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Figure 1: An example of the mesh transfer provided by the CMH pipeline. From left to right: the shape with the desired geometry, the desired
mesh connectivity, the mesh transferred through the proposed method providing the desired connectivity on the desired geometry.

Abstract
In digital world reconstruction, 2-dimensional surface of real objects are often obtained as polygonal meshes after an acquisi-
tion procedure using 3D sensors. However, such representation requires several manual efforts from highly experts to correct
the irregularity of tessellation and make it suitable for professional applications, such as those in the gaming or movie in-
dustry. Moreover, for modelling and animation purposes it is often required that the same connectivity is shared among two
or more different shapes. In this paper we propose a new method that exploits a remeshing-by-matching approach where the
observed noisy shape inherits a regular tessellation from a target shape which already satisfies the professional constraints. A
fully automatic pipeline is introduced based on a variation of the functional mapping framework. In particular, a new set of
basis functions, namely the Coordinates Manifold Harmonics (CMH), is properly designed for this tessellation transfer task.
In our experiments an exhaustive quantitative and quality evaluation is reported for human body shapes in T-pose where the
effectiveness of the proposed functional remeshing is clearly shown in comparison with other methods.

CCS Concepts
• Mathematics of computing → Functional analysis; • Computing methodologies → Shape analysis; • Theory of compu-
tation → Computational geometry;

1. Introduction

The research on effective virtual representation of real objects and
scenes is one of the main topic in modern computer graphics. The
attention on this task has greatly grown in the last decades due to

† Equal Contribution

the rapid improvement and versatility of the available devices for
the acquisition of geometric information from the real world. In this
context, the most preferred data representation consists of polygo-
nal meshes where the quality of mesh tessellation is very important
for modelling and animation purposes. For instance the density of
polygons must be higher in the surface areas with more geometric
details such as around the mouth of the eyes of a human face. Fur-
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thermore, the orientation of the polygon edges must be properly
defined to improve the animation of articulated objects. Unfortu-
nately, the meshes obtained from 3D scans are highly irregular and
require a lot of manual efforts to be used by professional artists.
Automatic remeshing methods alleviate this issue but the perfor-
mance of these approaches are still not sufficient. Moreover, it is
often required that a tessellation is coherent among a set of differ-
ent shapes. Some works for co-tessellation between pairs of objects
have been recently proposed but their performance is limited and no
one has become a consolidated standard.

In this paper we propose a new fully automatic method for ob-
ject tessellation using a remeshing-by-matching approach where a
regular mesh of a target shape is transferred to the surface of the
observed shape. The overall idea is depicted in Figure 1. The ob-
served object (left) is represented with a highly irregular triangular
mesh (e.g., the density of triangles are not coherent between the left
and right side of the human body and the areas with more triangles
are randomly distributed). The target object (center) is encoded by
a regular mesh that satisfies the request of a technical artist (e.g., the
tessellation is fully symmetric and the density of triangles is more
concentrated around the surface details). Finally, the output of our
remeshing (right) is the source shape with the target tessellation. In
this fashion we keep the underlying geometry from the observed
(i.e., irregular) object and inherit the surface sampling and vertex
connectivity from the target (i.e., regular) shape. To this aim, we
need an accurate and procedure for point-to-surface matching. Our
approach focuses on the functional shape matching framework that
is independent from rigid transformations of the 3D space and ro-
bust to the surface discretization. In particular, we propose a new set
of orthonormal functions that we call Coordinates Manifold Har-
monics (CMH) properly designed to make the functional map esti-
mation more efficient and reliable for mesh transfer. We emphasize
here that we are not looking for an optimal set of basis function
with respect to some energy, instead we are proposing an intuitive
method that is able to inject the extrinsic information in an intrin-
sic pipeline. Moreover, we exploit the as rigid as possible (ARAP)
constraint to further refine the regular properties of the output.

2. Related works

In this Section we briefly introduce the existing methods that are
more closely related with our work: i) shape matching by functional
map, and ii) surface remeshing.

