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Abstract 
This paper describes a method for occlusion culling in a 

tiled 3D graphics hardware architecture. Adaptive hierarchical 
visibility (AHV) is a simplified method for occlusion culling that 
is integrated into a tiled architecture for hardware rendering. 
AI-IV constructs a list of polygon bins for each tile where the bins 
are bucket sorted in order of increasing depth or Z. Polygon bins 
are rendered starting with the bin closest to the viewer. After 
some number of bins are rendered, a one layer, hierarchical Z- 
buffer (HZ) is constructed from the Z-buffer thus far accumulated 
for the rendered bins. Subsequent bins are rendered by first testing 
their polygons against the HZ to see if they are hidden. AHV is far 
simpler to implement in hardware and gives performance that 
matches or surpasses progressive hierarchical visibility (PHV) 
methods which update the HZ for each rendered pixel. Results 
show that AI-IV is superior on scenes with high depth complexity 
and small polygons. For tiles of widely ranging statistics, AHV 
competes surprisingly well with PHV. It offers dramatic 
performance improvement on low cost hardware for scenes of 
high depth complexity. 

CR Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture; 1.3.7 [Computer Graphics] 
Visible Line/Surface Algorithms 

Key Words and Phrases: Visibility culling, hierarchical z 
buffer, occlusion culling 

1 Introduction 
In recent years the size and complexity of the graphical 

databases have been rapidly increasing for many interactive 3D 
graphics applications. These 3D graphics models typically have 
high depth complexity, i.e. a given pixel is rendered many times 
due to many overlapping polygons, and only the object closest to 
the viewer ends up being visible. Identifying and culling these 
occluded objects represents a huge performance improvement 
opportunity. Low cost graphics accelerators have not yet been 
able to incorporate effective occlusion culling. Previously 
proposed occlusion culling algorithms have been too complex for 
integration into low cost architectures. This paper presents a 
simple and effective occlusion culling method, namely AHV, for 
low cost graphics hardware. 
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Advanced architectures must address both the 
computational load of transformations, texturing, and lighting, as 
well as the increasingly important bandwidth load of accessing the 
geometry, texture, and visibility data. Graphics accelerators for 
PCs must address these computation and bandwidth issues while 
keeping the hardware cost very low. High output bandwidth 
implies high cost memory for the Z-buffering and anti-aliasing. 
This cost can be kept down by using a tiled architecture that 
renders the scene one tile or chunk at a time and reuses the fast 
expensive memory for each tile. AI-IV is specifically designed for 
a tiled architecture, adds little complexity to the pipeline, and it 
reduces both computation and bandwidth when rendering high 
depth complexity scenes. 

1 .I Contribution 

This paper presents an adaptive hierarchical visibility 
algorithm (AHV) integrated into a tiled hardware graphics 
pipeline architecture. For each tile it automatically and adaptively 
selects portions of the model as occluders using a bucket sort in Z. 
A hierarchical Z-buffer is constructed after accumulating critical 
coverage within the tile. Critical coverage is a simple heuristic 
that exploits frame to frame visibility coherence. This hierarchy is 
built and used for visibility testing only if a simple test indicates 
that it will be worthwhile. The method aims to be simple enough 
for low cost hardware implementation yet effective enough to give 
significant performance improvement in scenes of high depth 
complexity. 

Compared to the traditional Z-buffer method, AHV can 
reduce both the computation and bandwidth costs. Compared to a 
deferred shading pipeline (where the texturing and shading are not 
computed if the Z-buffer test fails), AHV can reduce the 
computation cost with little additional bandwidth cost. To the best 
of our knowledge, AI-IV is the first algorithm to integrate 
occlusion maps into a tiled architecture. 

1.2 Background 

View frustum culling [4] and hidden surface removal [9,24] 
have long been used in 3D graphics. The Z-buffer [1,2] is 
surprisingly persistent as the basic hidden surface removal method 
for modern PC graphics accelerators despite its brute force 
approach and lack of support for occlusion culling. 

Software algorithms for static scenes, that perform an object 
space preprocessing operation to construct a binary space 
partitioning (BSP) data structure [lo], or a potentially visible set 
(PVS) for cell-to-cell visibility in an object space Octree [24,18], 
have been used to perform visibility culling. Major performance 
improvements are achieved by identifying and eliminating those 
polygons that can not be seen IYom some regions of space. This 
saves the cost of scan converting, shading and texturing those 
polygons. 
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Another class of object space methods for dynamic data sets 
involves dynamic identification of convex occluding objects and 
identifies spaces where objects are occluded [5,17]. Alternatively, 
portals such as windows and doors are used to produce culling 
planes in a manner similar to view frustum culling [18]. These 
object space methods have difficulty in building up or identifying 
those collections of small objects that together may form an 
effective occluding assemblage. 

