in deciding on which or-
dering to use: URS computation may require several seconds
to minutes, but may also improve rendering speed on ver-
tex caching graphics hardware; region growing, on the other
hand, is extremely fast and simple to implement.

c© The Eurographics Association 2003.

92

Zelinka and Garland / Jump Maps on Surfaces

u

v

uu
u vvv

d

Figure 4: Edge offset calculation. The orientation vector
(u) and tangent vector (v) at each vertex span the vertex’s
tangent plane. The endpoint basis vectors are averaged to
form the edge’s tangent plane basis vectors. The edge is pro-
jected into the plane, and scaled according to the desired
texture scale, determining the offset made in texture space
for traversing the edge (d).

4.2. Texture Coordinate Assignment

Given the order in which vertices are processed, we now turn
to how each vertex is processed. We first review the image-
based algorithm in the next section, and develop our surface
analogue to this algorithm in the following sections.

4.2.1. Review of Image-Based Texture Synthesis

The image-based jump map texture synthesis algorithm12

works by assigning an input image pixel address to each
pixel of the output image. Each new output pixel is assigned
an address by randomly selecting an already-synthesized
neighbour to use as a source. The new pixel is then assigned
the sum of the source’s effective address and the offset in
the output image from the source to the new pixel. So, for
example, if the source is the pixel above, and its effective
address is a, the new pixel is assigned the address below a.
The source’s effective address is generated by another ran-
dom choice: either its actual address in the input image, or
a virtual address drawn from the jump map entry for its ac-
tual address. So, if the source’s actual address is p, and the
jump map entry at p lists a and f (meaning that that a and
f are good matches for p), the source’s effective address is
randomly chosen from p, a, and f . The actual address is
weighted much higher than the jump map entries, as jumps
ought to be relatively rare events. As the actual address ap-
proaches an edge of the input image (within some fraction
of the image size), its weight is linearly decreased to zero
in order to encourage a jump away from the boundary; hit-
ting the boundary may cause noticeable artifacts. The final
step of the algorithm is to generate the output image using
the assigned input image addresses at each pixel. To improve
quality, blending may be applied by copying each pixel with
a small blend kernel.

4.2.2. Neighbour Distances

On surfaces, the distance between two neighbours is not a
simple unit offset in an axial direction. We address this by as-

W1*(1-a)*(1-b) : <x1+a, y1+b>
W2*(1-a)*(1-b) : <x2+a, y1+b>
W3*a*(1-b) : <x3-1+a, y3+b>
W4*a*b : <x4-1+a, y4-1+b>
W5*a*b : <x5-1+a, y5-1+b>

Floating Point Jump List at
subpixel offset <a, b>

<a, b>

W1: <x1, y1>
W2: <x2, y2> W3: <x3, y3>

W4: <x4, y4>
W5: <x5, y5>

Figure 5: Floating-point jump map lookups. A vertex’s tex-
ture coordinates are floating point, but jumps are only listed
at integer addresses (circles) in the jump map. The jump lists
(shown as “weight: <address>”) from the neighbouring 4
integer addresses are concatenated, with bilinearly interpo-
lated weights, and appropriately offset destinations, to form
a jump list for a vertex’s floating point address (top right).

signing a fixed distance in texture space to each edge of the
mesh while respecting the user-defined texture orientation
and scale. To avoid distortion, the texture should be mapped
onto the surface such that texture space locally corresponds
to the tangent plane. As illustrated in Figure 4, each edge is
projected into a tangent plane to determine its offset in tex-
ture space; the tangent plane for the edge is averaged from
the vertex tangent planes. First, we construct a basis for the
tangent plane at each vertex, using the vertex’s orientation
vector (u) and the cross product of the orientation vector and
the vertex normal (v). We then average the vertex u vectors,
and retain the portion of the average v vectors perpendicu-
lar to the average u vector, to form the basis vectors for the
edge’s tangent plane. The edge is then projected into this
plane, and finally scaled according to the user-defined tex-
ture scale (given as texels per object space unit) to yield a 2D
offset for the edge. Each vertex thus has a consistent view of
the distance to each of its neighbours in texture space (note,
of course, each endpoint of an edge sees the opposite offset
from the other).