The functional maps framework was firstly proposed by Ovs-
janikov et al. in [OBCS∗12] and represents the state of the art for
shape matching. The peculiarity of this method is to revise the es-
timation of correspondences in the functional space exploiting the
effectiveness of spectral shape analysis. The main positive prop-
erties of functional maps are the compactness, the computation
efficiency and their ability to transfer information among shapes.
More recently, several advances have been introduce to improve the
functional maps computation [NMR∗18, EBC17] and functional
spaces representation [MRCB18, NO17]. [NMR∗18] presents an
extension of functional maps framework, considering the problem
of pointwise product preservation. [EBC17] includes methods for
functional maps denoising and deblurring. Some alternatives to
the Laplace-Beltrami basis was proposed in [MRCB18] to provide

a theoretical foundation of the Hamiltonian Operator [CSBK16]
for different shape analysis tasks, in [NO17] to improve the map
quality by function products preservation, and in [AK17] to de-
fine geometry regularization for the PCA basis. Interestingly, func-
tional maps have been exploited for tangent vector fields map-
ping [ABCCO13] to generate a consistent quadrangulation among
pair of shapes [ACBCO17]. Our work is strongly related to this co-
tesellation method. We differ from [ACBCO17] since we propose
a different functional map strategy and we have a full control of the
output mesh.

The literature on surface re-meshing spans decades, and is ex-
tremely vast and a categorization is beyond scope of this work. A
mesh is often required to be highly regular, featuring only few ir-
regular vertices (“semi-regular” remeshing), or, more rarely, none
at all: “fully regular” remeshing. The final resolution is preferred
to be adaptive, devoting more vertices in more geometrically com-
plex or more semantically important areas. Edge orientation and
position is also important. Reproducing creases of surface as edges
in the mesh is crucial for geometrical fidelity, in CAD models.
More in general, edge must be oriented according to curvature di-
rections or to arbitrary prescribed directions (also interactively so,
e.g. [JTPSH15]). For animated meshes (e.g. skinned meshes, or
blend shapes), edge orientation must adhere the intended deforma-
tions [MPP∗13]. The re-meshing problem can be approached from
drastically different angles, such as: interactively connecting an ex-
isting vertices of a point cloud with new triangles [BMR∗99], by
parametrizing the surface and then defining a regular tri or quad
grid in the parametric space [BZK09], or by coarsening the orig-
nial mesh and then regularly subdividing the resulting low-poly
mesh [PTC10], just to mention a few. Another class of solutions,
example based re-meshing, learns remeshing configuration from
existing manually designed examples. This is reminiscent to our
own approach in that good examples, e.g. meshes edited by artists,
are leveraged to help the construction of new meshes [MTP∗15].
In summary, in spite of a long history of advancement and break-
through, surface remeshing is still an unsolved problem: manually
designed meshes, constructed by trained digital artists, are still un-
matched in terms of quality. For this reason, in the industry, the task
of remeshing a given surface (e.g. a range scanned one), which is
often termed “re-topology” in this context, is typically performed
manually or semi-manually by trained digital artists.

3. Background

Main objects of this paper are the 2-dimensional surfaces embed-
ded in R3. We represent this surface as a compact and connected
smooth 2-dimensional Riemannian manifoldM⊂ R3, eventually
with a boundary ∂M. A real-valued function f on M is a map-
ping from every point x ∈M to R that associates at every point a
real value. For brevity we avoid defining all the differential geom-
etry theory that is needed to fully understand how to equip these
surfaces of a “Fourier-like” basis for the representation of the func-
tions defined onM.

From differential geometry we obtain the definition of the
Laplace Beltrami Operator (LBO) onM. The LBO corresponds to
the natural extension of the Laplacian Operator to non-Euclidean
domains (the Laplacian is defined as the sum of second partial

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

64



R. Marin, S. Melzi, P. Musoni, F. Bardon, , M. Tarini, U. Castellani / CMH: Coordinates Manifold Harmonics for Functional Remeshing