Image space hierarchies have been used for anti-aliased 
texture mapping [25], hierarchical Z-buffers and z tests for 
visibility culling [12,13,14], and area coverage trees [15]. The 
combination of an object space Octree for rendering front to back, 
and an image space z pyramid for visibility culling [14], delivers 
the best occlusion results, albeit at significant cost. Progressive 
hierarchical Z-Buffering updates the HZ with each rendered pixel 
and thus provides the most “exact” hierarchical Z-buffer method. 
This approach would require significant changes to a graphics 
hardware pipeline and it bears the high cost of a full screen 
hierarchical Z-buffer. We are not aware of any hardware 
implementation. 

An alternative to object space sorting is a more ad-hoc 
method of occluder selection combined with an image space 
hierarchical occlusion map [26]. This algorithm is a hybrid 
solution that can be implemented in software. Unfortunately, it is 
not well suited to commercial graphics hardware. 

Tiled architectures have been thoroughly analyzed for cost 
benefit tradeoffs. The statistics of polygon coverage and 
redundancy have been modeled [3,6,7,8,11,16,20,21,22]. This 
paper revisits hierarchical Z-buffering and evaluates its potential 
costs and benefits in a tiled architecture. The unique properties of 
a tiled architecture allow the integration of a simplified, adaptive 
version of hierarchical Z-buffering. The result reduces both 
computation and bandwidth costs significantly and can be 
implemented with a fairly small number of changes to the 
pipeline. 

2 Adaptive Hierarchical Visibility 

Bin sorted 
polygons for tile 

construct 
hierarchical ZB 
from near bins 

Pixels 

Figure 1. The pipeline on the right bucket sorts polygons into 
tiles and at the same time bucket sorts into z bins within each tile. 
For each tile some number of bins are drawn then the resulting Z- 
bufjPer is used to construct a hierarchical Z -bufSer. 

2.1 Overview 

Figure 1 shows a generalized graphics rendering pipeline 
and the associated AHV data structures. The display screen is 
partitioned into tiles. Each tile is 128 by 128 pixels, although the 
size may be different based on memory costs and other factors. 
The algorithm proceeds as follows. For a given point in time, a 
display frame is generated by sorting the polygons of the scene 
into the sy tiles that they overlap. The polygons for a tile are also 
z sorted into bins using a bucket sort. The tiles are then rendered 
sequentially. To render a tile, polygons are rendered from the 
nearest polygon bins using an ordinary Z-buffer (ZB). This 
continues until a coverage parameter reaches a threshold value. 
Then an HZ is constructed from the Z-buffer. Polygons from 
subsequent bins undergo a visibility test against the HZ before 
they are rendered. They are not scan-converted or drawn if this 
test shows that they are completely hidden. 

The sections below will describe the algorithm in more 
detail. 

2.2 Tile and 2 Bin Sorting 

In addition to dividing the screen into x,y tiles as in 
traditional chunking, each screen tile is further bucket sorted into 
bins using a z (depth) value. Each tile now has its own list of z 
sorted bins of polygons. For big polygons, exact triangle biting 
is performed using a computation of the intersection of the triangle 
with the tile. Exact binning for large triangles can reduce the 
computation and bandwidth overhead of overlap regardless of 
whether or not AHV is implemented. 

The estimated z value (EZ) used to sort a polygon is defined 
as the depth in Z-buffer coordinates of the nearest point of the 
polygon that exists within the x,y extent of the tile. If the polygon 
is entirely contained by the tile, the value is simply the smallest z 
value of all the vertices. If the polygon is small, this value is still 
used even if the triangle straddles multiple tiles. For the exact 
binning of big polygons, the z value is the minimum z of the 
intersection points of the triangle with the tile edges plus any 
triangle vertices lying within the tile. The x,y bounding box 
(Ebox) of the area of overlap between the triangle and the tile is 
computed as follows. If the triangle is small and straddles one or 
more tiles, the intersection of the triangle’s bounding box with the 
tile is used. For large triangles the bounding box of the exact 
intersection between polygon and tile is used. 

The EZ and Ebox of the triangle will eventually be used for 
testing against the HZ for occlusion. The binning operation is 
implemented by the following code that also accumulates depth 
distribution statistics and the total estimated overlap area of 
triangles with the tile. The total estimated Overlap area is used 
later to determine whether and where to construct the HZ. The 
depth distribution statistics are used in the next frame to setup Z 
buckets: 

for each triangle, tri, in the scene { 
for each tile, tile, the triangle overlaps { 

tri.EZ = EstimateZ( tri, tile); 
tri.Ebox = EstimateBox( tri, tile); 
locate bin b in tile such that 

b.MinZ 4ri. EZ< b.MaxZ; 
b.AddTriangle( tri); 
tile.MeanZ f= tri.EZ; 
tile.StdZ += tri.EZ l tri.EZ; 
tile.TotalArea += tri.Ebox.Area; 

I 
I 

76 



2.3 Review of Hierarchical Z-Buffer 
Atter some number of bii of triangles for the current tile 

are rendered using a standard Z-buffer, the HZ is computed. Let 
h&j) be the Z-buffer array for a tile of size 128x128. The 
hierarchical Z-buffer at level k is computed horn 

hk(i,j)=e=D~~-*(hk-l(Di+a,Dj+b)) 
a=O,b=O 

where D is the degree of the HZ. Each value at level k is the 
maximum of the corresponding D by D region of level k-l as 
shown in figure 2. The root of this hierarchy is a single pixel 
containing the maximum 2 or furthest point of the scene in the tile. 