4.2.3. Floating Point Jump Map Look-ups

Since edge offsets are invariably floating point, vertices may
no longer be assigned integer texel addresses. This compli-
cates jump map look-ups for a vertex; previously, each pixel
address corresponded to one particular jump map entry. As
shown in Figure 5, we define a floating point jump map look-
up to return a list of all jumps stored in the 4 neighbouring

c© The Eurographics Association 2003.

93

Zelinka and Garland / Jump Maps on Surfaces

W1: <x1+e1x, y1+e1y>
W2: <x2+e1x, y2+e1y>
Wn1: <n1x+e1x, n1y+e1y>
W3: <x3+e2x, y3+e2y>
W4: <x4+e2x, y4+e2y>
W5: <x5+e2x, y5+e2y>
Wn2: <n2x+e2x, n2y+e2y>

Jump Selection Table

<n2x, n2y>

W3: <x3, y3>
W4: <x4, y4>
W5: <x5, y5>

W1: <x1, y1>
W2: <x2, y2>

<n1x, n1y>

<e1x, e1y>

<e2x, e2y>

Figure 6: The middle vertex is to be synthesized, with two of
its neighbours already synthesized; their assigned addresses
are listed above their corresponding jump lists. Each neigh-
bour’s jump list is added to a selection table, with their jump
destinations offset by the corresponding edge offsets. Note
that a continuation entry is added for each neighbour as
well, corresponding to “do not jump”, which simply adds the
edge offset to the neighbour’s assigned address. The middle
vertex is assigned texture coordinates by a weighted random
choice from the table.

integer addresses, with the jump weights bilinearly filtered
according to the sub-pixel offset of the address. The jump
destinations are also changed according to this sub-pixel off-
set. Thus, existing image-based jump maps may be used on
surfaces.

4.2.4. Invalid Texture Coordinates

In order to simplify the consistent texture coordinate assign-
ment below, we ensure that the entire local neighbourhood
of a vertex may be textured from the address assigned to a
vertex. This means the sum of the vertex’s texture address
and the edge offset must remain within the texture, for each
edge incident to the vertex. Note this was not an issue for the
image-based algorithm, as the offsets used at synthesis time
were known a priori, and every jump in a jump map could be
guaranteed valid for any offset actually used. We thus com-
pute a 2D bounding box at each vertex which encloses all of
the offsets incident to that vertex. An address is considered
valid for a particular vertex only if the entire 2D bounding
box remains inside the texture when centered at the address.

4.2.5. Probabilistically Good Matching

As just discussed, jump map entries are not necessarily valid
for a particular vertex. Thus, we can no longer just ran-
domly select a neighbour from which to continue synthesis,
as it may not be able to supply any valid addresses for the
new vertex. Instead, as shown in Figure 6, we construct a

list of potential addresses drawn from all available neigh-
bours of a vertex. Effectively, we concatenate the jump lists
for each neighbour’s texel address together, filtering out the
invalid addresses, and then generate one random to decide
the new vertex’s address. Note that we must add entries for
each neighbour corresponding to the “do not jump” decision,
since each of these continuation entries may be different. In
the rare event that there are still no valid entries, a random
valid address is assigned.

The weighting scheme is the same as that used in the
image-based algorithm. There, the weights of the jump map
entries at a pixel were normalized to sum to one, or a lower
value if the jumps at that pixel were not very good; the
weight for the continuation entry (“do not jump”) was then
simply the desired average number of pixels between jumps.
The weights were then modified, if necessary, to encourage
boundary avoidance, and a weighted random selection made.
The only change for synthesizing on surfaces is to explicitly
divide the continuation weights by the length of the corre-
sponding edge offset; with images, the offsets were all only
1 pixel, so this was done implicitly.

