
BlenderCAVE: Easy VR Authoring for Multi-Screen Displays

Jorge Gascón José M. Bayona José M. Espadero and Miguel A. Otaduy

URJC Madrid, Spain

http://www.gmrv.es/~jgascon/BlenderCave/index.html

ABSTRACT

BlenderCave is a framework for the fast creation of virtual reality applications for multi-screen display systems.
It consists of a set of extensions to the open-source Blender Game Engine (BGE), leveraging the scene creation and
real-time rendering capabilities of BGE, and augmenting them with easy-to-setup support for CAVE or Powerwall-type
displays. The framework is implemented in a distributed manner, and it contains a virtual camera setup to control the
display output, and a lightweight network communication protocol to manage events and synchronize the application
state. We demonstrate that, with BlenderCAVE, 3D applications can easily be written in Blender and displayed on
multi-screen displays.

1. Introduction

Today, virtual reality (VR) is present in many and very di-
verse application domains. VR developers are expected to
have expertise not only in computer graphics (CG), but also
in the problem domain and in the development of sophis-
ticated software systems. Such systems may require han-
dling multiple processes, message passing, dynamic mem-
ory management, and a variety of process synchronization
techniques. But, due to the hardware aspects of VR, develop-
ers may also be concerned with low-level issues such as de-
vice drivers for particular I/O devices or techniques to gen-
erate multiple stereoscopic views. In addition, VR applica-
tions involve an artistic component, specially in order to im-
prove the realism and immersion of the virtual worlds gen-
erated. Therefore, they also need the contribution of artists
who model, texture and animate virtual characters and ob-
jects. To ease the job of VR developers, it is desirable to
integrate content creation tools, CG engines, and hardware
abstraction layers that make the development independent
of specific I/O devices, and also allow preliminary testing
on devices different than the ones of the final product.

The needs of VR developers have already been answered
to a large extent by existing tools. Multiple rendering en-
gines [OGR,OSG,Epi,Cryb] allow the creation of highly re-
alistic yet real-time visualization applications without low-
level knowledge of the most advanced CG algorithms. VR
device abstraction frameworks [BJH∗01, THS∗01, Ant09]
ease I/O services, communications and process management
aspects. Finally, virtual sandbox tools allow content creation
and the definition of the application’s logic in easy-to-use vi-
sual editors. However, developers still miss tools that close
the complete creation pipeline, allowing an automatic de-
ployment of an application designed on a sandbox onto the
final VR hardware.

Figure 1: Two students play a collaborative game on a
CAVE. The video game (both art and logic) was quickly cre-
ated using the visual editing tools of Blender. Then, our easy-
to-integrate BlenderCAVE framework manages a distributed
rendering architecture based on the Blender Game Engine
that generates the video output for all screens in the CAVE.

This work introduces a framework, which we refer to as
BlenderCAVE, for the easy development of multi-screen VR
applications on a virtual sandbox. After an evaluation of ex-
isting content editing tools and CG render engines (detailed
in Section 3), we have opted for the Blender Game Engine
(BGE) [Blea] as the base engine for our framework. Then,
the framework includes two major components. First, a sim-
ple virtual camera setup, described in Section 4, defines the
content to be output on each screen. Second, as described in
Section 5, a distributed architecture and a lightweight com-

V Ibero-American Symposium in Computers Graphics – SIACG 2011
F. Silva, D. Gutierrez, J. Rodríguez, M. Figueiredo (Editors) 91

V Ibero-American Symposium in Computers Graphics – SIACG 2011



munication protocol manage the application state and syn-
chronize the output on the various screens.

We demonstrate BlenderCAVE through several applica-
tions displayed on an immersive CAVE projection sys-
tem [CNSD93]. The highlight of the applications is a multi-
player videogame (shown in Fig. 1), which was quick-to-
design and easily ported from a desktop environment to the
CAVE.

