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Abstract. Voronoi diagrams are an important data structure in computer science.
However well studied mathematically, understanding such diagrams for different
metrics, orders, and site shapes is a complex task. We propose a new method to
visualize k-order diagrams and give an efficient adaptive implementation for this
method. The algorithm is easy to customize for different metrics and site shapes.
Its real-time performance makes it suitable for interactive planning and analysis of
complex Voronoi configurations in 2D. We illustrate the method for different com-
binations of metrics and site shapes.

1 Introduction

Voronoi diagrams are a fundamental data structure in computer science. Mostly used in
computational geometry, Voronoi diagrams have found their way in many application ar-
eas, such as computer graphics (collision detection, motion planning), optimization theory
(associative file searching, clustering, scheduling), and physics (crystal and cell growth
studies).

Voronoi diagrams based on Euclidean distance are the best known. Such diagrams par-
tition a 2D plane in regions such that all points within a region are closest to one site from
a given site set. Visualizing such diagrams is straightforwardly done by drawing the set
of disjoint, adjacent planar polygons that represent the diagram.

We present a new visualization method for two generalizations of the Voronoi dia-
grams. The first generalization regards k-order diagrams, which partition the plane in cells
such that all points in a given cell have the same k closest sites. Although many studies
cover the mathematics of k-order Voronoi diagrams [2, 1], getting an intuitive understand-
ing of such diagrams is a difficult task. Specifically, we would like to answer questions
such as ’which are the k sites that influence a given partition’ and ’which are all points
under the k-order influence of a given site’ in a simple, visual manner. The second gen-
eralization concerns using different metrics besides the Euclidean distance and different
site shapes besides points. Diagrams for higher orders, different site shapes and metrics
lead to complex shape-site relationships that require a more elaborate visualization than
a straightforward polygonal drawing.

In Section 2, we give a mathematical overview of Voronoi diagrams and outline the
difficulties inherent to their visualization. In Section 3, we introduce our method for vi-
sualizing generalized Voronoi diagrams and illustrate it with several examples. Section 4
presents an efficient implementation of the method. We conclude in Section 5 with future
research directions.
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2 Background

We begin with a description of the elementary properties of 2D Voronoi diagrams. More
on the mathematical aspects is available from several surveys [2, 4, 5].

Let P � p1 ��������� pn be a set of n distinct points in the plane, called sites, and d � p � q 	
the Euclidean distance between points p and q . The first order Voronoi diagram of P is
a subdivision of the plane in n cells, one for each site in P, such that a point q lies in the
cell of a site pi if and only if d � q � pi 	�
 d � q � p j 	 for all sites p j � P with j 
� i . The
cell boundaries lie thus on the perpendicular bisectors of the line segments pi p j (Fig. 1 a).
First order Voronoi diagrams are used, for example, to partition a city map into regions
(cells), given a set of fire station positions (sites), such that any city location is assigned
to the closest fire station.

a) b)

Fig. 1. Order-1 (a) and order-2 Voronoi diagram of a point set

A k-order Voronoi diagram subdivides the plane in cells such that all points in a cell
have the same ordered set of k closest sites from the site set P. In our example, a k-order
diagram would indicate which are the second, third, and k-th fire stations that serve a given
city location if the closest (first order) fire station is unavailable for some reason. Con-
versely, one can visualize the regions served by a given fire station when some neighbor-
ing stations fail to work. In an interactive city planning setup, one could add, delete, or
move the locations of the fire stations to optimize the area coverage and redundancy in
case of fire station failure.

However, visualizing k-order diagrams by simply drawing the involved cells produces
hardly readable drawings (Fig. 1 b). It is hard to tell from such a drawing which is the area
served by a fire station if other stations fail or, conversely, which are the k stations serving
a given city location. These questions could be answered by interactively selecting a site
and highlighting its influence region or, conversely, by highlighting all stations that serve
a given city location. However, such a method is not capable of producing an overview of
the influence of all fire stations on all city locations simultaneously.