Note that this method produces “probabilistically good”
assignments for each vertex. If several neighbours suggest
common destinations, greater weight will be assigned to
these destinations, and it becomes more likely that these des-
tinations, which are likely good matches, will be chosen.
Outliers suggested by a single neighbour, on the other hand,
will become less likely to be chosen.

4.3. Consistent Texture Coordinates

So far, we have shown how the mesh vertices are traversed,
and how each is assigned a set of texture coordinates. How-
ever, this alone does not properly texture the mesh; every
time a jump is taken over an edge, the endpoints of the edge
belong to different areas of texture space, and interpolation
of these texture coordinates across the edge or neighbouring
triangles would be erroneous. We must assign texture coor-
dinates to each corner of each mesh triangle such that each
triangle is properly mapped into texture space.

Our basic approach is to choose one vertex of the trian-
gle as a base vertex, using the vertex’s coordinates for the
corner coordinates, and assigning the other two corners by
summing the base vertex address with the edge offsets along
the respective edges. We have not developed any particular
strategy for choosing a base vertex which yields results qual-
itatively better than a random choice for general situations.
However, as discussed below, texture blending capabilities
imply that such a strategy need not be necessary.

4.4. Texture Blending

If texture blending resources are available, highest quality
results may be obtained by generating three sets of texture

c© The Eurographics Association 2003.

94

Zelinka and Garland / Jump Maps on Surfaces

Figure 7: Example of texture scaling without remeshing.

coordinates for each triangle, each with a different base ver-
tex. We then use multi-texturing, with the sample texture
and one of the three sets of texture coordinates in each tex-
ture unit. We have generated good results with a linear alpha
ramp, from one at the base vertex down to zero at the other
vertices. In absence of multi-texturing facilities, three passes
with appropriate blending may be used instead. Note that if
the texture scale is sufficiently large with respect to the sur-
face, it may be necessary to blend boundaries over multiple
triangles.

5. Results and Discussion

As shown in the figures, our method generates high quality
results over a range of surfaces and textures. The synthesis
time is independent of both surface complexity and texture
complexity; generally, we process about 150,000 vertices
per second on an Athlon 1.5Ghz machine. Models shown
vary in size from 20,000-40,000 faces each, taking from
0.05-0.15 seconds each. Sample textures are 200×200 pix-
els or slightly larger. All results use texture blending and the
region growing-based vertex ordering.

Like the image-based method, the quality of our results is
best for stochastic textures, but very often acceptable even
for quite ordered textures. Our “probabilistically good” ap-
proach to matching produces results whose quality meets or
exceeds that of the previous image-based approach for most
textures. The underlying assumption of our method is that
if two pixel neighbourhoods are well-matched, those neigh-
bourhoods will still be well-matched if they are offset a cer-
tain distance (i.e., across an edge). While this is not always
true, the quality of our results have shown this assumption to

be warranted in most cases. One would expect that as the tex-
ture scale becomes smaller, the quality of results would de-
grade; as edges become longer in texture space, this underly-
ing assumption would become more unlikely. However, this
effect appears to be masked in practice by the reduced size of
texture features on the mesh. Further, since jump maps are
constructed offline, once per texture, we can afford to use
relatively large neighbourhoods, ensuring successful results
over a wide range of texture scales. Figure 7 shows the an
example of the range of texture scales that may be accomo-
dated by a single mesh and jump map.

6. Conclusions and Future Work

We have presented an algorithm for texturing a surface from
an example at interactive speeds. We have managed to meet
all of the goals set forth in the introduction: high quality
results, interactive synthesis speed, memory efficiency, and
generality over both surfaces and textures. Our generaliza-

c© The Eurographics Association 2003.

95

Zelinka and Garland / Jump Maps on Surfaces

tion to surfaces of the image-based jump map texture syn-
thesis algorithm leverages existing jump maps to produce
textures directly on arbitrary manifolds, while retaining the
speed and simplicity of the original algorithm.

