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Abstract
We present a technique for computing piecewise linear approximations of geodesics on point set surfaces by min-
imizing an energy function defined for piecewise linear path. The function considers path length, closeness to the
surface for the nodes of the piecewise linear path and for the intermediate line segments. Our method is robust
with respect to noise and outliers. In order to avoid local minima, a good initial piecewise linear approximation
of a geodesic is provided by Dijkstra’s algorithm that is applied to a proximity graph constructed over the point
set. As the proximity graph we use a sphere-of-influence weighted graph extended for surfel sets. The convergence
of our method has been studied and compared to results of other methods by running experiments on surfaces
whose geodesics can be computed analytically. Our method is presented and optimized for surfel-based repre-
sentations but it has been implemented also for MLS surfaces. Moreover, it can also be applied to other surface
representations, e.g., triangle meshes, radial-basis functions, etc.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Gener-
ation; I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations; I.3.5 [Computer Graphics]:
Geometric algorithms, languages, and systems.

1. Introduction

In many fields, including cultural heritage, reverse engineer-
ing, architecture, and medical applications, 3D surfaces must
be acquired from reality. The current 3D acquisition tech-
nologies produce large sets of 3D point clouds from which a
proper and convenient representation of the real surface must
be extracted for rendering, analysis and processing. In com-
puter graphics surfaces are commonly represented by trian-
gular meshes. However, in recent years a significant trend in
computer graphics has been the shift towards point-sampled
surfaces, especially for rendering. Pfister et al [PZvBG00]
presented surfels as a powerful point-based surface repre-
sentation scheme for rendering. Surfels are oriented circular
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or elliptical disks containing color information that describe
surface characteristics within the neighborhood of each sam-
ple point. Neither connectivity nor other topology informa-
tion is given. The importance of point-based representations
and point-based primitives such as surfels, is rapidly increas-
ing. During the past years several paradigms known from
triangle meshes have been transferred to point-based geom-
etry and many new techniques have been developed and op-
timized for point-based representations [KB04].

Point sets geometry represents the typical output of
the current 3D acquisition techniques, which produce sets
of noisy 3D point clouds that subsequently have to be
processed for different purposes. The problem of comput-
ing geodesics, i.e., shortest paths on surfaces, arises in dif-
ferent applications such as robot motion planning [HPJS01,
HP04], shape analysis [EK01] and geographical informa-
tion systems. Furthermore, geodesics have been widely used
in 3D surface analysis and processing, including parame-
terization [ZKK02, SWG∗03], partitioning [KT03], flatten-
ing [GKK02], modelling [KCVS98, ZG04], segmentation
[PC04], remeshing [OSG03], texture mapping [ZKK02],
and also compression [MD04]. We propose a new technique
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for computing approximations of geodesics directly on noisy
point set surfaces with outliers.

Given a surfaceΨ represented by a set ofN three dimen-
sional sample pointsΠ = {pi ∈ R

3, i = 1..N} we compute
an approximation of the geodesic path and the correspond-
ing geodesic distance between two arbitrary points ofΠ on
the surfaceΨ.

Geodesics are defined on a surface. In our case the sur-
face is given only indirectly by the set of 3D pointsΠ. Since
point based surfaces are typically acquired with 3D scanning
techniques, we assume that our point setΠ includes noise
and outliers. In this scenario extracting a precise approxi-
mation of the real surface may be difficult and computation-
ally expensive. However, several methods can be used to ex-
tract geometric surfaces from points clouds. The most used
approaches extract implicit surface representations that lo-
cally approximates the real surface via moving least-squares
(MLS) surfaces [ABCO∗03, AK04, DS05, BH05], or radial
basis functions (RBF) [CBC∗01,OBS04,RTSD03]. Working
directly with local approximations through implicit surfaces
allows a rigorous formulation of the problem of computing
geodesics on the real surface. Nevertheless, this approach
can be too costly for several applications, such as render-
ing and other processing techniques, which need to compute
such information on the fly. Surfels have been invented for
rendering in order to provide 3D points with information
about colors, orientations (normals), and their influence in
covering the underlying surface. Such information can be
extracted by analyzing the surface samples in the neighbor-
hood of each pointpi ∈ Π [PZvBG00,KB04,WK04,AA04].
Thus, the surfel setS= {si , i = 1..N} extends the original
point setΠ and can be considered as a discrete approxima-
tion of the real surfaceΨ.