A function HZVisQuety( -310x) is needed that can test a 
triangle against the HZ to see if it is completely hidden. The Sbox 
of a triangle is the x,y screen coordinate bounding box of the 
portion of the triangle inside the tile (Ebox) together with its 
minimum z value EZ. 

The technique of selecting a level L for testing is well suited to 
hardware pipelining because it constrains the triangle occlusion 
test cost to a prescribed per-pixel fraction of pixel Z-buffering 
cost. 

2.4 When to Build the HZ 
Progressive hierarchical visibility (PHV) updates the HZ 

with each pixel rendered. This has a significant impact on the 
rendering pipeline. Much of the visibility culling benefit is 
obtained with a simple method that builds the HZ once, at some 
selected point, and then uses it for subsequent visibility testing. 
AHV constructs the HZ from the Z-buffer once, based on an 
adaptive, pixel coverage value that exploits tiame to hame 
coherence. 

Covenga l Remaining Pixels 
t&=3.86 -o-dc.4.16 > dc=4.47 jl-dc = 5.75 

h-z h-t 

I I I I I l/l II I PI I 

Figure 2. Hierarchical Z-buffer construction. Each level k has 
values that are the maximum of the values in a D by D region of 
the previous level. 

HZVisQuety first computes L, the level in HZ to test the Sbox 
for visibility. Secondly, HZVisQuery tests the box against level L. 
For a simple architecture it is desirable to only compute one HZ 
level and to test every polygon’s visibility using only this level. 
The level L to construct and use is determined by the desired cost 
of visibility testing using the following 

L = log& sqrt( I/ Cppt)) 
Where Cppt is the desired cost per pixel of HZ testing expressed 
as a fraction of the total cost of rendering a pixel in a standard Z- 
buffer architecture. For example, if we wish to spend l/l6 as 
much time per pixel on HZ testing as on rendering then Cppt is 
l/16. A polygon covers n pixels at the lowest level, n/d at the 
next and so on. A visibility test at level L need only test the 
number of HZ elements that the polygon covers at that level. 
Testing a polygon at level L fixes the HZ per pixel test cost at a 
constant. If the pyramid is of degree D=2, choosing Cppt=1/16, 
gives L=2; and choosing Cppt=1/256 gives L=4. After the 
selection of L, the triangle is tested against level L of HZ as 
follows: 

for each pixel in level L of the HZ covered by Sbox { 
if ( PixelZ > MinZ ) 

return true; 

) 
return false; 

0 0.2 0.4 
#occbida~ngtt 

0.6 1 

Figure 3. HZ pixel coverage weighted by the number of 
remaining pixels versus the percentage of polygons used as 
occluders. Four tiles with dtyerent depth complexities (dc) are 
plotted. 
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Figure 4. As more occluders are rendered before constructing the 
HZ, the tile s total per-pixel cost is plotted for the same four tiles 
asj?gure 3. Visibility cost represents the total visibility resolution 
cost of the tile when HZ is constructed and used a#er the given 
f/action of triangles are rendered. 

When objects are sorted in depth order, the rate of occlusion 
(the fraction of triangles being occluded) is roughly proportional 
to the accumulated coverage (the fraction of the tile’s pixels that 
have been hit). When accumulated coverage is one, updates to the 
HZ increase total cost, without improving occlusion culling. 

Coverage is easily computed during rendering by counting 
the number of fresh z writes (a write into a z that was cleared). 
The HZ is constructed when the fraction of polygons rendered 
(FOPR) for the current frame time reaches the ideal traction 
computed for last frame. More precisely, during the last frame we 
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compute and save the FOPR, F-, for which the following 
expression was a maximum 

(Pixels-remaining;) *(Coverage - HZ-Test-Co st) 
where pixels remaining is the sum of all polygon areas still to 
process. If the coverage is quite high and many pixels remain, 
then the occlusion savings will likely be high. If there is good 
temporal coherence, then the ideal fraction computed during the 
last frame will also be a good estimation for the ideal place to 
construct the HZ this frame. So when the current frame FOPR 
reaches F,, the HZ is constructed. This will be fully explained 
in section 3. 

Figures 3 & 4 give further motivation to this choice of 
coverage metric. Figure 3 shows how the tile coverage times the 
remaining pixels reaches a clear maximum as an increasing 
fraction of the polygons are rendered. Figure 4 data indicates that 
there is an optimal point at which to construct the HZ in order to 
minimize total rendering cost. This optimal point corresponds 
quite closely to the maximum point in figure 3. The data for four 
tiles with depth complexities ranging f+om 3.86 to 5.75 are shown. 