In future, we expect that further development our prob-
abilistic matching scheme will lead to even higher quality
results. In particular, extra sources may be sampled along
or within neighbouring already-synthesized edges or trian-
gles, emphasizing the importance of matches which remain
good over large spatial areas, and reducing the likelihood
of selecting matches which are only good in one particular
direction. Extra passes over the mesh, when all neighbours
are available to suggest destinations, may further improve
the quality of results. In this respect, our algorithm may also
serve as a fast pre-conditioner or place-holder for slower,
higher-quality texture synthesis algorithms, allowing them
to use full neighbourhoods from the start, for example. Note
that these ideas may also be applied to image-based algo-
rithms, perhaps further improving their quality. More gener-
ally, we expect a hierarchical generalization of our algorithm
is possible, allowing the interactive texturing of progressive
and LOD meshes from an example texture.

Acknowledgements

This work was supported in part by a grant from the National
Science Foundation (CCR-0086084). The textures on the cat
and the upright dragon models are courtesy www.scenic-
route.com; that on the bull from the Brodatz collection;
those on the Santa, torso, and serpentine dragon are from
the VisTex texture database; and the remainder are from

www.gr-sites.com. Thanks to the anonymous reviewers for
their many helpful comments.

References

1. Michael Ashikhmin. Synthesizing natural textures. In
Proceedings of 2001 ACM Symposium on Interactive
3D Graphics, pages 217–226, March 2001.

2. Alexander Bagomjakov and Craig Gotsman. Univer-
sal rendering sequences for transparent vertex caching
of progressive meshes. Computer Graphics Forum,
21(2):137–148, 2002.

3. Alexei A. Efros and William T. Freeman. Image quilt-
ing for texture synthesis and transfer. In Proceedings of
SIGGRAPH 2001, pages 341–346, August 2001.

4. Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and
Heung-Yeung Shum. Real-time texture synthesis by
patch-based sampling. ACM Transactions on Graph-
ics (TOG), 20(3):127–150, 2001.

5. Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Lapped textures. In Proceedings of SIGGRAPH 2000,
pages 465–470. ACM SIGGRAPH, July 2000.

6. Cyril Soler, Marie-Paule Cani, and Alexis Angelidis.
Hierarchical pattern mapping. In Proceedings of SIG-
GRAPH 2002, pages 673–680. ACM SIGGRAPH, July
2002.

7. Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Bain-
ing Guo, and Heung-Yeung Shum. Synthesis of bidirec-
tional texture functions on arbitrary surfaces. In Pro-
ceedings of SIGGRAPH 2002, pages 665–672. ACM
SIGGRAPH, July 2002.

8. Greg Turk. Texture synthesis on surfaces. In Proceed-
ings of SIGGRAPH 2001, pages 347–354. ACM SIG-
GRAPH, August 2001.

9. Li-Yi Wei and Mark Levoy. Fast texture synthesis using
tree-structured vector quantization. In Proceedings of
SIGGRAPH 2000, pages 479–488, July 2000.

10. Li-Yi Wei and Mark Levoy. Texture synthesis over
arbitrary manifold surfaces. In Proceedings of SIG-
GRAPH 2001, pages 355–360. ACM SIGGRAPH, Au-
gust 2001.

11. Lexing Ying, Aaron Hertzmann, Henning Biermann,
and Denis Zorin. Texture and shape synthesis on sur-
faces. In Proceedings of the Twelfth Eurographics
Workshop on Rendering, pages 301–312. Eurographics
Assocation, June 2001.

12. Steve Zelinka and Michael Garland. Towards real-time
texture synthesis with the jump map. In Proceedings
of the Thirteenth Eurographics Workshop on Rendering
Techniques, pages 99–104. Eurographics Association,
June 2002.

c© The Eurographics Association 2003.

96

Zelinka and Garland / Jump Maps on Surfaces

Figure 8: Jump Map Texture Synthesis Results.

c© The Eurographics Association 2003.

301