2. Related Work

Large-area displays provide a high degree of immersion
in VR applications, often making the VR experience more
compelling to the user. Large-area displays can typically be
achieved in two ways. One way is to project the image onto
a large passive screen using a powerful projector, such as in
a PowerWall, a CurvedScreen, a Workbench [KBF∗95] or
subsequent similar designs. Another way is to tile multiple
smaller displays. In the first way, the difficulty is to achieve
high resolution images, while in the second way the diffi-
culties are due to color and brightness consistency [Sto01].
Tiled displays are also more expensive and require more
computational resources. A CAVE system [CNSD93] shares
some similarities with both approaches, as it uses multiple
projectors to project images on several passive screens and
give the user a sense of full immersion in a virtual environ-
ment.

The output display is just one of the hardware compo-
nents involved in the design of a VR application. Typi-
cally, VR applications also involve various input devices,
and possibly non-visual output. Multiple researchers have
developed solutions based on abstraction layers that free
the developer from dealing with implementation details
about I/O devices. An early example is CAVELib [CN95],
created by the inventors of the CAVE and later turned
into a popular commercial tool. CAVELib’s major limi-
tation is its strong connection to specficic hardware con-
figurations. A more recent and active VR design frame-
work is VRJuggler [BJH∗01]. It provides excellent support
for I/O and it is managed at a programming level. There
are many other VR development frameworks that provide
abstraction layers, such as DIVERSE [KSA∗03], Studier-
stube [SRH03], RB2 [VPL90], DIVE [CH93], dVS [Gri91],
Avocado [Tra99], VRPN [THS∗01], Equalizer [Equ], MR-
Toolkit [SLGS92], or dVise [Ghe97]. A more recent frame-
work, INVRS [Ant09], extends traditional abstraction capa-
bilities to networked virtual environments.

Some VR authoring frameworks also provide easy-
to-use graphical interfaces for application development.
AMIRE [GHR∗02] is an authoring tool for mixed reality,
whose interesting aspect is that the design of the virtual envi-
ronment may be performed in an intuitive manner in a mixed
reality setting. EAI’ Wordltoolkit [Ini97] enables novice de-
velopers to quickly prototype an application, however, it ex-
pects the application data to come from CAD packages. Fi-
nally, the commercial framework EON Studio™ [Eon], from
EON Reality Inc, allows authoring through a graphical user
interface. It is a complete package for a CAVE environment,
however it lacks flexibility for developers.

In the creation of a VR application, modeling and render-
ing the virtual environment play an important role as well.

There are many high-quality options for content creation and
rendering, and we discuss some of the most relevant ones in
detail in the next section.

3. Requirements and Selection of the Base Engine

Our approach to the design of a framework for easy develop-
ment of multi-screen VR applications has been to augment
one of the many existing high-quality CG render engines
with functionalities to efficiently support multi-screen pro-
jection. In this section, we discuss the desired features of the
base engine, we compare several high-quality engines, and
we present the particular features that steered our decision
toward Blender Game Engine (BGE).

From the CG point-of-view, the engine should sup-
port state-of-the-art rendering and animation features: pro-
grammable shaders, animations based on bones, simulation
of rigid and deformable bodies, generation of stereoscopic
video output, and extensibility through plug-ins and scripts.

On top of these features, it is desirable if the render en-
gine includes an integrated 3D WYSIWYG scene composi-
tor, i.e., a sandbox. We look for a solution that allows mod-
eling, texturing and animating directly the objects that will
be included in the VR application.

Other desirable features include multi-platform availabil-
ity, as well as the possibility to execute the VR application
on distributed heterogeneous systems. Source code access
enables the possibility to implement new capabilities when
necessary, and a well-stablished community of developers
and artists is a good indication of further evolution of the en-
gine, thus favoring a longer life-cycle of the VR application.

In our search for an engine that fulfills all or most of
the desired features, we have evaluated in detail the fol-
lowing list of high-quality render engines: Unreal 3™ [Epi]
from Epic Games Inc, CryEngine 2™ [Cryb] from Crytek
GmbH, EON Studio™ [Eon] from EON Reality Inc, and
the open source engines Ogre 3D (v. 1.6.5) [OGR], and
BGE (v. 2.49) [Blea]. Other possible engines that we have
considered are: proprietary game engines such as Unity™
[Unib], from Unity Technologies, Id Tech 5™ [Id ] from
Id Software, and Unigine™ [Unia] from Unigine Corp, or
open source engines such as OpenSceneGraph [OSG], Crys-
tal Space [Crya], Irrlich 3D Engine [Irr], and Id Software’s
Quake IdTech 3 [Id ].