A second generalization of the Voronoi diagrams involves the distance function used.
The L1 (Manhattan distance) metric d � p � q ����� x p � xq ����� yp � yq � is used to model
access times to strategic locations in a city where the streets form an orthogonal grid, or
the access time to given records in mass storage systems where the read/write head can
only move in orthogonal directions [3]. All edges in such a Voronoi diagram are vertical,



horizontal, or diagonal at 45 degree angles. Weighted Voronoi diagrams assign a weight�
i to each site pi and define the distance ��� q � pi 	 by adding or multiplying the Euclidean

distance with the weight � i . Additive weights were used by Johnson and Mehl [2, 4] to
model the growth of crystals from a given seed set. Multiplicative weights lead to the so-
called Apollonius model that describes the growth of plant cells, coverage areas of trees,
or areas of best received transmitters [6]. Finally, distances can be computed from other
site shapes than points, such as lines and curves.

So far, visualizing Voronoi diagrams for higher orders and/or different metrics has
been limited to drawing the cell boundaries, such as in Fig. 1. As mentioned, such draw-
ings communicate little or no insight in the k-level hierarchy of subregions generated by
the sites. In the following, we shall exploit other graphical dimensions, such as color and
shading, to communicate more insight into the complexity of Voronoi diagrams.

3 Shaded Voronoi Diagrams

Our basic idea is to use the natural ability of the human visual system to interpret shade and
color cues as boundaries of illuminated objects. We construct two types of such graphical
objects, i.e. cushions and bevels, as follows.

3.1 Cushions

Suppose first we have a first order Voronoi diagram. For each site pi ��� xi � yi 	 of the
diagram, consider a curved surface z � x � y 	 given by:

z � x � y 	�� h1

n
min
i � 1

[ � x � xi 	 2  � y � yi 	 2] � (1)

where h1 is a (usually negative) height scale factor. In other words, we build a parabolic
cushion under each site pi . To shade the cushion, we use a diffuse shading model. The
surface normal n is given by:

n � [ �"! z #$! x � �"! z #$! y � 1]

� [2h1 � xi � x 	 � 2h1 � yi � y 	 � 1] (2)

The final pixel intensity I is given by:

I � Ia
 Ilmax � 0 � n % l&

n
&'&
l
& 	 (3)

where Ia is the ambient light intensity and l and Il are the direction and the intensity of
a directional light source. This shading scheme (Fig. 2 a) is similar with the rectangular
treemap cushions described by Van Wijk et al [9]. The shading of the cushions gives a
visual cue for the distance of any point to the closest site, as any pixel is ultimately shaded
in function of the closest site pi .

For a k-order Voronoi diagram, we superimpose extra cushions on top of the k cush-
ions generated by the k closest sites p1 ��������� pk for every pixel, to visualize the higher order
structure. The center of the order-1 cushion is p1, the center of the order-2 cushion is be-
tween p1 and p2, and the center of the order-i cushion is ci � 1

i
i
1 pi . To emphasize the
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Fig. 2. Cushions (a,b) and cushions and bevels (c,d) visualization

cell nesting in the diagram, the height hi of the i th level cushion is scaled to hi � si ( 1h1,
where the scale factor s lies between 0 and 1. In this way, closer sites have a stronger ef-
fect on the cushions than farther ones. Figure 2 b shows the 2-order diagram rendering
for the same sites as in Fig. 2 a. To enhance the nesting effect, we assign a hue to every
site pi and color all cushions influenced by that site with that hue (see Appendix). If de-
sired, one could easily automate the assignment of hues to sites such that no two sites with
neighboring first order diagram cells have the same hue.

3.2 Bevels

The shading described so far emphasizes the discontinuities between the cells of a Voronoi
diagram as well as the nesting of higher order cells within the lower order ones. The shade
of a pixel gives a cue to its distance to the sites that influence it. Although better than
drawing cell contours only, shaded cushions still cannot indicate clearly the sites that in-
fluence a given pixel and the influence region of a given site. To emphasize these aspects,
we augment our visualization by drawing colored bevels along the cell edges. The basic
bevel idea is similar to the concept introduced by Bruls et al. for visualizing squarified
treemaps [10].