2.5 Adaptive Visibility Algorithm 

Once the triangles for a tile are z sorted into bins as 
described above, the polygons are rendered starting with those in 
the nearest bin. The complete algorithm is given here 

for each tile in the screen { 
numTriRendered = numTested = numOccluded = 0; 
for tile bins b = b. to b, { 

for each triangle tri in b { 
Vis = true; 
if ( HZExist) { 

numTested++; 
Vis = HZVisQuety( tri.Sbox); 
if ( !Vis) 

numOccluded++; 

I 
if (Vis) { 

render triangle tri; 
UpdateldealHZPlace(); 
numTriRendered++; 

1 
1 
if ( !HZExist) { 

if ( ReachedldealHZPlace()) { 
if (tile. IsHZWorthWhile( )) 

ConstructHZ( ); 
1 

1 
setup buckets in tile using tile.MeanZ and tile.STDZ; 
if ( numTested > 0) 

HZOcclusionRate = numOccluded I numTested; 

1 

UpdateldealHZPlace() is used to locate the best place to 
construct the HZ. Using the optimal coverage metric from the last 
frame obviates a deadly stall of the pipeline by exploiting frame to 
frame temporal coherence. ReachedIdealHZPlace() is used to 
check if we have reached the ideal place to construct HZ as 
determined during the previous tie. The IsHZWorthWhile() 
function returns the value of the following inequality: 
(HZBuildCost + numTriangleTests * HZTestCost) c 
(numTriangleTests*HZOcclusionRate*ScanConvettCost) 
using the following definitions. 

numTriangleTests: Number of the triangles left to be 
rendered after the HZ has been constructed. This is the number of 
triangles in the tile minus the number of triangles (occluders) 
already rendered when HZ construction started, and minus the 
number of triangles rendered while HZ was being constructed. 

ScanConvertCost can be set to the averageTriangleArea 
with a normalized Z-buffering cost of 1 per pixel. 

HZTestCost is proportional to the averageTriangleArea, 
that is, HZTestCost = Cppt * averageTriangleArea. 

The inequality requires that the cost of building the HZ plus 
the expected cost of testing polygons against it, is less than the 
cost of rendering the expected number of occluded polygons. So 
the HZ is only built if it is likely to be useful and this is 
determined by a simple computation. 

3 Cost Benefit Analysis 
A cost model is needed in order to compare the cost of 

AHV, PHV and Z-buffering in a more analytic manner. The total 
pixel rendering cost of a deferred shading pipeline is considered. 
The total pixel rendering cost Ctp for all three algorithms is the 
sum of visibility (resolution) cost Cvis plus the cost of rendering 
visible pixels Gender or: 

Ctp = Cvis + Crender 
With the same scene and same depth sorting strategy, AHV, 

PHV and Z-buffering yields the same number of visible pixels 
because AHV and PI-IV do not reduce or increase the actual 
number of visible pixels, they are only used to reduce the number 
of Z-buffer tests. So the difference between the pixel cost of three 
algorithms lies entirely in visibility cost. 

For a deferred shading ordinary Z-buffer algorithm (ZB) the 
cost Cvis is the same as Czb. If the per pixel Z-buffer cost is 
normalized to I, the Czb is just the total number of pixels Tp in all 
the triangles within the tile or 

Czb = Tp 

3.1 Cost Model of PHV 

In PHV, whenever a pixel’s z value is modified, the change 
to the Z-buffer is propagated to higher levels of the HZ in an 
update operation. For our cost comparisons, only one level of the 
HZ is updated so that the HZ being used is the same for PHV as 
for AHV. As pixel p is being rendered, fhnction V@) is used to 
denote the probability that the p” pixel is visible. For pixel one 
V(I)=1 and for the pixel p. when the last visible pixel has been 
drawn V&$=0. If the pixels are rendered in perfect near to far 
order, then V(j) will be a monotonically decreasing function. We 
refer to the area under the V@) curve integrated between 0 and p. 
as Km the sum of all visible pixels. 

The visibility cost model of PHV can be represented as: 

Cph = ‘~WP) * [I+ Cppu (p)l+Cppt (p))dp 
0 

where Cppt is the HZ query cost for pixel p, and Cppu is the HZ 
update cost for pixel p. For a single level HZ of degree 0, every 
D*D pixels causes one HZ test, so the Cppt can be normalized to 
I/@. On the other hand, Cppu varies depending on the attributes 
of the triangle that p belongs to. In ordinary Z-buffer, the number 
of Z values accessed while scan converting a triangle is the area of 
the triangle. In PHV the number of z values accessed while scan 
converting a triangle T is equal to the number of DxD tiles that T 
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overlaps, multiplied by L?, because every one of these DxD tiles 
can cause an update entry in the HZ. The number of DxD tiles, 
M: that a triangle overlaps can be determined by the formula: 

Where A, is the area of the triangle. The formula means that the 
number of DxD tiles a triangle covers is the number of DxD tiles 
inside the triangle plus the number of DxD tiles intersected by the 
triangle edges. It is a good estimation of the overlap factor for fat 
triangles. For skinny triangles, NT can be worse. The per pixel 
HZ update cost then would be: 

c 
PPU 

&.$-l 
t 

It is simple to show that this value ranges from Dz to 0 as 
triangle size varies corn 1 to infinity. Since triangle size is 
trending smaller, the HZ update cost can be significant in PI-IV. 