Our list is clearly not comprehensive, but we believe that
it covers a set of highly representative engines. We chose
Unreal, CryEngine, EON, Ogre and BGE for detailed evalu-
ation for various reasons. Unreal and CryEngine are high-
end engines used for top-class commercial video games,
which is a good indication of their quality. EON, on the
other hand, is an engine particularly oriented to multi-screen
VR setups. And, finally, Ogre and BGE offer high-quality
CG with the addition of open-source advantages. More-
over, BGE provides a content creation framework that could
greatly ease application design. Table 1 compares these five
engines based on CG quality features, integrated content cre-
ation and control possibilities, and further extensibility.

After the evaluation, we decided to select BGE as our base
engine. The main reason is its interesting balance of high-
quality render engine with integrated content creation and

92 J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display

V Ibero-American Symposium in Computers Graphics – SIACG 2011



Unreal 3 CryEngine 2 EON Studio Ogre3D 1.6.5 BGE 2.49
Stereoscopy yes no yes experimental yes
Multi Screen no no yes no tiled window

Shaders Cg Cg no Cg / GLSL GLSL
Animation Support external external external external included

Physics PhysX PhysX no several Bullet
Logic Graphs KissMet Lua yes no Python / bricks

Scripting KissMet Lua VBScript / JavaScript no Python
Modeller external external external external included

Scene Compositor UnrealEd CryEngine Sandbox external / graph external / code included
Plugins yes yes yes yes yes

Source Code no no no yes yes
License proprietary proprietary proprietary GPL GPL

Table 1: Comparison of render engines based on their capabilities.

sandbox. Another positive feature is its ease of extensibil-
ity. It contains a large API based on Python, and it allows
the connection of specific device drivers by implementing a
binding between the driver’s library (as long as it is written
in C/C++) and a Python class. Moreover, source code access
allows the implementation of additional capabilities.

Given our target application, i.e., creation of VR appli-
cations for multi-screen displays, we also pay special at-
tention to the capabilities of BGE in terms of stereoscopic
and multiple video output. In its standard version, BGE sup-
ports five built-in stereoscopy modes (Pageflip, Syncdou-
ble, Anaglyph, Side-by-Side and VInterlace), which can be
toggled using a GUI control [MSO∗09]. BGE has single-
window output, but it is possible to switch a built-in mode
and draw many windows on the same screen in a tiled man-
ner, or direct each window to a different screen on a multi-
screen system. At first, this feature seemed attractive for our
application, but it does not scale well as the number of win-
dows increases. As it will be described later in Section 5 we
discarded BGE’s built-in multi-screen functionality, and we
designed a distributed architecture.

4. Virtual Camera Setup

Our BlenderCAVE framework includes two main compo-
nents, a virtual camera setup that defines the output for each
display, and a distributed architecture to manage the appli-
cation. This section describes the virtual camera setup, in-
cluding the definition of camera frustums, and a master-slave
navigation approach.

4.1. Configuration of Camera Frustums

Given a VR scene and a target multi-screen display, we de-
fine a Virtual Camera Cluster (VCC) that associates one
virtual camera to each screen. The correct compositing of
the images on the multi-screen display requires a careful se-
lection of parameters for each camera and a synchronized
transformation of all cameras as the user navigates through
the scene. Our prototype implementation is limited to planar
screens, and then the configuration of each camera reduces
to adjusting the values of ModelView, Projection and View-
port transformations. BGE includes five additional video
output modes for dome-shaped screens [Bleb], which would
allow supporting also dome-shaped multi-screen displays.