We address the problem of computing piecewise linear ap-
proximations of geodesics on point set surfaces by minimiz-
ing an energy function defined for piecewise linear paths.
The function considers path length, closeness to the surface
for the nodes of the piecewise linear path and for the in-
termediate line segments. In order to avoid local minima, a
good initial approximation is provided by Dijkstra’s algo-
rithm that is applied to a proximity graph constructed over
the point set. Our method robustly handles noisy surfaces
with outliers, i. e., typical output of 3D scanning frame-
works. We implemented our method for two point based sur-
face representations: surfels and MLS surfaces. Since sur-
fels as a general point based primitive, are computation-
ally easy to manage, suitable for interactive/multi-resolution
systems [RL00], and are the main point based primitives
for standard and high-quality rendering [PZvBG00, RL00,
ZPKG02], our method is formulated and optimized for sur-
fels. Nevertheless, our technique is general, since it can be
directly extended to other surface representations, e.g., tri-
angle meshes, RBF surfaces, etc.

We experimentally analyze the convergence and the pre-

cision of our method for noisy point samples of smooth sur-
faces whose geodesics can be computed analytically. We
also compare the precision of our approach with the tech-
niques presented by Hofer and Pottmann in [HP04].

2. Related work

Different algorithms are available for computing geodes-
ics and measuring distances on surfaces. They are typi-
cally developed for high-dimensional manifolds and differ
with respect to the particular surface representation. One ap-
proach to approximate geodesics is to apply a Dijkstra-like
algorithm on a graph generated by a refined representation
of surfaces (e.g. polyhedron surfaces [KS01, KS04]). Kiry-
ati and Székely in [KS93] presented an algorithm for geo-
desic distance estimation on voxel-based surfaces. Kimmel
and Kiryati in [KK96] proposed an algorithm for finding
shortest paths in two stages. In the first stage the algorithm
proposed in [KS93] is used to obtain an approximation of
the globally shortest path. In the second stage the approx-
imation is refined to a locally optimal path. Kimmel and
Sethian in [KS98] proposed an efficient algorithm for com-
puting geodesic distances and paths on triangulated mani-
folds based on a fast marching method. This approach has
been widely used due to its speed and precision. Further-
more, different efficient variations of this method were im-
plemented [NK02,Kir04]. Surazhsky et al. in [SSK∗05] pro-
posed an alternative technique to compute exact and approx-
imate geodesics on triangle meshes. Their technique is based
on the idea to unfold a set of adjacent triangles into a com-
mon 2D plane and extract geodesics by reconstructing the
distance field associated to each mesh edge.

Geodesics for point clouds have been considered before
by other authors. Memoli and Sapiro in [MS03] constructed
an offset band of the point set surface consisting of the union
of Euclidean balls centered at the given points. Geodesics
were computed by applying the fast marching algorithm
on a 3D Cartesian grid built inside the constructed band.
The accuracy depends on the resolution of the 3D grid, and
the execution time depends on the number of grid points.
Their method is robust with respect to noise provided that
it is bounded by the radii of the balls defining the offset
band. Klein and Zachmann [KZ04] approximated geodesics
as shortest paths on a geometric proximity graph over point
clouds. They experimented with Delaunay and spheres-of-
influence graphs (SIG) as proximity graphs and proposed an
extended version of SIG. Hofer and Pottmann [HP04] pro-
posed to compute geodesic curves as energy minimizing dis-
crete curves constrained on a MLS surface. They proposed
an efficient method for high dimensional constrained min-
imization of certain energy functional leading to geodesic
curves. Even though the method is efficient, the precision of
the final geodesic is sensitive to noise, since it relies on the
MLS surface construction.

Our approach is related to the method of Hofer and
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Pottmann [HP04] in the sense that it is characterized by an
energy function minimization. However, we do not constrain
our path on a specific surface like in, which is basically un-
known in a point cloud, but rather we embed this constraint
in the function itself, by using surfel disks (or MLS surfaces)
as a tool to estimate the proximity of the path to the unknown
surface.

3. Approximating geodesics by energy minimization

Let S= {si , i = 1..N} be the surfel set approximating a sur-
faceΨ. Let pa andpb be two distinct points inS, our goal is
to find a piecewise linear pathPg = v0v1..vn+1 with v0 = pa

andvn+1 = pb approximating a geodesic path frompa to pb,
i.e., the shortest path betweenpa andpb onΨ. The geodesic
distanceg(pa, pb) betweenpa andpb on Ψ is then approxi-
mated by the length of the pathPg.