derivatives of the function in each variable in Euclidean domains.)
Since the LBO is a positive semidefinite operator ∆∆∆M : L2(M)→
L2(M), it has eigendecomposition ∆∆∆Mφφφl = λlφφφl , where ΦΦΦ =
φφφ1,φφφ2, . . . are its eigenfunctions, ΛΛΛ = λ1 ≤ λ2 ≤ . . . are the cor-
responding eigenvalues and all these eigenvalues are real. The set
of LBO eigenfunctions ΦΦΦ forms an orthonormal basis for L2(M),
the space of square-integrable functions defined onM. Functions
in ΦΦΦ are usually referred to as Manifold Harmonics (MH) and can
be seen as the Fourier basis onM. The standard choice for a basis
of L2(M) corresponds to the set of eigenfunctions corresponding
to the smallest eigenvalues of the LBO. In the discrete setting we
representM as a triangular mesh (V,E), where V is the set of its
nM vertices and E is the list of its edges. The LBO is this setting
is represented by a matrix of dimension nM × nM. This matrix
is defined as ∆∆∆M = (AAAM)−1WWWM, where AAAM is the mass matrix
and WWWM is the stiffness matrix. The mass matrix is a diagonal ma-
trix whose entries are equal to the area element associated to each
vertex. The stiffness matrix represents the local geometry. We de-
fine the stiffness matrix through the cotangent scheme, we refer
to [PP93] for further details.

Functional Maps. Consider two shapes N and M, and let ΠΠΠ :
N →M be a pointwise map between them. Classical shape match-
ing approaches try to identify directly the point-to-point corre-
spondences (i.e., solve for the map ΠΠΠ). The functional maps ap-
proach [OBCS∗12] solve first for a functional correspondence and
then extract a point-to-point correspondence from the functional
one. First of all functional maps considers a linear operator T :
L2(M)→ L2(N ) mapping functions defined onM to functions on
N , defined as the composition T ( fff ) = fff ◦ΠΠΠ, ∀ fff ∈ L2(M). Given
a pair of basis ΦΦΦ = {φφφi} and ΨΨΨ = {ψψψ j} respectively for L2(M)

and L2(N ) The operator T can be compactly represented as matrix
CCC = (chl), where the coefficients chl are defined according to:

T ( fff ) = T ∑
i
〈 fff ,φφφl〉Mφφφl = ∑

lh
〈 fff ,φφφl〉M 〈T φφφl ,ψψψh〉N︸ ︷︷ ︸

chl

ψψψh. (1)

As said before usually the adopted basis are the eigenfunctions of
the the LBO. As suggested in [OBCS∗12], the series (1) can be
truncated after the first kM and kN coefficients, yielding a low-
pass approximation (in the Fourier sense) of the underlying map
ΠΠΠ. Estimating a low-rank functional map in the Fourier basis thus
boils down to solving for a matrix CCC ∈ RkN×kM , as opposed to
the classical full correspondence (and usually binary) matrix Π ∈
RnM×nN (nM and nN are the number of vertices in the discrete
setting respectively ofM and N ), where typically kM and kN �
n. More details about functional maps can be found in [OCB∗16].

4. Method

In this Section we outline the proposed method. Given a triangular
mesh S = (V,E), our main goal is to automatically transfer the
connectivity of S on the geometry represented by a new shapeM.

Motivations. The functional map framework introduced in 3 is a
clever and efficient approach for solving the point-to-point match-
ing. It is completely independent from the shapes representation
and its performance are unrelated by the number of points that are

original
geometry

representation
with 106 MH

representation
with 53 CMH

Figure 2: Comparison between the geometry representation pro-
vided by 106 standard MH and the proposed 53 CMH. From left to
right: the original shape, the low-pass representation provided by
106 MH and our geometry representation.

sampled on the surface. However, it suffers from a strong limita-
tion. The functional map CCC is estimated through the minimization
problem in Equation 1, where the number of unknowns are exactly
kSkM. These numbers also define the frequencies that are involved
in the mapping, in other words the larger are kS and kM the wider
is the low-band filter that is applied on the functions representation.
This relation generates a trade-off for the functional maps frame-
works: to allow the framework to represent the higher frequencies
correctly a more complex optimization problem should be solved
(and viceversa). In literature, the standard choices for kS and kM
are 30,60,100 while 200 or 300 are already considered too much
large values. On the other hand, as can be seen in the center of
Figure 2, with kS = 106 the representation of the geometry is very
poor and many details are lost. This lack of quality motivates our
definition of the CMH basis. Our models are able to represent the
geometry of the given shapes just by adding three functions to a
fixed set of standard manifold harmonics. An example of the rep-
resentation provided by CMH is depicted on the right of Figure 2.
As we will show in the Section 5 adopting the CMH instead of
the standard MH we are able to improve the representation of high
frequency details adding only few more variables in the optimiza-
tion problem of Equation 1. The only weakness of CMH is their
dependence to the extrinsic information; this limits our approach to
shapes with the same (or very similar) poses. In [AK17] a geometry
based regularization of the PCA basis has been proposed in order
to improve the representation of the extrinsic coordinate functions.
Nevertheless, similarly to our approach, these regularized PCA try
to merge the intrinsic and the extrinsic representation of a mesh,
they are based on the statistical analysis of a collection of data and
can not be applied on a single mesh as done by our method.