The VCC maps the geometry and topology of the projec-
tion system to the camera frustums on BGE. All the cameras
of the VCC are located at the same point, called local ori-
gin, which corresponds to the position of the observer in the
VR scene. If the VR installation includes a tracker of the ob-
server, its position is mapped to the local origin. The four
corners of the near planes of the various cameras are con-
figured (up to a scale factor) with positions and orientations
that respect the relative transformation between the observer
and the screens in the real world. Then, the local origin and
the corners of the near planes define the perspective angles
of the cameras frustums. With this approach, the images cap-
tured by the various cameras correctly match at the borders
of the screens, the union of the frustums covers all the visible
volume in the VR scene, and the frustums do not intersect.
Fig. 2 shows three possible configurations of the VCC for
the particular type of configurable 4-wall CAVE used in our
experiments.

4.2. Master-Slave Navigation

We assume that the physical screen setup remains invari-
ant while the VR application is in use, therefore, the rel-
ative transformation between the various camera frustums
depends only on the local origin, i.e., the observer’s posi-
tion w.r.t. the physical setup. Based on this observation, we
perform camera navigation in a master-slave manner, com-
puting the transformation of a master camera based on the
user’s navigation, and then computing the transformation of
the slave cameras relative to the master. In our experiments,
we have selected the frontal camera as master camera. In
BGE, the master-slave VCC is programmed as a hierarchy,
represented schematically in Fig. 3, which includes the user,
the master camera, and the slave cameras.

In our prototype implementation, we use a first-person
navigation mode. In the VR scene, the user is represented
as an invisible human-height character contained on a sim-
ple bounding box. This bounding box constitutes the user
entity in BGE. Each camera in the master-slave VCC has an
additional entity, and they are all connected in a hierarchical
manner to the user entity.

During navigation, the user moves and orients the virtual
workspace through the VR scene, and these transformations
are applied to the user entity. Then, the camera transforma-
tions are computed automatically based on the tracked local

J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display 93

V Ibero-American Symposium in Computers Graphics – SIACG 2011



Figure 2: From left to right, three possible setups for our reconfigurable 4-wall CAVE: wall, cube, and amphitheatre. The top
row shows the screens and the mirror-based projection system. The bottom row shows frustum setups for an observer located at
the center of the CAVE. If the observer’s position is tracked, all four frustums need to be dynamically reconfigured, otherwise
only the right and left frustums need to adapt to the CAVE’s configuration.

Figure 3: BGE model of the master-slave camera hierarchy.
The master camera is connected to the user entity, and all
other cameras are defined relative to the master camera.

origin. User navigation could be controlled in various ways:
using a mouse, a keyboard, a wiimote, etc. Additional con-
trols or keys can be assigned to gear other motions of the vir-
tual character, such as jumping, crouching, or leaning. BGE
also handles reactive collisions with the environment during
camera navigation, using the bounding box of the user as
collision primitive.

5. Communication System Architecture

Given a VR application designed on BGE, the target multi-
screen display system, and the VCC that defines the camera-
screen correspondence, we have designed a distributed ren-
dering architecture that controls the video output of each
screen. In this section, we describe the elements that con-
form this architecture and their main features, paying spe-
cial attention to the following issues: maintaining a consis-
tent application state across all elements, synchronizing the
video output on all screens, and responding to external in-
puts (i.e., managing input peripherals).

5.1. Master-Slave Distributed Architecture

To compute the video output for the multiple screens, we
have designed a (possibly heterogeneous) distributed archi-
tecture, with one PC per screen. On each PC, we execute
one instance of BGE, which computes the image as seen
from one of the cameras in the VCC, and outputs it to the
corresponding screen.

To synchronize the rendered output, we set a common re-
fresh rate on all BGE instances. The refresh rate is main-
tained both at the application level, i.e., for logic and physics
updates, and at the GPU render level. Even though our archi-
tecture supports the use of heterogeneous PCs for the various
screens, in our prototype implementation the refresh rate is
limited by the slowest machine. For future versions of the
framework, one could consider balancing the rendering load
among the various PCs in a more efficient way.