As the exact surfaceΨ is not known and only approxi-
mated by the surfel setS, we propose to approximate geo-
desic curves by curves close to the surfels. We do not re-
quire the control pointsvi , i = 1, ..,n to be on the surfel disks.
Thus, we seek a short path that is close to the surfel set and
that accommodates the geometry of the underlying surface.
For this purpose we propose to minimize an energy func-
tion taking these factors into account. We define our energy
functionES : R

3n→R as a sum of three terms:

ES(P) = L(P)+α · DS(P)+β · US(P), (1)

whereP = v1..vn is the sequence of control points of a path
betweenv0 = pa andvn+1 = pb. The termL(P) is the sum
of the squared distances between consecutive points and is
related to the path length:

L(P) =
n

∑
i=0

‖vi+1−vi‖
2
2. (2)

This term serves to shorten the path. Moreover, considering
equidistant control pointsvi constrained to the ideal underly-
ing surface, the termL(P) can be assumed as the discretiza-
tion of a functional whose minimization has been demon-
strated to lead to a geodesic curve [PH05].DS(P) represents
a fidelity term and serves to keepP close to the surfel setS,

DS(P) =
n

∑
i=1

d2
S(vi) =

n

∑
i=1

min
j

(d2(vi ,sj)), (3)

wheren is the number of control pointsvi , andd2(vi ,sj ) in-
dicates the squared distance between the 3D pointvi and the
disk of the surfelsj . The termDS(P) brings control points
vi close to the surfels. In order to also ensure that line seg-
mentsvivi+1 are close to surfels (Figure1) so that the path is
geometrically correct with respect to the underlying surface
the we introduce the termUS(P).

US(P) =
n

∑
i=0

d2
S(v̂i) ·

d2
S(v̂i)

‖vi+1−vi‖
2
2

, (4)

wherev̂i = (vi+1 + vi)/2 is the midpoint between two con-
secutive sample points. The squared distanced2

S(v̂i) from v̂i
to S serves to keep the line segmentvivi+1 close toS. The
ratio betweend2

S(v̂i) and the squared length of the line seg-
ment‖vi+1−vi‖

2
2 puts more weight on line segments where

curvature is high.US(P) also regulates the distribution of
control pointsvi over the pathP with respect to the path
curvature (Figure1). dS(v̂i) roughly approximates the mean
of the distance to the ideal surfaceΨ over the i-th path seg-
ment (highlighted area in Figure1). Better estimates can be
calculated. However, experiments on noisy surfaces showed
that the gain in terms of precision of the whole method only
was small, while increasing the computational complexity
significantly.

Figure 1: 2D view of two piecewise approximations of a geo-
desic between two points. The highlighted area represents
a measure of the path proximity to the underlying surface
(black curve).

The parametersα andβ influence the convergence speed
of a numerical method for minimization ofES(P), as well as
the quality of the resulting approximation of a geodesic. For
paths passing across sharp edges the termDS(P) and espe-
cially the termUS(P) are crucial in order to achieve geodesic
curves with good accuracy. As shown in Figure2 the path
obtained withβ set to 0 (in orange) is smoother and farther
from the surface than the path obtained by settingβ to 2.0
(in dark-red). For surfaces with low curvature the termUS(P)
can be almost neglected, since it does not strongly bias the
convergence of the algorithm to a good solution. However,
experiments suggested to setα andβ to 0.7. Also on surfaces
with sharp edges, these values have produced paths close to
the true geodesic.

3.1. Computing an initial path

For our algorithm it is important to select a good initial path
in order to keep our minimization procedure from falling
into a local suboptimal minimum, especially in case of sur-
faces with high curvature (see Figure2).