Our proposed method is composed by the following 6 steps.

CMH: coordinates Manifold Harmonics (step1). Given a shape
M and the set of its first kM LBO eigenvectors ΦΦΦkM =
[φφφ1, . . . ,φφφkM ]. The coordinates Manifold Harmonics (CMH) are a
set of kM + 3 orthonormal functions composed by the kM first
eigenfunctions of the LBO plus three new functions. We denote
these three new functions with {φφφx,φφφy,φφφz}. We firstly introduce
φφφx, then φφφy and φφφz are defined accordingly. Let XXXM be the x-

coordinates of the vertices ofM. We compute X̃XXM as the low-pass
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Figure 3: CMH construction. With respect to the 3D embedding we compute the difference in each coordinate between the original geometry
and its low pass representation provided by the first MH (in our case 50 MH). On the right we visualize the three difference functions, each
of which will generate a CMH function. Positive values are represented in red, negatives in blue and 0 in white.

filter representation of XXXM provided by ΦΦΦkM :

X̃XXM = ΦΦΦkMΦΦΦ
>
kMAAAMXXXM, (2)

where AAAM is the mass matrix of M. The representation error of
XXXM is then defined as:

ΣΣΣ = X̃XXM−XXXM. (3)

The function φφφx is defined as the orthogonal projection of ΣΣΣ to the
space spanned by ΦΦΦkM :

φφφx = ΣΣΣ−
(

ΦΦΦkMΦΦΦ
>
kMAAAMΣΣΣ

)
. (4)

Finally we normalize φφφx:

φφφx =
φφφx

‖φφφx‖M
, (5)

where ‖φφφx‖M =
√
〈φφφx,φφφx〉M =

√
φφφ
>
x AAAMφφφx. Now φφφx is a func-

tion with norm equal to 1 that is orthogonal to ΦΦΦkM . Adding φφφx
to ΦΦΦkM we update the set of orthonormal function as ΦΦΦ

x
kM =

[φφφ1, . . . ,φφφkM ,φφφx]. Then we can compute φφφy substituting XXXM with
YYYM and ΦΦΦkM with ΦΦΦ

x
kM and applying all the steps in Equations

2, 3, 4 and 5. The same is done for φφφ
M
Z substituting YYYM with

ZZZM and ΦΦΦ
x
kM with ΦΦΦ

x,y
kM = [φφφ1, . . . ,φφφkM ,φφφx,φφφy]. The final set of

orthonormal function, namely the Coordinates Manifold Harmon-
ics (CMH) on M is given by ΦΦΦ

x,y,z
kM = [φφφ1, . . . ,φφφkM ,φφφx,φφφy,φφφz]. It

is worth noting that these new functions φφφx,φφφy, and φφφz encode, by
definition, the essential extrinsic information to fully reconstruct
the original shape (see Figure 2). In this fashion our CMH exploits
the possibility to integrate intrinsic and extrinsic geometry of the
surfaceM within the same spectral analysis framework. In Figure
4 we visualize an example of the CMH computed on two shapes.

Functional Map Estimation (step 2). Once the CMH basis are
computed forM and S ΦΦΦ

x,y,z
kM and ΨΨΨ

x,y,z
kS respectively, we need to

estimate a functional map CCC betweenM and S represented in these
basis (CCC ∈ R(kS+3)×(kM+3)). Given two sets of probe functions
F= [ fff (1), . . . , fff (q)] onM and G= [ggg(1), . . . ,ggg(q)] on S, where fff (p)

and ggg(p) are correspondent functions defined respectively on M
and S, ∀p ∈ {1, . . . ,q}. We rely over the recent formulation pro-
posed in [NO17], that requires to solve the following non-convex

φφφx φφφy φφφz

ψψψx ψψψy ψψψz

+

−

Figure 4: CMH computed on two different shapes (a female shape
from TOSCA [BBK08] and SMPL model [LMR∗15]). As can be
seen the order of the CMH is not shared by the two shapes. This is
due to a different embedding in the 3D shapes, in other words the
two shapes are not aligned and differ for a rigid transformation.

optimization problem:

min
CCC

∑
p
‖CCCX̂(p)− Ŷ(p)CCC‖2

F + γ1‖CCCF̂− Ĝ‖2
F + γ2‖CΛΛΛM−ΛΛΛSCCC‖2

F .