Figure 5. Model based expected PHV cost as a function of 
sequentially rendered pixels, is compared to expected ordinary Z- 
buffer method cost. The probability of pixel visibility is also 
plotted. Total PHV cost is the gray area under the PHV cost 
curve. po identifies the pixel after which all pixels are hidden. 

Figure 5 shows how the PHV cost is accrued as pixels are 
rendered, compared to the ZB cost and to the accumulation of 
visible pixels. It gives a good intuitive comparison of the cost of 
PHV vs. ZB as Tp changes. For Tp<pa which happens when 
depth complexity is low, PI-IV can be more expensive than ZB 
since the cost of updating the HZ can not be offset by the savings 
of not rendering hidden pixels. As Tp-ps (or depth complexity) 
increases, the benefit of PI-IV over ZB increases. 

3.2 Cost Model of AHV 
The visibility determination cost model of AHV, using the 

above, idealized analysis, is given by 
Cah = pm + (Tp - pHZ)(Cppt + V(p&) + HZBuildCost 

where pHz is the number of pixels Z-buffer tested before the HZ 
build, V(p,, is the HZ test pass rate (ie. the fraction of pixels 
visible after construction of the HZ), and HZBuildCost is the cost 
of building the HZ. 

Cah, the visibility cost for AHV is the sum of Z-buffer test 
cost of all the objects up until the HZ is built, plus the cost of HZ 
testing the remaining objects and cost of Z-buffer testing all pixels 
passing HZ tests, and plus the cost of building the HZ. 

TP 

Figure 6. Model based expected AHV cost as a function of 
sequentially rendered pixels, is compared to expected ordinary Z- 
buffer method cost. The probability of pixel visibility is also 
plotted. The total AHV cost is the gray area under the AHV cost 
curve plus a fmed construction cost. The dark area represents the 
saving of AHV over ZB. AHV is only constructed if size of the 
dark area is greater than the construction cost. ps ident@es the 
pt?cel after which all pixels are hidden. pHz ident$es the pixel 
aftr which HZ is constructed. 

Figure 6 shows how the AI-IV cost accrues as pixels are 
rendered compared to traditional ZB cost. Like figure 5, figure 6 
gives a good intuitive comparison of the cost of AHV vs. ZB. 
Unlike PHV, AHV is never worse than ZB. For scenes with very 
low depth complexity, AHV does not construct or use an 
occlusion map, so the cost is the same as ZB. For scenes with 
medium to high depth complexity, it is obvious fiorn figure 6 that 
the cost savings of AHV over ZB depends on selecting the right 
place to construct HZ. 

The optimal HZ construction point happens when Cah is at 
a minimum or when the savings of Cah over Czb is greatest since 
Czb is fixed at Tp. We use Csav to denote the saving of Cah over 
Czb: 

Csav = Czb - Cah 

=TP-p,,z - (Tp - p,)(Cppr + V(p,)) - HZBuiZdCost 

= (Tp - pHz)(l - V(pHz) - Cppt) - HZBuiZdCod 

Since HZBuildCost is constant, maximizing Csav is equivalent to 
maximizing (WP - p&(1 - P(pHz) - Cppt) ). In this formula, Tp, 

pnz and Cppt are well defined and measurable. V@mJ is hard to 
measure locally because it is defined as the probability that pixel 
pm is visible if pixels O...pHzl are rendered. To measure V@) 
accurately for some p, we need to summarize the probability over 
all pixels afler p and compute the expected value. It is impossible 
to do this within a frame. An alternative approach would be to 
estimate V(p) by computing it for the next N pixels. 
Unfortunately, the next N pixels can give an incorrect estimate of 
the distribution of pixels to follow and lead to a local minimum 
that gives poor global performance. Instead, the following 
expression involving the coverage function Cov is maximized: 

(TP - PHZ xCO”(P) - CPPt) (1) 
where &v(p) is defined as the ratio of the number of non empty 
pixels in the tile after pixels 0.g are rendered over the total 
number of non empty pixels in the tile after all pixels are rendered. 
Cov(p) is a good approximation to I-V@), since it is clearly the 
case that the bigger the coverage at p, the bigger the probability 
that pixels after p will be occluded. In fact, as triangles approach 
the size of a single pixel, Vfj) = 1-Cove). 
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As all the terms in (1) are easily measured while rendering 
the triangles in frame n, we can find the fraction of polygons 
rendered (FOPR) for which (1) is maximum in frame n. This ideal 
FOPR or F,, for frame n is saved and when frame n+I is 
processed, HZ is built when the FOPR reaches K*F,,, and it is 
deemed to be worthwhile. 