We aim at a fast initial approximation of the geodesic
path. One possibility is to compute an approximation by ap-
plying the fast marching method on a coarse 3D grid built in
an offset band of the point set surface [MS03]. Another pos-
sibility is to construct a weighted graph to describe surfel
connectivity and use Dijkstra’s algorithm to obtain a short-
est path on the graph. We chose the second approach. From
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Figure 2: Approximations of geodesic paths computed on a
surfel-based model with sharp edges: the initial path com-
puted as shortest path on the graph using Dijkstra’s algo-
rithm (in light-blue); the path computed with our method
using the US(P) term with β = 2.0 (in dark-red) and with
β = 0.0 (in orange).

the various graphs proposed in the literature [JT92] for point
samples, we chose to adapt the spheres-of-influence graph
(SIG) [KZ04] to surfels since it accommodates variations in
the point sample density and produces a good description
of non-smooth surfaces [JT92,KZ04]. Moreover, a SIG can
easily be extended and optimized for surfels by using surfel
properties to handle cases such as depicted in Figure3.

The sphere centered at point sample (surfel position)pi
with radius given by the distance to the nearest neighbor is
called the sphere of influence ofpi . The SIG is the graph
with verticespi in which two verticespi and pj , i 6= j, are
connected by an edgeei j if the corresponding spheres of in-
fluence intersect. Each edgeei j is weighted by the Euclidean
distance between the connected vertices.

(a) (b)

Figure 3: (a) Canonical SIG, and (b) SIG extended with sur-
fel orientations. 2D view.

As shown in [KZ04], in case of noisy or irregular point
clouds, a SIG may produce small clusters of connected
points that are inter-cluster disconnected even though they
are part of the same surface. To overcome this problem, dif-
ferent approaches that focus on modifying the radii of the
spheres of influence can be applied. In [KZ04] the radius is

set to the distance to thek-th nearest neighbor withk > 1.
This may produce extraneous long edges in the graph re-
quiring an additional edge pruning step. In our case, we
benefit of the surfel-based representation by using the sur-
fel attributes to extend our SIG. We define the radius of the
spheres of influence to be equal to the corresponding sur-
fel radii, since the radius of a surfel disk identifies the con-
tribution of its sample point in representing the underlying
surface. In addition, we require that two surfels connected
by an edge have approximately the same orientation. Thus,
we connect two vertices by an edge only if the dihedral an-
gle between their surfel normal vectors is less than a certain
threshold angleθt . Using this approach undesirable edges
are discarded, see Figure3.

The approximation of the initial geodesic path between
pa and pb is computed using Dijkstra’s algorithm. Search-
ing for the shortest path between a fixed source and a fixed
destination can be implemented more efficiently [LaV06].
Bi-directional search and A* algorithm provide better per-
formance especially in the average case. However, in our
case the time needed for computing the shortest path on the
graph is very small with respect to the time needed by the en-
ergy minimization algorithm. The computation of the graph
takesO(|V| log|V|) in time [JT92], whereV is the set of
vertices. Table1 shows the execution time for computing
our extended SIG with different sizes. The algorithm imple-
mented with non-optimized C++ code has been executed on
an Intel Pentium 4 2.80 GHz with 2GB of RAM running
under a Windows XP Professional system.

Model # surfels Time (sec.)
Bunny [Sta] 35,948 3.50

Max Planck [PSh] 52,809 3.90
Chameleon [PSh] 101,685 4.73

Igea [PSh] 134,345 6.08
Lion [QSp] 183,408 7.16

Imperia(528KT) [KNR] 263,908 17,25
Imperia [KNR] 546,137 33.07
Buddha [QSp] 1,060,220 46.75
Dragon [PSh] 1,279,519 56.39

Table 1: Execution time for computing weighted graphs

3.2. Energy function minimization

Our goal is to minimize the energy functionES : R
3n→R,

wheren is the number of control points of a pathP, and 3n
is the number their coordinates. We considered three numer-
ical optimization methods: the downhill simplex method,
the Powell method, and the conjugate gradient method
[PFTV92]. All methods start from an initial pathP0 of length
g0 obtained by the method of Section3.1 and result in a
pathP∗ of lengthg∗. In our experiments all the final paths
were very close to the surfel set surface and their lengths
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were shorter than the initial pathP0. Among these three op-
timization methods the Polak-Ribiere variant of the conju-
gate gradient method [PFTV92] proved to be the fastest and
the most robust with respect to the number of control points.
The additional cost to compute derivatives in the minimiza-
tion process is compensated by the rapid convergence to a
minimum especially when the initial solution is close to it,
as in our case. Another advantage of this method is the low
memory usage. In fact, the Powell method and the downhill
simplex method require respectively a matrix of size(3n)2

and 3n(3n+ 1), while the conjugate gradient only requires
a vector of size 3n. Considering its performance we chose
the Polak-Ribiere variant of the conjugate gradient method
to minimize our energy function.