(6)

Equation 6 contains several characters:

• ΛΛΛM and ΛΛΛS are the diagonal matrices of the Laplacian eigen-
values associated with the basis functions.
• F̂ and Ĝ are matrices containing the Fourier coefficients in the

CMH basis of the given q probe functions placed side by side as
columns of the matrices.
• X̂(p) and Ŷ(p) are the commuting matrices, each associated to

one of the two correspondent probe functions ( f (p),g(p)) repre-
sented in the reduced basis.
• γ1 and γ2 are empirical weights for energies.
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map on 50 MH map on 53 CMH φφφx φφφy φφφz

ψψψx

ψψψy

ψψψz
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Figure 5: A comparison between functional maps. From left to
right: the maps computed for the first 50 eigenfunctions, the map
computed for the proposed CMH, a detail of the coefficients that
represent how the 3 new basis are mapped from one shape to the
other. This maps are estimated for the pair visualized in Figure
4. As can be seen the map computed on the CMH solves for the
switches of the CMH functions. Red encodes values close to 1, blue
close to −1 while white is equal to 0.

For all our experiments we set γ1 = 0.1 and γ2 = 0.001.
The selection of probe functions is fundamental since it leads the
energy and the optimization. In particular the selected functions
should describe well global and local geometry of the surfaces. It
is desirable that they are stable with respect to the deformations
(both isometric and non-isometric). The problem still open and sev-
eral solutions has been proposed. Descriptors (e.g. HKS [SOG09]
[GBAL09] and WKS [ASC11]) are widely adopted in this context.
Another standard choice involves the use of landmarks, usually dif-
fused by some propagation techniques (e.g. heat diffusion). Usually
these landmarks require supervised selection, but for human body
they can be automatically selected through the method proposed
in [MMRC18] based on the discrete time evolution process theory
introduced in [MOR∗18]. We use these landmarks and WKS de-
scriptors for all our experiments. An example is depicted in Figure
5, that shows the map estimated using the CMH compared to the
standard functional map.

Point mapping and first mesh generation (step 3). Given the
functional map CCC, as stated in [OBCS∗12] we convert it in a point-
to-point map ΠΠΠ : S →M solving ∀s ∈ S the following nearest
neighbor assignment in the spectral domain:

ΠΠΠ(s) = argmin
m∈M

‖CCCΦΦΦ
x,y,z
kM (m)−ΨΨΨ

x,y,z
kS (s)‖F (7)

Hands refinement through local correspondence (step 4). Once
we have the correspondence ΠΠΠ, we would refine this correspon-
dence in local regions that correspond to the hands, denoted as
H(S), where usually the error is large. As done in [MMRC18], we
define a local geodesic ball around hands and then we register them
using Coherent Point Drift (CPD) approach proposed in [MS10]
which returns a local correspondence on the hands ΠΠΠcpd . Merging
global and local correspondences we obtain ΠΠΠ f inal , the correspon-
dence defined as:

ΠΠΠ f inal(x) =

{
Πcpd(x) x ∈ H(S)
Π(x) otherwise

(8)

We use this correspondence to transfer the mesh. Note there is no

guarantees that meshes have the same number of vertices. Further-
more, a vertex-to-vertex correspondence is a really constrained so-
lution, and can lead to undesired collapsing, flipping and others
artifacts.
For this reason we would provide to our pipeline the possibility to
generate solutions different from the vertex-to-vertex ones. From
now on we adopt the following notation

• S: the shape with the desired connectivity.
• M: the shape that represent the geometry we want to fit.
• MS : the shape with the geometry ofM and the connectivity of
S.