3.3 AHV vs. PHV 

Figure 5 and 6 together gives us some insight into how AHV 
compares with PHV. As Tp-p. goes to infinity (high depth 
complexity), pHz approaches p0 and the ratio Cph/Cuh approaches 
one. As Tp approaches 0 (low depth complexity), Al-IV will be 
better than PHV because the gain of removing a small number of 
hidden pixels can not justify the update cost of PHV. 

For tiles with medium depth complexity, the performance of 
AI-IV vs. PHV depends on the distribution of triangles. The 
weakness of PHV lies in the update overhead, while the weakness 
of AI-IV lies in waiting for the “best” place to construct and use 
the occlusion map. 

There are two extreme cases of triangle distribution where 
there is a clear winner between AI-IV and PI-IV. 

PI-IV beats AHV when a few large triangles come first and 
fill up an area of the tile while leaving other areas uncovered (so 
AHV will not build its HZ). If many small triangles hidden 
behind these come along, followed by large triangles to fill other 
parts of the tile, PHV will win, because the initial large occluders 
incur little update overhead to accumulate into an effective 
occlusion map. AI-IV has an advantage if the visibility of the 
pixels drops slowly at first then sharply. This can happen when 
many small triangles come first and gradually merge to build 
coverage. PHV suffers from testing triangles that are not hidden 
and from incrementally updating an ineffective HZ. 

4 Optimization 

4.1 Early Termination 

One simple optimization is to always maintain the maximum 
Z-buffer value written so far in a tile. When the tile becomes fully 
covered, any subsequent Z-bucket whose minimum z value 
exceeds the maximum Z-buffer value can be ignored because all 
of its triangles will be occluded. 

4.2 Chunk Rejection 

The occlusion rate or occlusion effectiveness of both AHV 
and PHV drops as the average triangle size of the scene increases. 
This is due to the fact that AHV and PHV are both rejecting at the 
triangle level. The larger the triangle, the wider the depth range 
across the triangle, and the less likely the bounding box test will 
pass. A simple optimization can be done to increase occlusion 
rate for both AHV and PHV for scan converters that generate 
pixels in 4x4 chunks [ 191. For such scan converters, each 4x4 
chunk yields one HZ test (when HZ has degree 4). The pixel 
processing within a chunk is aborted when the chunk fails the HZ 
test. This optimization significantly increases occlusion rates for 
both AI-IV and PHV in scenes with large triangles. It does not 
change the cost relationship between AHV and PHV because the 
increase of query granularity is orthogonal to the HZ construction 
difference between AHV and PHV. 

5 Experimentation and Results 
We have implemented PHV and AI-IV in a functional 

simulator and instrumented the measurement of the following 
quantities. Potential Depth Complexity was measured as the total 
number of Z-buffer tests. HZ Test Cost was measured as the total 
number of HZ tests. And finally, Visibility Cost was measured as 
the cost of determining all visible pixels inside all potentially 
visible triangles. 

For the Z-buffer method, the visibility cost is the same as the 
potential depth complexity. For AHV, visibility cost is the sum of 
potential depth complexity, HZ test cost, and HZ construction 
cost. For PHV, visibility cost is the sum of potential depth 
complexity, HZ test cost, and the Z-buffer reads for updating HZ. 

All the simulation results we present are gathered using the 
same configuration. Tile size is 128x128. The degree D of HZ is 
4, so the HZ test cost per pixel is l/16. Both PHV and AI-IV use 
only a single level of HZ. The number of z buckets for each tile is 
10. Here is the area and depth distribution of the four test scenes 
we used: 

Figure 7. Per pixel depth complexity for scene tiles 

1 Avg Area 1 Min Area 1 Max Area 
Canyon 31 14 954 
Island 1389 43 5418 
Babylon 1 1163 76 3323 
Babylon 2 535 24 2112 

Figure 8. Average triangle area for scene tiles. 

The following tables summarize the performance of PHV 
and AHV for the four test scenes: 

Avg VisCost Min VisCost Max VisCost 
Canyon 2.11 1.03 4.56 
Island 1.47 1.0 2.96 
Babylon 1 1 1.44 1 .76 1 2.56 
Babylon 2 1 2.06 1 .81 1 3.3 

Figure 9. PHV method: Per pixel visibility cost for scene tiles 

Figure IO. AHV method: Per pixel visibility cost for scene tiles 
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The charts above show the details of the simulation results. 
For each scene, three charts are used to analyze performance and 
culling effectiveness. Each plotted point represents a tile. In all 
charts the tiles are numbered in the order of original potential 
depth complexity. 

The depth complexity chart compares the culling 
effectiveness of AI-IV and PHV. The data plotted with diamonds 
shows the potential depth complexity of Z-buffering, with squares 
shows the reduced potential depth complexity after AHV, with 
triangles shows the potential depth complexity after PHV. 

The visibility cost chart shows the performance of visibility 
determination for Z-buffer, AHV, and PHV. The visibility cost is 
plotted using diamonds for the Z-buffer method, squares for AHV, 
and triangles for PHV. 