The execution time of our energy minimizing method de-
pends mainly on two factors: (1) the number of evaluations
of the energy function and its gradient required to find a local
minimum, and (2) the number of surfels of the model. The
first factor is related to the characteristics of the minimiza-
tion method, and depends on the proximity of the initial path
to a local minimum of the energy function. In our case the
conjugate gradient method has been optimized by choosing
an adaptive bracketing criterion for Brent’s line minimiza-
tion [Mac,PFTV92]. The second factor is related to the esti-
mation of the distanced2

S(v) between the control points and
the surfel set surfaceS (Section3). This estimation requires
for each control point a search of the closest surfels in the
model. This search is implemented through adaptive range-
queries on a kd-tree constructed from the point set.

The number of control points involved in the minimiza-
tion algorithm affects the convergence speed of the mini-
mization method to a local minimum of the energy func-
tion as well as the precision of the final path with respect
the true geodesic. We apply our method to the shortest path
computed on the SIG with Dijkstra’s algorithm, by adding
one control point in the middle of those path segments that
have endpoints in which the path has a curvature higher than
a threshold. However, our method can also be applied it-
eratively starting from a low resolution initial path. In this
case, the resolution of the subsequent resulting paths can be
increased at each iteration to enhance the path quality and
precision. With such a multi-resolution approach, we can
balance the convergence speed of our minimization method
with the precision of the energy minimizing path with re-
spect to the real geodesic.

Figure4 shows the result of our technique on the surfel-
based model of Igea [PSh]. The pathP∗ minimizing our en-
ergy function (in dark-red) properly fits the underling surface
and is shorter than the initialP0 (in light-blue).

4. Results

We present experimental results of our method on sur-
fel set surfaces. Figure9 shows several approximations

Figure 4: Approximations of geodesic path computed with
our method (dark-red) with respect to the initial path (light-
blue) computed by applying Dijkstra’s algorithm on the SIG
(Section3.1). Our path properly fits the underling surface
(top-right) and is shorter than the initial path (bottom-right).

of geodesics on surfel-based models of different size and
geometry computed with our method. All surfel based
models shown in this paper have been rendered with
PointShop3D [ZPKG02].

We also consider noisy surfaces, whose noise is created
by perturbing both surfel positions and surfel normals. Sur-
fel positions are perturbed by shifting them along their surfel
normal vectors. The offset of a surfel center is uniformly ran-
dom in the interval[−ri/2,ri/2] or [−ri , ri ], whereri is the
surfel radius. We identify these two cases as noise level 50%
and 100%, respectively. Surfel normal vectors are perturbed
by rotating them by a uniformly distributed azimuthal and
polar angle. We use a maximal tolerance of 10 degrees for
both angles.

Our method has been tailored for surfel based represen-
tation, but can be applied to other surface representations,
e.g., triangle meshes, MLS/RBF surfaces, etc. In fact, our ap-
proach minimizes an energy function relying on estimations
of the squared distances between the path sample points
and the point set surfaced2

S(v) (Section3). We have im-
plemented our technique also for MLS surfaces. The sur-
faceS is then given by the MLS surface fitted to the points
cloud [ABCO∗03]. The squared distanced2

S(v) is estimated
as the squared Euclidean distance between the control point
v and its projection on the MLS surface. The paths computed
with this technique on the MLS surface have approximately
the same characteristics of the paths computed on surfels
(Figure5, 6). However, our technique applied on MLS sur-
faces was slower than our method applied on surfels, due to
the large number of MLS surface estimations and projections
required by the method. Optimizations of this technique will
be considered in future work.