ARAP for connectivity consistency (step 5). In this step we
switch from the functional domain to the euclidean one. We regu-
larize the transferred connectivity in an as-rigid-as-possible formu-
lation as proposed in [CPSS10]. Considering the following energy:

Earap =
1
4 ∑

ei j∈E
cotαi j|qi j−Rpi j|2 (9)

where pi j = i− j, qi j is the value of pi j in the new configuration
and Ri j is the rotation that best approximates the transformation
occurred between the two configurations. In [CPSS10] the authors
provide a gradient derivation for the energy 9. This energy mea-
sures how far we are from a rigid transformation and encourage the
vertices neighborhoods to find an elastic equilibrium. In our case,
we decide to apply this energy between the mesh S and the new
vertices positions obtained fromMS .
This approach has two main advantages: firstly, as-rigid-as possible
approach fosters local rigidity and help to solve inconsistent situa-
tions derived from vertices transfer. Secondly, it can be efficiently
optimized by gradient techniques. The optimization tends to fall in
a local minimum without ruins the global correspondence achieved
before.
Finally, note that for now we are not requiring to fit the geometry of
M. In some cases it is reasonable, because changing the connectiv-
ity of a model means also a different discretization of the underly-
ing geometry. On the other hand, some local undesired deformation
from original geometry could appear.

ARAP for geometry fitting (step 6). The geometry that we ob-
tain should be close to the one we desire, but some artifacts can
still arise: they may be caused by pose misalignment between two
models (e.g. difference in the neutral pose between two subjects),
noise in correspondence and also by stitching the ΠΠΠ with ΠΠΠcpd . All
these issues are transformed in a coherent continuous surface by
previous ARAP step and we do not expect huge artifacts (e.g. in-
tersections, triangles flipping). In the worst cases, the surface has
been collapsed in some points and need to be inflated, or the ARAP
regularization of connectivity has sensibly modified local details of
geometry.
For these reasons, we perform a final local registration:

Ereg = waEarap +wdEdato (10)

where Earap is defined as in Equation 9 (we still require the coher-
ence with the original mesh). Edato is defined as:

Edato = ∑
i∈VMS

min
x∈M

||i− x||2 (11)
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Geometry Connectivity Geometry + Connectivity

Figure 6: Qualitative results on the transfer of SMPL model con-
nectivity to david0 geometry from TOSCA dataset.

where x is a point on the surface of M. This energy can be read
as a vertex-to-surface distance and is important to approximate the
geometry of M. The weights wa and wd are chosen empirically;
in our experiments we found that 0.3 and 1 respectively provide
a stable setup. We optimize Ereg using a gradient technique. The
optimal solution leads to the final MS ; a model that shares the
connectivity of S and approximates the geometry ofM.

5. Results

In this Section we evaluate our method through several experiments
and applications.

Data. Here we briefly list the data involved in our experiments.
SMPL model [LMR∗15] is a widely used parametric model of
human body represented as triangular mesh with 6890 vertices.
With this model we are able to generate several different human
shapes that share a common pose and connectivity; we will re-
fer to these shapes as SMPL dataset. FAUST [BRLB14] is a
dataset that shares the same connectivity of SMPL. It is composed
of 100 shapes from 10 different subjects in the same 10 different
poses. For all these shape the ground truth correspondence is pro-
vided. TOSCA [BBK08] a synthetic dataset that contains different
classes including 3 human shapes (2 male and 1 female). All the
shapes in the same class share the same connectivity. MakeHu-
mans [BRM08] is an open source software for human body genera-
tion. Varying the parameters it is possible to obtain different shapes
and details of the human shapes. We refer to shapes generated by
this tool as MakeHumans.

Connectivity transfer. We perform several qualitative and quan-
titative connectivity transfer experiments involving pairs with het-
erogeneous characteristics. Some qualitative results can be seen in
Figures 1, 6, 7, and 9

The qualitative example in Figure 7, for the transfer of the SMPL
model connectivity to a shape from the SMPL 3K dataset, shows
that Our method provides a high quality connectivity transfer also
for a low resolution mesh with a non-standard pose.

Comparison with other methods. The proposed pipeline provides
a valuable improvement, and we show a quantitative comparison
with other possible baselines. As competitors we consider:

MH: it corresponds to our pipeline applied on a standard func-
tional map of size 53× 53 defined on the manifold harmonics.

Geometry Connectivity Geometry + Connectivity

Figure 7: Connectivity transfer example for a non-standard pose
from SMPL model to a shape from SMPL 3K dataset.

This is a reasonable competitor because is immediate, fast and
relies on our same assumptions.