A bevel is defined here as a parabolic surface of given height hbe ) el and width � be ) el

whose medial axis follows the Voronoi cell boundaries. Just as cushions, bevels are scaled



to reflect the hierarchy level. For a bevel of level i we have:

�
be ) el i � t i ( 1 �

be ) el 0 and hbe ) el i � t i ( 1hbe ) el 0 (4)

where the bevel scaling factor t is between 0 and 1. Figures 2 c and d show the order-1
and order-2 bevels corresponding to the cushion diagrams in Figs. 2 a and b respectively.

While the bevel size depends on the order of the Voronoi cells that meet at that edge,
its color indicates the two sites that are at equal distance from that edge. For two sites pi

and p j , we color the two halves of the bevel equidistant to pi and p j with the hues of pi

and p j .
The size and color coding of bevels is a non-ambiguous, intuitive way to interpret a

k-order Voronoi diagram. To identify the k sites closest to a point p in the plane, we first
look at the cushion containing p (see Appendix). The cushion’s hue indicates the closest
site, i.e. the site that has the strongest influence on p. The cell edge’s bevels describe the
other (at most k � 1) sites influencing the cell as follows:

– the inner bevel hues identify the sites
– the bevel widths are proportional with the distances to the sites

Conversely, to identify the regions influenced by a given site pi , we first look at the
cell in which pi is found, i.e. the cell bearing pi ’s hue. This is the region to which pi is the
closest site. To identify the regions to which pi is the second,third,...k th closest site, we
look at the regions bordered by bevels of pi ’s hue of decreasing bevel width. These regions
are nested (order k  1 region contains order k region). Since the bevels of a region never
overlap with the ones of a region of different order of the same site, it is rather easy to
visually follow a bevel of a given width and color.

3.3 Interactive visualization

We have built an interactive application in which the user can control several aspects of the
Voronoi diagram visualization orthogonally. First, the diagram order k, saturation, hue,
height h, and scale factors s � t of both cushions and bevels can be chosen independently.
This allows viewing a k-order Voronoi diagram in a multitude of ways, e.g. cushions or
bevels only, or a gradual blend of the two, depending on the height and saturation factors.
An effective combination is for example displaying only the first order cushions with low
hue saturation and height values, together with the 1 to k order bevels with high hue and
height values. In this way, the background is split into a tiling of non distracting cushions,
whereas the bevels form the visualization foreground. A small bevel scale factor t * 0 � 4
produces an effective display of the diagram hierarchy: thicker bevels show the first order
cells whereas thinner bevels depict the higher order cells.

Secondly, one can interactively add, remove, or drag the sites with the mouse. This
gives a direct insight in the way the 2D plane is subjected to the influence of the sites
and assists the user effectively in finding an optimal site distribution to a given situation.
Problem-specific configurations are very easy to implement e.g. by constraining the sites
to stay within or outside prescribed areas on a city or geographical map, such as markets,
urban areas, lakes, forests, etc. Following this idea, we have constructed a user interface
for a musical synthesizer in which the sites represent musical instruments and the Voronoi
cells their influence areas (Fig. 4). To create a new sound, one drags a marker and/or the
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Fig. 3. Voronoi diagrams for different metrics

sites interactively on the Voronoi diagram. The sound is synthesized based on the marker-
instrument sites distances.

Thirdly, the distance metric and site shape can be specified by the user. Figure 3 shows
renderings for the multiplicative-weighted L2 (Apollonius model) metric (a), an order-2
diagram for line sites (b), the additive-weighted L2 (Johnson-Mehl model) metric (c), the
L1 (Manhattan distance) metric (d) (see also Appendix). In Fig. 5 a, a diagram defined by
a discrete distance metric on a hexagonal board is shown. The map and cushion rendering
are combined into a single image that shows the influence areas of several strategic sites
in a computer military simulation [11] (Fig. 5 b).

4 Algorithm

A brute force implementation of the diagram rendering would compute O � k N S 	 distances
for a k-order diagram rendering of N pixels and S sites. Dragging a site with the mouse
stops being interactive for N + 2002 pixels and S + 3 sites. However, we can exploit the
fact that all pixels of a given Voronoi cell share the same k closest sites. One idea would
be to compute the k-order Voronoi diagram geometrically, which is O � Slog3S  k � S � k 	,	
complex [1], and then to use it as a spatial search structure to locate the k closest sites for
each pixel. However, implementing a robust k-order analytic Voronoi diagram algorithm
for any distance metric is a very complex task.



