
Label space

Bijections between shapes

Linear mappings between a label space and probability distributions on shapes

Ways to visualize the label space:



Composing the maps

Label space

Bayes’ formula



Idea: Consider a learning-by-example approach.

Input: A collection of shapes and ground-truth correspondences between them. 
Corresponding points have the same label.

Learning the mapping

Output: For each test point, a probability distribution over the set of labels.



random forest

Each point is routed through the forest, and hence matched independently from the 
others (accounts for partiality).

Random forests: overview

Breiman 2001



Forest prediction for the given point

Random forests: inference

Assuming a forest has already been learnt, matching (inference) works as follows:

Breiman 2001



Pool of randomly generated 
split functions and thresholds

The tree structure is determined by defining test (split) functions and randomly generated 
real-valued thresholds.

Node creation:

Random forests: learning



After generating the pool, we keep the split function and the threshold that maximize the 
expected information gain:

before split after split

Split functions that work well for this problem are classical point descriptors. 

For instance, consider the Wave Kernel Signature (WKS):

,       where

Random forests: split functions

Aubry et al. 2011; Rodolà et al. 2014



We can represent the forest prediction by the left-stochastic matrix
and take as final correspondence the maximum-likelihood (ML) estimate:

Label space ML correspondence

Forest prediction



!

Ambiguities are generated by the global intrinsic symmetries of the object, which lead to 
equally good solutions.

Recall that the prediction process does not make full use of the metric structure of the 
manifold. This can be introduced in the form of a regularizer.

Regularization

Ensures closeness to 
forest prediction

Gives preference to geometrically 
consistent solutions



We formulate this regularization problem using the language of functional maps.

is linear.

Choice of a basis: • Indicator (delta) functions on M and N

• Harmonic bases

Functions are well approximated when truncating the basis.

Functional maps

Ovsjanikov et al. 2012



The random forest gives us a left-stochastic fuzzy correspondence , expressed in the 
standard basis. The associated functional map is obtained by the change of basis:

The regularization problem becomes:

Functional representation of forest prediction

Rodolà et al. 2014



The random forest gives us a left-stochastic fuzzy correspondence , expressed in the 
standard basis. The associated functional map is obtained by the change of basis:

Functional representation of forest prediction

Rodolà et al. 2014

Note: The (truncated) change of basis already has a regularizing effect!

In particular, the projection followed by reconstruction can be seen as a low-pass 
filtering of the predicted correspondence:



?

The matching process gives us two forest 
predictions defined by:

Using the law of total probability, we can compute the fuzzy correspondence:

big and dense!

sparse

We shift again to a functional map representation:

Parentheses are crucial as we 
avoid computing

Composing predictions

sparse



If the intrinsic symmetry is known, we can impose 
preservation of the symmetry operator:

associates with every function                          
another function                , where                             is 
some symmetry on M.

In general we cannot assume the symmetry to be known.

In the near-isometric case, however, we can require preservation of the Laplacian:

Regularization: commutativity



Suppose we are given a sparse collection of matches

Then for each                       we can define two distance maps:

And thus we can penalize the metric 
distortion by the regularity term:

where                           and                   

Regularization: sparse matches



We arrive at the simple least-squares problem:

metric distortioncloseness to forest 
prediction

preservation of 
LB operator

A regular cat



Size of the training set

#labels: 10-50K
#shapes: 5-10

We need just few examples (small training sets!). This is 
because each shape has thousands of vertices with known 
correspondence.



Learning general transformations

Rodolà et al. 2014



Performance: near-isometric shapes

Rodolà et al. 2014



Performance: missing parts (SHREC’16)

Cosmo, Rodolà, Bronstein, Torsello et al. 2016



Performance: topological noise (SHREC’16)

Lähner, Rodolà, Bronstein, Cremers et al. 2016



• Replace WKS by other descriptors or even mixtures to better capture the variability 
of deformations

• Introduce structural information to reduce ambiguities (e.g., learn by patches rather 
than points)

• Learn pairwise rather than pointwise invariants

Summary

Random forests do a great job at classifying points, and hence work well in 
correspondence problems. A few extensions one could play with:

Some big challenges:

• Ground-truth matches are needed. Difficult to obtain for non-isometric shapes!
• Learn properties of the map, e.g. continuity, orientation, injectivity