We compare these two techniques with the method pre-
sented in [HP04] to compute piecewise geodesic curves; we
call this theHP method. For this HP method we take as
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initial path the same initial path of our methods, i.e., the
shortest path computed on the SIG with Dijkstra’s algorithm.
We then project the points of this path onto the MLS sur-
face, as is required by the HP method. Figure5 shows a vi-
sual comparison of four approximations of geodesic paths
obtained with: (1) our method applied on surfels; (2) our
method applied on MLS surfaces; (3) the HP method; and
(4) the initial path from which all methods started. Both our
method on MLS surfaces and the HP method have been ex-
ecuted with the same MLS surface fitting parameters. The
same paths are computed on the same models on which we
have added noise of level 100% and also outliers (Figure6).
Figure6 shows that our methods are robust with respect to
noise and outliers. The three zooms on the right of the show
that the paths computed with our technique have not been
affected by noise and outliers, while the HP method pro-
duced a jagged path when noise/outliers were present. This
effect that we also observed in other experiments, is due to
the sensitivity of the MLS projection operator [ZPKG02]
to noise and outliers. This effect can partially be reduced
with a proper selection of the MLS surface fitting parame-
ters. Selecting proper and robust parameters is a delicate
task. In fact, we noticed that they depend on the surface
geometry and especially on the noise. There is no guaranty
that a proper setting of these parameters can be found, es-
pecially in case of extremely noisy surfaces with outliers,
as depicted in Figure6. In order to overcome this problem
more sophisticated techniques of MLS surface fitting may
be applied [AA04,KZ04,AK04,DS05].

Figure 5: Comparison of different approximations of
geodesic paths computed on the surfel-based model of
Igea [PSh] with different methods: initial path computed as
shortest path on the graph with Dijkstra’s algorithm (light-
blue), path computed with our method on surfels (dark-red)
and on MLS surface (dark-green), and path obtained with
the HP method (black).

A comparison of time performances of our method with
respect to our implementation of HP method is reported in
Table2. Both algorithms have been executed on an Intel Pen-
tium 4 2.80 GHz with 2GB of RAM running under a Win-

Figure 6: Comparison of different approximations of geo-
desic paths computed on a noisy surfel-based model with
outliers. Noise of level 100% and outliers (surfels in violet)
have been added to the surfel-based model of Igea [PSh].
Outliers are generated by adding new noisy surfels with
noise level 200% to the noisy model. Paths: initial path com-
puted as shortest path on the graph with Dijkstra’s algo-
rithm (light-blue), path computed with our method on sur-
fels (dark-red) and on MLS surface (dark-green), and path
obtained with the HP method (black).

dows XP Professional system. The execution of both meth-
ods has been stopped when the fractional difference between
two consecutive paths was below to a certain threshold.

Model # surfels Avg. # Pts Our M. HP
Igea 134345 74.55 19.37 5.68
Noisy Sphere 65544 68.55 3.44 1.83
Noisy Plane 10000 20.58 0.68 1.21
Noisy Cylinder 12060 37.04 7.11 2.05
ScanPlane 6580 30.81 0.69 0.57

Table 2: Comparison of time performances of our method
with respect to the HP method. The table reports the aver-
age execution time taken to compute 100 approximations of
geodesic paths between 100 random point pairs. Times are
reported in seconds. Column 3 reports the average number
of sample points of the computed geodesic paths. The noisy
surfaces have a noise level of 50%.

4.1. Experimental convergence and error analysis

For an arbitrary surfel set surface it is difficult to establish
whether the path computed with our method converges to the
exact geodesic, since we need to know the original surface in
parametric or implicit form and compare our results with the
real geodesic curve. Computing geodesic curves on a gen-
eral surface is also difficult and may be imprecise, since it
requires solving differential equations with numerical meth-
ods [Car76]. However, for some surfaces geodesics can be
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computed analytically. On a plane a geodesic between two
points is a straight line segment. On a cylinder a geodesic
is also a straight line segment when the cylinder is unrolled
into a plane. On a sphere a geodesic is the shortest arc on the
great circle passing through two points.

We tested the convergence and the precision of our
method on three surfaces which have been appropriately
sampled with surfels at different densities: a plane, a sphere,
and a cylinder. The plane has been obtained by regularly
sampling a square planar surface on a grid. The sphere
has been obtained by regularly sampling a unit sphere with
65544 surfels. We regularly subdivided an octahedron seven
times using Loop’s scheme [Loo87], and we projected the
vertices onto the sphere. The cylinder has been obtained by
sampling a cylinder of 30 m diameter and 30 m height us-
ing an equiangular sampling on its circumference and an
equidistant sampling on its axis.