Fig. 4. Voronoi diagram used as input interface for a musical synthesizer

We present a simpler, yet very efficient pixel-based rendering approach that accepts
different distance metrics and site shapes in a generic fashion for a k-order diagram.

grid size

a) b)

Fig. 5. a) Cushions for discrete distance metric b) Cushions layed over geographical map

4.1 Rendering first order diagrams

We use a recursive quadtree approach to reduce the number of sites considered per pixel.
The recursion termination is based on the following observation. Consider an axis-aligned
pixel rectangle to be shaded under the influence of two sites p1 and p2 (Fig. 6 b). Denote
the minima and maxima of the distances of the sites i to the rectangle by min � di 	 , max � di 	 .
If max � d2 	-
 min � d1 	 , then all pixels p in the rectangle are influenced only by the site
p2.



      ShadeRect(Rectangle r, Site sites[])
      {
1         for i in sites
2           compute min(d(i,r)) and max(d(i,r));
 
3         dlim := min(max(d(i,r))) for all i in sites;

4         if (s = {s1}) or (r is of 1 pixel size)
5               ShadeRectSingle(r,s1);
6         else if (s = {s1,s2}) 
7               ShadeRectDouble(r,s1,s2);
8        else   // s contains at least 3 sites
          {
9               split r in r1,r2,r3,r4;
10             ShadeRect(r1,sites);  ShadeRect(r2,sites);
11             ShadeRect(r3,sites);  ShadeRect(r4,sites);
          }
      }

p1

p2

p

min(d1)

max(d2)

bisector of 
p1p2

a) b)

Fig. 6. a) Recursive algorithm b) Algorithm principle

We start with the complete pixel rectangle to shade r and a list of all sites si tes. The re-
cursive algorithm (Fig. 6 a) proceeds as follows. First, we determine min � di 	 and max � di 	
for all sites i to the rectangle r (distance of site i to rectangle r is denoted as d(i,r) in
Fig 6 a). Next, sites j for which min � d j 	 + min � max � di 	,	 are discarded since they don’t
influence the rectangle, according to the previous observation. If one or two sites remain,
the rectangle is scan converted by the ShadeRectSingle, respectivelyShadeRect-
Double optimized routines, else the rectangle is split in four and processed recursively.
As a result, the recursion arrives at pixel level only near points that are at equal distances
from at least three sites. For S sites, there are less than 2S � 4 such points [5, 2]. Fig-
ure 7 a shows the subdivision for an order-1 diagram of 8 sites. To estimate the algorithm’s
complexity, assume S sites randomly distributed over an area of N pixels. Each of the
2S � 4 points where subdivision reaches pixel level influences thus N

S pixels on the aver-
age. On the other hand, a region of n pixels needs log2 . n steps to be subdivided until pixel
level. Therefore we need O � Slog2 . N # S 	 ShadeRectSingle andShadeRectDou-
ble calls to render the whole N pixels covered by S sites. These two routines use only
fixed-point (DDA-like) arithmetic for pixel-to-site distance computations. Lighting (3) is
accelerated via table lookup. For each discrete gray level Il/

n
/ /
l
/ , we store the correspond-

ing value of d2 in a table. As starting point for looking up shade as function of distance,
the gray level of the previous pixel is used. Overall, we achieve 16 frames per second in
software rendering for a 400x400 image with 20 sites on a Pentium II 350 MHz processor.

4.2 Rendering k-order diagrams, bevels, and different metrics

To render k-order diagrams, we modify the line 3 of the algorithm such that dlim is the
k th smallest max � d 	 instead of the first. To render bevels of a given image-size width � ,
we adapt the ShadeRectSingle and ShadeRectDouble routines to compute the
Euclidian distance from any pixel p to the closest Voronoi cell edge. This edge is found
by searching for the closest pixel q where f � q 	0� d � si � q 	1� d � s j � q 	2� 0, for any sites



si � s j . The search is implemented independently on the user-chosen Voronoi metric d by
following f ’s steepest descent (gradient) from the current pixel p.