We manage the application state and handle peripheral in-
puts following a master-slave approach. The PC in charge
of rendering the master camera in the VCC plays the role
of master in our architecture, and it communicates state
changes and user input to the other PCs. BGE provides sim-
ple tools to program the application logic as a state machine.
In particular, it provides logic bricks that react to events, and
these logic bricks act on the application state. Events may be
produced by internal logic conditions or by input devices.

5.2. Communication Protocol

We consider two different communication modes in our
master-slave architecture: normal operation and initializa-
tion. During normal operation, the master handles events
produced internally by its own application logic as well as
events produced by input peripherals. If an event is trig-
gered, the master communicates this event simultaneously to
all slaves. When a slave receives a packet, it updates its local

94 J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display

V Ibero-American Symposium in Computers Graphics – SIACG 2011



version of the user entity in the VCC, computes the new po-
sition and orientation of its render camera, and a script rou-
tine triggers the event and executes its corresponding logic
bricks. All slaves execute the same application logic, there-
fore by reacting to the same event as the master, and given
that they maintain the same refresh rate, all local copies of
the application state remain synchronized.

In our experiments, we used as peripherals standard key-
boards and mice. Then, the information to be communicated
by the master consists of: the position and orientation of the
user entity, the orientation of the master camera, the keys
that have been pressed or released, and the current position
of the mouse. This information can be coded in very short
messages. In our CAVE, the PCs are connected by less-than-
half-meter-long gigabyte ethernet cable, which allowed us to
send messages using UDP Multicast without package loss.
The combination of small messages, fast network, and little
protocol overhead, produce negligible system latency, as dis-
cussed in detail in the next section. The communication pro-
tocol could be extended to handle other types of events, such
as random events or large state modifications due to physi-
cally based simulations. Given the small message size and
negligible latency in the current prototype, there is plenty of
room for additional communication payload.

The initialization mode is executed when a new slave PC
joins the system. In this situation, the slave PC sends a re-
quest for a full-state update to the master, and the master
responds with a standard UDP message containing the full
state information. In addition to camera settings and input
events, the full state may contain information such as the
configurations of all moving objects in the scene, clip and
frame numbers for animated characters, internal attributes
and flags, etc. Moreover, at initialization, a slave needs to
identify the particular camera in the VCC that it should ren-
der. We solve this issue by assigning to each slave camera in
the VCC an id corresponding to the network address of the
slave PC in charge. Then, a slave can discriminate its camera
information simply by comparing the camera id with its own
network address.

In our experiments, discussed in detail in the next sec-
tion, the application did not suffer synchronization issues.
In applications with a complex logic, however, it might be
convenient to execute periodic full-state synchronizations.

The communication protocol is executed by BGE as a
Python script. This guarantees a complete transparency of
the communications across platforms, and enables the use of
heterogeneous machines, with different operating systems.
In our tests we have combined nodes running Microsoft
Windows and Ubuntu Linux with no problems. All the pack-
ages are coded using a Python dictionary format, and we use
the cPickle library to serialize Python objects to plain text
and viceversa.

6. Implementation and Experiments

In this section, we describe first our CAVE-like installation
and other hardware details. Then, we discuss the process for
setting up a VR application using BlenderCAVE. Finally, we
discuss the test applications we have implemented, as well as
performance results.

Figure 4: Mountain scene (15727 triangles) displayed on a
CAVE. The scene is rendered with shadow mapping, multi-
texturing (9 layers), 4 normal mapping passes, and screen-
space ambient occlusion.

6.1. Our Visualization System

The visualization system used to test BlenderCAVE is a
RAVE II (Reconfigurable Advanced Visualization Environ-
ment), a CAVE-alike system with four screens designed
by Fakespace Inc. The main difference with a conventional
CAVE system is that the side screens of the RAVE can be
reoriented to create different configurations of the immer-
sive space (see Fig. 2). Each display module has a screen of
dimensions 3.75 x 3.12 meters.

The displays use active stereo projectors and CrystalEyes
shutter stereoscopic glasses. The projectors are driven by
a cluster of 4 PCs with NVIDIA Quadro FX 4500 graph-
ics cards, and connected through a Gigabyte Ethernet net-
work. The PCs also carry GSync hardware to synchronize
the pageflip on all the graphic cards. The cluster can exe-
cute Windows XP or Ubuntu Linux, both of which have been
used on BlenderCAVE tests.