In order to estimate the precision of our approach we con-
sider two different errors. The first error indicates the pre-
cision of the approximated geodesic distance and is defined
by egeod(g

∗) = |g∗−ga|/ga, i.e., the absolute relative error
with respect to the exact geodesic distancega. We also con-
sider the proximity of the computed path with respect to the
exact geodesic path,

dpath(P, P̂) =

√

1
n

n

∑
i=1

d2
v(vi , P̂), (5)

where d2
v(vi , P̂) is the squared distance between the con-

trol point vi of the path P and the piecewise linear
path P̂. The second error is then defined byepath(P

∗) =
max(dpath(P

∗,Pa),dpath(Pa,P∗))/ga, i.e., the symmetric
distance between the approximated geodesic pathP∗ and
the exact geodesic pathPa divided by the length ofPa. In
our casePa is a continuous path, which is properly sampled
at high density. This allows to computedpath(Pa,P∗) and to
renderPa properly.

We statistically compare these two errors by consider-
ing the root mean square of the errorsegeod(g

∗) (EG) and
epath(P

∗) (EP). Table3 reports the results of our methods
and the HP method on the three test surfel set surfaces de-
scribed above. On all these surfaces, our method converged
to piecewise linear paths having small EG and EP errors, and
that were very close to the exact geodesics. Furthermore, we
observed that the MLS projection operator used in the HP
method keeps the paths closer to the real surface than our
method.

The convergence of our method to a good approxima-
tion of the exact geodesics is biased by the sampling of the
test surfaces. Surfels linearly approximate a surface. A cor-
rect sampling is important to keep the approximation error
under a certain threshold, especially for surfaces with high
curvature. On the plane our method converges to paths that
are closer to the exact geodesics than the paths computed

on the sphere and the cylinder (e.g., see Table3). On the
sphere and the cylinder the errorsegeod(g

∗) andepath(P
∗)

decrease by increasing the sampling density, in case both
the sphere and the cylinder are regularly or uniformly sam-
pled. Thus, for numerical comparison, we experiment with
five different surfel-based approximations of the unit sphere,
and compute the errors EG and EP, which are reported in Ta-
ble4. The five approximation levels of the unit sphere are ob-
tained by regularly subdividing an octahedron using Loop’s
scheme [Loo87] with vertices projected onto the sphere. We
then associate a surfel to each of these vertices. The coarsest
model obtained through 3 subdivision levels has 258 sur-
fels. The finest model obtained through 7 subdivision levels
has 65538 surfels. Figure7 shows the surfel-based models
of three unit spheres obtained through different subdivision
levels. The path computed with our approach is shown with
respect to the exact geodesic and the initial path.

Our Met. HP
Model # Surf. EG% EP% EG% EP%
Sphere 65544 8.0e-2 3.5e-2 4.0e-2 1.0e-2
Plane 10000 2.1e-5 1.1e-4 2.7e-5 2.7e-7

Cylinder 12060 4.5e-2 5.1e-3 4.6e-1 9.0e-2

Table 3: Comparing the approximation error of our method
with the HP method on different surfel set surfaces. Root
mean square of the errors egeod(g

∗) and epath(P
∗) are re-

ported in percentage as EG% and EP%, respectively. The
approximation error depends on the sampling of the surface
(see Table4).

# Subdiv. lev. # surfels EG% EP%
3 258 6.20 2.162
4 1026 2.95 0.885
5 4098 1.02 0.275
6 16386 0.34 0.074
7 65538 0.08 0.035

Table 4: Approximation error of our method on surfel-based
models of unit spheres with different samplings. Spheres are
sampled regularly using the Loop’s scheme at different sub-
division levels. Root mean square of the errors egeod(g

∗) and
epath(P

∗) are reported in percentage as EG% and EP%, re-
spectively.

4.2. Robustness with respect to noise

We present experimental results of our method on noisy
planes, noisy spheres, and noisy cylinders. The noisy sur-
faces are created by adding random noise of level 50% or
100% (see Section4) to the test surfaces used in the ex-
periments reported in Table3. We also consider a planar
surface scanned with a 3D Scanner Minolta VI-900, which
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Our Met. HP
Model NL # Surf. EG% EP% EG% EP%
Sphere 50 65544 0.49 0.25 8.50 0.10
Sphere 100 65544 0.88 0.31 22.20 0.15
Plane 50 10000 0.019 0.097 0.12 0.24
Plane 100 10000 0.023 0.11 0.49 0.48
Cylind. 50 12060 0.69 0.46 2.50 0.94
Cylind. 100 12060 1.04 0.71 16.38 3.70
ScanPlane 6580 0.15 0.25 0.40 0.33

Table 5: Comparing the approximation error of our method
with the HP method on noisy surfaces. Root mean square
of the errors egeod(g

∗)(EG) and epath(P
∗)(EP) are reported

in percentage as EG% and EP%, respectively. The second
column reports the noise level in percentage. Results on the
original surfel-based models without noise are reported in
Table3. ScanPlane is a planar surface scanned with a 3D
Scanner Minolta VI-900.

presents the typical noise given by laser light-stripe triangu-
lation range-finders.