LMH: as above, it is our pipeline applied on a functional map of
size 53×53 defined on the 50 standard manifold harmonics, plus
3 localized manifold harmonics defined as in [MRCB18]. This
is more sophisticated than the previous bullet, and addresses di-
rectly the representation of the shape in a local sense.

D&D: We apply the refinement proposed in [EBC17] to a func-
tional map of size 53×53. The refinement produces a correspon-
dence that can lie inside the faces, and then these points are used
as vertices of the new mesh. Nowadays this represents the state
of the art in the vertex-to-point mapping relying on functional
map theory. We found interesting to compare it to our method,
because our use of ARAP produces similar freedom in the ver-
tices placement.

All the functional maps used in these experiments are estimated
through the method proposed in [NO17] using the same probe func-
tions and landmarks. The results depicted in Figure 8 show that the
proposed CMH are better suited for this task with respect to both
MH and LMH. Furthermore our pipeline applied on all the three
bases provides results that outperform the state of the art refine-
ment methods.

Attributes transfer in graphic pipeline. In modelling and anima-
tion frameworks it is often required to effectively transfer model
attributes such as textures or skinning properties among differ-
ent shapes. To this aim, one of the most used morphable model
is SMPL, a data-driven model, equipped with a great amount of
ready-to-use properties such as animation information. However, it
is not provided of a texture, and also its resolution is limited by its
vertices (i.e., 6890). On the other side replicate the learning phase
is expensive and complicated. To overcome these limits, we applied
our pipeline to the standard T-posed SMPL template, to substitute it
with a more graphical appealing one, obtained by Autodesk Char-
acter’s Generator. This let us to transfer a texture and to increase
the number of vertices improving the resolution. In the same time
by keeping the original SMPL geometry we can transfer the ready-
to-use properties learned for SMPL and apply them to the new con-
nectivity. We apply nearest-neighbor between the two aligned sur-
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Figure 8: Comparison on the SMPL dataset. The results are on
average on 10 shapes remesh with the SMPL connectivity. Solid
lines represent results on 10K vertices shapes, dashed lines results
on meshes with 6K vertices and dotted ones on meshes with 3K
vertices.

faces to transfer the animation information. The obtained results
are exciting, and we are able to generate more zombie-like models
as illustrated in Figure 10.

6. Conclusions

In this paper we propose a new approach for surface remeshing
based on a fully automatic shape matching strategy. We have shown
that with our method is possible to obtain a very regular mesh that
satisfies the constraints for a professional use starting from the ge-
ometry observed on a given human-shape and inheriting the correct
tessellation from another subject with similar pose. Our main con-
tribution is the definition of a new set of basis functions, namely the
coordinates manifold harmonics (CMH) that are properly designed
to improve the functional correspondence and to exploit the effec-
tiveness of merging intrinsic and extrinsic information within the
same spectral matching framework. Our exhaustive experimental
section has reported the improvement of our method in transfering
the desired connectivity on previously unseen geometry for diffe-
rent applicative domains in comparison with other approaches.

The main limitation of our method is that we need to match the
input shape with a target subject with the same pose. Although in
this paper we focused only on human body shapes our method, and
in particular our CMH formulation, can be easily extended to work
on different classes of shape. Furthermore, the proposed pipeline
can be also exploited for the point-to-point matching application,
directly computing the Euclidean nearest neighbour of each point
between the original vertices that represent the geometry and the
vertices of the transferred connectivity. In this paper we focus on
the mesh transfer application but we leave the point-to-point match-

ing application as future direction. Finally thanks to the flexibility
of the functional maps framework as future work we aim to adopt
the CMH tool in the case of topological error or for partial shapes
through the partial functional maps framework [RCB∗17].
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Figure 9: An example of texture transfer between models. From the left: a regular connectivity, a defined texture and an irregular geometry
we desire to texturize. On the right the result. We would like to underlie that transferring good connectivity let the geometry to inherit some
desirable properties (e.g. face and feet details).
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Figure 10: The model substitution experiment. From left to right: the SMPL model that provide the geometry, an Autodesk’s Character
Generator model (around 10K vertices) that provides the connectivity and the texture; the result of our transfer and some model generated
by including our output inside SMPL framework. We are able to automatic substitute the SMPL template with an arbitrary one, generating
many texturized and shaped models, and move them using inherited skinning information.
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