The triangle area chart shows the triangle area distribution 
across the tiles. 

The simulation results agree well with the predictions of the 
analytic cost models. The tiles in the test scenes cover a wide 
range of triangle distributions in terms of area and depth 
complexity. In most of the tiles, both methods are quite effective 
at reducing potential depth complexity. AHV, though simpler, is 
almost as effective as PHV in most cases. In terms of total 
visibility cost, AHV is more efficient than PHV for tiles with 
small triangles, while PI-IV is more efficient than AHV for tiles 
with large triangles. 

At the scene level, AHV performs better than PHV in the 
canyon scene because this scene contains a high percentage of 
tiles with very small triangles. In scene Babylon 1, PHV does 
better than AI-IV because most of the tiles in this scene contain 
large triangles which quickly accumulate into an effective 
occlusion map without incurring much HZ update overhead. In 
the island scene and Babylon 2, overall performance of PI-IV and 
AI-IV are similar because the triangle sizes are distributed across 
the tiles more evenly than the previous two cases. 

Overall, AI-IV shows a significant performance advantage 
over Z-buffer. For the tiles measured, AI-IV achieved saving 
factors ranging Corn 1 to 7. Even for tiles with medium depth 
complexity, AI-IV? performance improvement over Z-buffer was 
more than 50%. The advantage of AHV over Z-buffer increases 
with depth complexity regardless of triangle size. This fact plus 
the fact that AHV is simpler to implement make AI-IV more suited 
to hardware implementation than PHV given that triangle sizes are 
trending smaller. 

6 

6.1 

Comparison with other work 

Object Space Algorithms 

Much work has been done in computational geometry on 
visibility determination and hidden surface removal. Even though 
visibility algorithms with nice asymptotic bounds exist, they are 
often not practical for scenes with thousands of triangles and 
edges. We are not aware of any general and practical 3D visibility 
algorithm. 

The work by Teller [23] on cells and portals gives very 
effective methods in the domain of 3D scenes with room like 
structures. It requires preprocessing on the database to define the 
boundaries of the cells. The algorithm lacks support for general 
3D scenes, like outdoor scenes with no clear subdivision of space 
into cells and portals, or for scenes with many moving objects 
where the amount of preprocessing that can be done is limited. 

In general, object space algorithms have the following 
fundamental advantages over image space algorithms: 
1. Early rejection of occludees. Objects can be rejected prior to 

perspective transformation. Objects can be rejected as a 
group. 

2. Independent of viewpoint and direction. Object space 
algorithms and data structures are constructed to answer 
visibility queries for any viewpoint and view direction. This 
makes these algorithms potentially useful for vision, global 
illumination and collision detection. 

3. Independent of image space complexity. 

Because of these fundamental advantages, object space 
visibility algorithms will continue to be important. AHV is an 
image space technique like traditional Z-buffering; it is not 
designed to replace efficient object space visibility culling. Rather 
it performs visibility culling that augments the object space 
culling. 

6.2 Hierarchical Occlusion Map 

HOM [26] is a hybrid method. It attempts to reject 
occludees early and in groups of objects, yet it is dependent on 
image space complexity and viewpoint. For each frame, a small 
set of occluders are selected and rendered. Then a hierarchical 
occlusion map is constructed to efficiently answer overlap queries 
for projected bounding boxes. HOM does not contain depth 
information, so when the projected bounding box is entirely 
covered by the HOM, a depth test against either a single plane or a 
depth estimation buffer is done to determine if the object is 
hidden. This is a software method that can be effective for scenes 
with high depth complexity, but does not lend itself well to 
hardware implementation due to the following issues: 
1. The effectiveness of HOM is intrinsically tied to occluder 

selection, yet the algorithm does not provide a systematic 
method to select good occluders. This means that the 
algorithm’s effectiveness is hard to predict given a 3D model. 

2. Because HOM has no depth information, an additional data 
structure called depth estimation buffer is used for depth 
comparison. This additional complexity is not well suited for 
hardware pipelining. 

3. One of the key attributes of HOM is “approximate culling”, 
yet this feature adds another element of unpredictability to 
the algorithm. In fact, this feature can introduce inter&me 
aliasing when small objects become alternately hidden and 
visible from frame to frame. 

4. Efficient querying against an HOM is difficult to do in a 
hardware pipeline. This is a drawback shared by traditional 
hierarchical Z-buffering as well. 

6.3 Hierarchical 2 Buffer 

Ned Greene’s work [ 13,14,15] on hierarchical Z-buffering 
forms the background for our AI-IV approach. This algorithm was 
interesting due to its effectiveness as an occlusion algorithm and 
its simplicity. It showed great potential for hardware pipelining. 
Yet full screen hierarchical Z-buffer faces some serious problems 
for hardware implementation: 
1. Effectiveness of the algorithm is tied to some level of object 

space depth sorting. 
2. Full screen progressive hierarchical Z-buffering impacts 

hardware complexity. 
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3. Query against hardware HZ is difftcult to pipeline. 
A tiled architecture offers a unique opportunity to revisit this 

method because some of the above drawbacks go away or become 
less of a problem: 
1. While binning a triangle into (x,y) tiles, we can bin the 

triangle into z buckets almost for free either in the CPU or 
the graphics pipeline. Bucketing in z gives us a good depth 
sort and a good method for occluder selection. 