We compare the precision of our method with respect to
the HP method, by computing the errors EG and EP for both
methods. Table5 shows the result of our comparison. Fig-
ure8 shows the approximation of a geodesic path computed
with our method on three noisy surfaces, together with the
exact geodesic curve, and the initial path computed on the
SIG. Our method demonstrates a better robustness with re-
spect to noise than the HP method. With our method we have
obtained non-jagged paths very close to the exact geodesics.
However, on both noisy spheres our method has a EP er-
ror greater than the HP method even though its EG error is
smaller (Table5). The reason is that the HP method gener-
ated jagged paths closer to the exact geodesic curves than the
paths computed with our method, even though their lengths
were greater than the exact geodesics, and those of our paths.

The EP error of our method depends on the proximity of
the initial path to the exact geodesic. The quality of the ini-
tial paths in this sense can be slightly improved by increas-
ing the number of edges of the SIG through the parameter
k (see Section3.1). Other approaches can be used like the
fast marching method applied on a coarse 3D grid built in
an offset band of the point set surface, presented by Memoli
and Sapiro in [MS03].

5. Conclusions

We have presented a technique for computing piecewise lin-
ear approximations of geodesics on point set surfaces by
minimizing an energy function defined for piecewise linear
paths. The function considers path length, closeness to the
surface for the nodes of the piecewise linear path and for the
intermediate line segments. In order to avoid local minima,
our approach needs to start from a good initial approxima-
tion of a geodesic. We propose to compute this approxima-

tion as the shortest path between the geodesic endpoints on
an extended sphere-of-influence built over the point set.

A study of experimental convergence of our method has
been provided both on noisy surfaces and on surfaces with-
out noise. Our experiments show that our method is robust
with respect to noise and outliers. A comparison of our
method with the HP method [HP04] has been provided. In
general, on noisy surfaces our method proved to be more
precise and reliable than the HP method.

Although our technique has been designed for surfels, it
has been implemented also for MLS surfaces. The results
with MLS surfaces are similar to those with surfel-based sur-
faces. Optimizations of our method for MLS surfaces will be
considered in future work. However, our technique is general
in the sense that it can be applied to other surface representa-
tions, where the distance between a 3D point and the surface
can be estimated, e.g., triangle meshes, RBF surfaces, etc.

Our method is suitable to compute good approximations
of geodesics directly on noisy surfaces with outliers, i.e., the
typical output of 3D scanning systems. It also presents multi-
resolution features. In fact, it can be applied iteratively on
initial paths at different resolutions, in order to improve the
precision of the method and its execution time, especially
for long geodesics. However, the time complexity of our
method is still too high and hence not feasible for the com-
puting of large numbers of geodesics, especially on large
data sets. Future work will be oriented towards developing
the multi-resolution characteristics of our method by con-
sidering multi-resolution curves representations, e.g., curves
based on wavelets or hierarchical B-splines.
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(a) (b) (c)

Figure 7: (a) Result of our method on surfel-based models of unit spheres obtained from different subdivision levels using the
Loop’s scheme (3-(a), 4-(b), 5-(c)). Exact geodesic path computed analytically (green), Dijkstra’s shortest path computed on
the graph (light-blue), and geodesic path approximation computed with our method (dark-red).

(a) (b) (c)

Figure 8: Comparing the exact geodesic path (green) with the geodesic path approximation computed with our method (dark-
red), and the initial solution computed on the graph with Dijkstra’s algorithm (light-blue) on different noisy surfaces: a plane
(a) a sphere (b), and a cylinder (c).

(a) (b) (c)

Figure 9: (a) Approximations of geodesics computed with our method on surfel-based models: Max Planck [PSh] 52,809 surfels
(a); Buddha [QSp] 1,060,220 surfels (b); Zoom of Imperia [KNR] 546,137 surfels (c).
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