An important result is that the subdivision algorithm is independent on the distance
metric and site shape. The only operations needed are the distance between a site and a
point and the minimum and maximum distances between a site and an axis-aligned rectan-
gle. Overall, rendering Voronoi diagrams with circular or hyperbolic cell edges (the Apol-
lonius, respectively Johnson-Mehl models) and diagrams for line sites (Fig. 3) is as fast
as rendering the L2 norm- and point-based diagrams.

a) b)

Fig. 7. Subdivision for order-1 (a) and order-2 (b) diagram rendering

For k + 1, rendering k-order diagrams is slower than for first-order diagrams, since we
haven’t implemented a k-order ShadeRectDouble procedure. Pixel-level subdivision
calling the ShadeRectSingle routine occurs now on all pixels along the cell edges.
Figure 7 b shows the subdivision for the 2-order diagram of the sites in Fig. 7 a. To estimate
the complexity, consider first an order-1 diagram of S sites spread over N pixels. In the
worst case, a site causes an edge of n � O � . N 	 pixels length. To subdivide such an
edge to pixel level, O � n 	 steps are needed. For S sites we perform thus at most O � S . N 	
ShadeRectSingle calls. An order-k diagram has a total edge length at most k times
larger than the order-1 diagram, so its rendering complexity is O � S . k N 	 , which is still
better than the O � k N S 	 brute-force approach. The method still performs in near real-time
for 2-order diagrams on the above metioned platform.

Other pixel-level Voronoi diagram algorithms exist. A similar algorithm presented by
Vleugels [7] uses a top-down rectangle subdivision based on the distances between the
rectangle corners and the sites. However, this algorithm proceeds till pixel level along
all Voronoi boundaries even for order-1 diagrams, and computes distances to all sites at
any subdivision level. The authors reported around 5 seconds per frame for configura-
tions similar to the ones we compute in real time. Other fast pixel-level algorithms use
OpenGL hardware to compute Voronoi diagrams by rendering polygonal approximations
of the distance functions [8]. Although impressive as performance, it is not clear how easy
is to extend such algorithms to arbitrary distance functions, k-order diagrams, and main-
tain pixel-level distance computing accuracy.



5 Discussion and Future Work

We have presented a new method to visualize k-order Voronoi diagrams generated by dif-
ferent metrics and site shapes. A simple graphical element - a shaded, colored parabolic
cushion - is used to visualize both edge and surface information. Spatial nesting is ex-
ploited in two different ways to depict the k levels of a k-order diagram in a single im-
age. This visualization answers two questions in a compact way, namely: ”which are the
k sites influencing any given point?” and ”which are the k hierarchical influence areas of
a given site?”. By varying the cushions’ hue, height, and saturation one can intuitively
emphasize the different aspects of the Voronoi diagrams. The above are best illustrated
by Appendix b, where the first two levels of a 3-order Voronoi diagram are rendered with
bevels whereas level 3 is rendered with cushions only. A new adaptive algorithm is pre-
sented for fast rendering Voronoi diagrams for different metrics and shape sites, allowing
interactive exploration of optimal site placement sites. Using different site shapes and dis-
tance metrics involves only implementing three simple point-to-site and rectangle-to-site
distance functions.

One limitation of the method is that renderings for S-site, k-order diagrams with higher
k and S values become quickly cluttered. This limitation is inherent to the many-to-many
relationship between points in the plane and sites. We plan to explore how rendering such
higly-dimensional relationships can be improved by using different shading models and
cushion profiles. Secondly, we plan to use this method for more complex site shapes than
lines, for visualizing several mathematical abstractions related to Voronoi diagrams such
as medial axes and skeletons [2].
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Fig. 8. Voronoi diagram renderings for Euclidian distance, order-1 and order-3 (a,b), multiplicative-
weighted distance, order-2 (c), and Manhattan (d) distance order-2, line sites order-2 (e), and hexag-
onal grid-based discrete distance (f)