2. Depth complexity is not evenly distributed over the whole 
screen. In a tiled architecture, the HZ can be adaptively 
invoked when needed. 

3. AHV in a tiled architecture requires little change to the 
pipeline and incurs little cost. 

7 Conclusion 
In this paper we have presented an adaptive hierarchical 

visibility algorithm in a tiled architecture that can significantly 
reduce the computation cost for scan converting triangles. The 
algorithm has the following unique properties: 

Adaptation: Tiled architectures sort in image space to 
facilitate cache coherence in the frame-buffer and Z-buffers. This 
increases geometry bandwidth while reducing frame-buffer and Z- 
buffer bandwidth. AHV takes advantage of this sorting stage even 
further to sort the triangles in z using a bucket sort that does not 
increase geometry bandwidth. For each tile it gathers statistics 
regarding the distribution of depth and triangle area. These 
statistics are used later to determine whether it is worthwhile to 
construct the occlusion map, and if so, to decide when it should be 
built to minimize total rendering cost. 

Temporal Coherence: AHV takes advantage of frame to 
frame coherence in the following ways: 
1. For each tile, the depth distribution of frame n is used to 

ensure good distribution of triangles in the z buckets in tiame 
n+l. 

2. For each tile, statistics from frame n are used to decide when 
to build the HZ for frame n+l. The maximum of coverage 
times remaining pixels is found in frame n. The 
corresponding percentage of triangles rendered is saved and 
used to decide when to build the HZ in frame n+l. Since 
temporal coherence increases as frame rate increases, it is 
likely to be important in the future. 

7.1 Strength 

AHV integrated into a tiled architecture is simpler for 
hardware implementation than other hierarchical visibility 
methods. It performs comparably to a comprehensive hierarchical 
visibility method such as PHV, and better in small polygon cases. 
Performance gains from such culling can approach a factor of 16, 
the difference between a visibility test and scan conversion. 

AHV reduces both the computation and bandwidth costs 
over a traditional Z-buffer method. Compared to a deferred 
shading pipeline, AHV can reduce the computational cost with 
little additional bandwidth cost. 

AHV has advantages over full screen progressive 
hierarchical Z-buffering methods in that 1) it adaptively selects a 
good visibility solution for each tile based on statistics gathered 
during tile processing, and 2) it is easier to implement in a 
graphics hardware pipeline. 

AHV improves on full screen mode, hierarchical occlusion 
map methods by offering 1) cheaper and more effective occluder 

selection through 3D binning, 2) fast pixel accurate occlusion 
instead of approximate occlusion, and 3) simpler and easier 
integration in a hardware pipeline. 

7.2 Weakness 

AHV works well as an instrument to accelerate hidden 
surface removal in a tiled architecture, but it is not a general 
visibility determination mechanism. The effectiveness of 
occlusion culling depends on how early in the pipeline objects are 
rejected and at what granularity they are rejected. 

The impact of AHV is constrained by rejecting triangles 
post transformation. Since scenes with high pixel depth 
complexity often have high geometry complexity, it is highly 
possible for the computation and bandwidth costs of transforming 
and lighting of such scenes to exceed the geometry processing 
capabilities of the system. In which case AHV’s reduction of the 
rendering cost alone can not change the total throughput. 

The effectiveness of AHV depends on choosing a good 
place to construct the HZ. The optimal point is when 
(OcclusionProbability(py0 * PixelsRemaining) is a maximum. 
Since there is no way of determining “OcclusionProbability” 
efficiently for each triangle, the “Coverage” value is used to 
approximate it. This approximation has the desirable property that 
as triangle size approaches subpixel, Coverage = Occusion 
Probability. However, there are still triangle distributions where 
this approximation breaks down. This is similar to caching where 
the ideal page to replace is the one that is least likely to be used in 
the future. Because we can not predict the future, we use an 
approximation like the page that is least recently used. This works 
well most of the time but not all of the time. 

8 Future work 
The weakness of the algorithm should be addressed in the 

future. First, we would like to do a comprehensive study of scenes 
to see how well the use of coverage as an approximation of 
occlusion rate works. Second, we would like to study some 
alternative binning strategies where triangles are sorted by a 
weighted sum of area and depth to see if that would enable earlier 
construction of HZ and better occlusion rate. Third but certainly 
not the last, we would like to investigate the integration of AHV 
into a scene manager where the HZ can be used to do occlusion 
queries for groups of objects. 
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Figure 15. Canyon Scene, courtesy of 3D WinBench. Figure 17. Babylon 1, courtesy of Virtual Alchemy Studios. 

Figure 16. Island Scene, courtesy of 3D WinBench. Figure 18. Babylon 2, courtesy of Virtual Alchemy Studio. 
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