6.2. Setting up and Running BlenderCAVE

BlenderCAVE is programmed as a set of scripts that con-
trol the VR application logic on BGE. Given a certain VR
application on BGE and a cluster of PCs that send video
output to a multi-screen display, setting up BlenderCAVE
to drive the multi-screen display is an extremely easy task.
First, one needs to include the VCC hierarchical entity on
every instance of the VR application. The BlenderCAVE
scripts are associated to the VCC, hence they are automat-
ically included. Note that the camera settings of the VCC
should be adjusted to match the specific display, as described
in Section 4.1. If a display installation is permanent, then
the VCC may be defined only once and imported in multi-
ple applications. The accompanying video shows a tutorial
that describes the creation of a VCC template and the inclu-
sion of the VCC template and its associated communication
scripts in an application. Setting up BlenderCAVE to drive
our CAVE system takes less than two minutes once the VCC
is defined.

Additionally, one needs to set the camera ids for the var-

J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display 95

V Ibero-American Symposium in Computers Graphics – SIACG 2011



ious PCs, as described in Section 5.2, and adjust the basic
rendering settings of BGE (i.e., fullscreen rendering and ac-
tivation of the pageflip option). In our examples, we used
a 1024× 768 resolution for each screen and a refresh rate
of 100Hz, but higher resolutions and refresh rates are sup-
ported.

6.3. Test Applications

We have tested BlenderCAVE on three different VR applica-
tions. Two of these applications, the mountain scene in Fig. 4
and the shark scene in Fig. 5, intend to demonstrate the eas-
iness to create applications with high-quality graphics and
render them on a CAVE. The third application, the game in
Fig. 1, gives a glimpse of the great possibilities for CAVE-
oriented application development. In all the images shown
in the paper, as well as in the accompanying video, stereo
output was disabled, but the system runs in full stereo mode.

The mountain scene in Fig. 4 is composed of 15727 trian-
gles and shows dynamic shadow computation using shadow
maps as the sun rises and sets. We used a high-res shadow
buffer of 2048×2048 pixels. More interestingly, the moun-
tains are render using multi-layer texturing, with 9 texture
layers, 4 simultaneous normal mapping passes, and an addi-
tional pass of screen-space ambient occlusion.

The sharks in Fig. 5 are composed of 7502 and 5197 tri-
angles each, and are animated using bones and a skinning
technique. Both sharks are rendered using a diffuse texture
and a pseudo environment map.

Fig. 5 also demonstrates the effectiveness of our VCC
camera setup. Notice how the images of the sharks are pro-
jected onto the seams and corners of the CAVE, and there is
barely any noticeable distortion. In this example, the loca-
tion of the physical camera is being used as local origin for
the VCC. Please see the accompanying video for a dynamic
demonstration.

Our last test scene is a collaborative videogame, shown
in Fig. 1, where two users fight against a group of zombie
skeletons. The floor is rendered using normal mapping, and
the skeletons (8609 triangles each) are animated using bones
and predefined animation clips. The application maintains
the target frame rate (50Hz, stereo) with up to 15 skeletons,
for a total of 135553 triangles in the scene.

The videogame was initially designed as a single-player
game using the Blender content creation tool, with logic
bricks and Python scripting. The major result proved with
this scene was that BlenderCAVE allowed extremely simple
adaptation of the videogame to a multi-screen display, i.e.,
our CAVE. Porting the videogame to BlenderCAVE required
the definition of the VCC (approximately 1 hour, including
tests, but this needs to be done only once if the configura-
tion of the CAVE is static), adding the BlenderCAVE scripts
to the application (done in just 1 minute), and, of course,
installing the application in all PCs in the architecture.

We have also measured the communication latency and
bandwidth in our system. Thanks to the use of UDP Mul-
ticast and our event-driven protocol, the network traffic is
very low. We measured the total traffic from the master to all
slaves in situations with frequent camera motion and button-
click events, and we reached peak packet sizes of just 12kB.
To measure network latency, we timed the round trip of a

Figure 5: Shark scene displayed on a CAVE. Notice the lack
of distortion as the images of the sharks are projected onto
the seams and corners of the CAVE, demonstrating the effec-
tiveness of the VCC setup.

packet between the master and a slave, which peaked at just
16µs. As a conclusion, with our Gigabyte Ethernet network,
communication latency is not an issue.

7. Discussion

In the past, the creation of a multi-user VR application for a
CAVE entailed the integration of I/O peripherals in the ren-
der engine, setting up and coordinating multiple instances
of the render engine to drive all screens of the display, and
importing art content in the rendering application. This pa-
per shows that the BlenderCAVE framework allows a much
simpler development of complex and interesting VR appli-
cations for a CAVE-like display. Using BGE as base render
engine, and taking advantage of Blender’s content creation
possibilities, BlenderCAVE augments the engine to easily
direct the video output to a multi-screen display.

There are, however, multiple directions in which the fea-
tures of BlenderCAVE could be improved or extended. For
more general VR applications, it will be necessary to pro-
vide support to many I/O peripherals. This can be done by
integrating one of the existing VR libraries for hardware ab-
straction, possibly through Python-based extensions.

As discussed in the paper, the current communication pro-
tocol is particularly efficient for event-driven state changes,
but applications with a complex state, such as physically
based simulations, may require modifications. Under a com-
plex state, there is a trade-off between distribution of state
computations, communication of state updates, and network

96 J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display

V Ibero-American Symposium in Computers Graphics – SIACG 2011



bandwidth. The current framework is also limited in terms
of the tight connection between BGE instances and output
screens. Currently, each screen is driven by a different BGE
instance, running on a different PC. For tiled displays, it
might be convenient to distribute rendering load differently,
perhaps with the same machine driving several displays. The
critical factor should be the minimization of the computing
resources, subject to fulfilling the desired refresh rate, which
makes the problem application-dependent.

Last, BlenderCAVE could be extended with features that
would increase the rendering quality on the CAVE. Such fea-
tures include color and brightness correction for seamless
image continuity across the screens.

BlenderCave source code, templates and examples can be
downloaded from:

http://www.gmrv.es/~jgascon/BlenderCave/index.html

Acknowledgements

This project has been supported in part by the Spanish Min-
istry of Science and Innovation (project TIN2009-07942).
The authors also would like to thank Martinsh Upitis (‘mar-
tinsh’ from BlenderArtists.org), author of the mountain
scene, and the GMRV group at URJC Madrid.

References

[Ant09] ANTHES C.: A Collaborative Interaction Framework for
Networked Virtual Environments. PhD thesis, Institute of Graph-
ics and Parallel Processing at JKU Linz, Austria, Institute of
Graphics and Parallel Processing at JKU Linz, Austria, August
2009.

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: Vr juggler: a virtual platform for
virtual reality application development. In Virtual Reality, 2001.
Proceedings. IEEE (2001), pp. 89 –96.

[Blea] BLENDER: Blender Game Engine Features web-
site. http://www.blender.org/education-help/
tutorials/game-engine/.

[Bleb] BLENDER: Dome mode in blender game engine.
http://wiki.blender.org/index.php/Dev:
Source/GameEngine/2.49/Fisheye_Dome_Camera.

[CH93] CARLSSON C., HAGSAND. O.: Dive - a platform for
multi-user virtual environments. In Computers and Graphics
(1993), pp. 663–669.

[CN95] CRUZ-NEIRA C.: Virtual Reality Based on Multiple Pro-
jection Screens: The CAVE and its Applications to Computational
Science and Engineering. PhD thesis, University of Illinois at
Chicago, Department of Electrical Engineering and Computer
Science, 1995.

[CNSD93] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A.:
Surround-screen projection-based virtual reality: The design and
implementation of the cave. In T. Kajiya, editor, Computer
Graphics (SIGGRAPH 93 Proceedings (1993), pp. 135–142.

[Crya] CRYSTAL SPACE: Crystal Space website. http://www.
crystalspace3d.org/main/Main_Page.

[Cryb] CRYTEK GMBH: Crytek CryEngine Sandbox. http:
//www.crytek.com/cryengine.

[Eon] EON REALITY INC: Eon Studio Reference Manual.

[Epi] EPIC GAMES INC: Epic Games Unreal Engine. http:
//www.unreal.com/.

[Equ] EQUALIZER: Equalizer: standard middleware to create and
deploy parallel OpenGL-based applications. http://www.
equalizergraphics.com.

[Ghe97] GHEE S.: Programming virtual worlds. In ACM SIG-
GRAPH 97 Conference, Los Angeles (1997).

[GHR∗02] GRIMM P., HALLER M., REINHOLD S., REIMANN
C., ZAUNER J.: Amire - authoring mixed reality. In Proc. of
IEEE International Augmented Reality Toolkit Workshop (2002).

[Gri91] GRIMSDALE. C.: dvs-distributed virtual environment
system. In In Proceedings of Computer Graphics 1991 Confer-
ence (1991).

[Id ] ID SOFTWARE: Quake IdTech 3. http://www.
idsoftware.com/.

[Ini97] INITION: Sense8 WorldToolkit R8 Reference Manual.
1997.

[Irr] IRRLICHT: Irrlicht Engine website. http://irrlicht.
sourceforge.net/.

[KBF∗95] KRÜGER W., BOHN C.-A., FRÖHLICH B., SCHÜTH
H., STRAUSS W., WESCHE G.: The responsive workbench: A
virtual work environment. In IEEE Computer (1995), pp. 42–48.

[KSA∗03] KELSO J., SATTERFIELD S. G., ARSENAULT L. E.,
KETCHAN P. M., KRIZ R. D.: Diverse: A framework for build-
ing extensible and reconfigurable device-independent virtual en-
vironments and distributed asynchronous simulations. Presence:
Teleoperators and Virtual Environments 12, 1 (2003), 19–36.

[MSO∗09] MARTÍN S., SUÁREZ J., OREA R., RUBIO R., GAL-
LEGO R.: Glsv: Graphics library stereo vision for opengl. Virtual
Reality 13 (2009), 51–57. 10.1007/s10055-008-0105-y.

[OGR] OGRE: OGRE-Open Source 3D Graphics Engine.
http://www.ogre3d.org/.

[OSG] OSG: OpenSceneGraph website. http://www.
openscenegraph.org/projects/osg.

[SLGS92] SHAWN C., LIANG J., GREEN M., SUN Y.: The de-
coupled simulation model for virtual reality systems. In Proceed-
ings of the ACM SIGCHI Human Factors in Computer Systems
Conference (1992), pp. pp.321–328.

[SRH03] SCHMALSTIEG D., REITMAYR G., HESINA G.:
Distributed applications for collaborative three-dimensional
workspaces. Presence: Teleoperators and Virtual Environments
12, 1 (2003), 52–67.

[Sto01] STONE M. C.: Color and brightness appearance issues
in tiled displays. IEEE Computer Graphics and Applications 21
(2001), 58–66.

[THS∗01] TAYLOR II R. M., HUDSON T. C., SEEGER A.,
WEBER H., JULIANO J., HELSER A. T.: Vrpn: A device-
independent, network-transparent vr peripheral system. In VRST
2001 conference (2001).

[Tra99] TRAMBEREND H.: Avocado: a distributed virtual reality
framework. In Virtual Reality, 1999. Proceedings., IEEE (Mar.
1999), pp. 14 –21.

[Unia] UNIGINE CORP: Unigine: multi-platform real-time 3D en-
gine website. http://unigine.com/.

[Unib] UNITY TECHNOLOGIES: Unity 3D engine website.
http://unity3d.com/unity/.

[VPL90] VPL RESEARCH INC: Reality Built for Two: RB2 Op-
eration Manual. 1990.

J. Gascón, J. Bayona, J. Espadero and M. Otaduy / BlenderCAVE: Easy VR Authoring for Multi-Screen Display 97

V Ibero-American Symposium in Computers Graphics – SIACG 2011


