
Adaptive Hierarchical Visibility in a Tiled Architecture

Feng Xie p+] and Michael Shantz
Intel Corporation

Abstract
This paper describes a method for occlusion culling in a

tiled 3D graphics hardware architecture. Adaptive hierarchical
visibility (AHV) is a simplified method for occlusion culling that
is integrated into a tiled architecture for hardware rendering.
AI-IV constructs a list of polygon bins for each tile where the bins
are bucket sorted in order of increasing depth or Z. Polygon bins
are rendered starting with the bin closest to the viewer. After
some number of bins are rendered, a one layer, hierarchical Z-
buffer (HZ) is constructed from the Z-buffer thus far accumulated
for the rendered bins. Subsequent bins are rendered by first testing
their polygons against the HZ to see if they are hidden. AHV is far
simpler to implement in hardware and gives performance that
matches or surpasses progressive hierarchical visibility (PHV)
methods which update the HZ for each rendered pixel. Results
show that AI-IV is superior on scenes with high depth complexity
and small polygons. For tiles of widely ranging statistics, AHV
competes surprisingly well with PHV. It offers dramatic
performance improvement on low cost hardware for scenes of
high depth complexity.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture; 1.3.7 [Computer Graphics]
Visible Line/Surface Algorithms

Key Words and Phrases: Visibility culling, hierarchical z
buffer, occlusion culling

1 Introduction
In recent years the size and complexity of the graphical

databases have been rapidly increasing for many interactive 3D
graphics applications. These 3D graphics models typically have
high depth complexity, i.e. a given pixel is rendered many times
due to many overlapping polygons, and only the object closest to
the viewer ends up being visible. Identifying and culling these
occluded objects represents a huge performance improvement
opportunity. Low cost graphics accelerators have not yet been
able to incorporate effective occlusion culling. Previously
proposed occlusion culling algorithms have been too complex for
integration into low cost architectures. This paper presents a
simple and effective occlusion culling method, namely AHV, for
low cost graphics hardware.

Permission to make digital or hard copies of all or part of this work fol
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. TO COPY
otherwise, to republish, to post on sewers or to redistribute to lists.

requires prior specific permission andior a fee.
1999 Eurographics LosAngcles CA USA
Copyright ACM 1999 l-58113-170-4/99/08...$5.00

Advanced architectures must address both the
computational load of transformations, texturing, and lighting, as
well as the increasingly important bandwidth load of accessing the
geometry, texture, and visibility data. Graphics accelerators for
PCs must address these computation and bandwidth issues while
keeping the hardware cost very low. High output bandwidth
implies high cost memory for the Z-buffering and anti-aliasing.
This cost can be kept down by using a tiled architecture that
renders the scene one tile or chunk at a time and reuses the fast
expensive memory for each tile. AI-IV is specifically designed for
a tiled architecture, adds little complexity to the pipeline, and it
reduces both computation and bandwidth when rendering high
depth complexity scenes.

1 .I Contribution

This paper presents an adaptive hierarchical visibility
algorithm (AHV) integrated into a tiled hardware graphics
pipeline architecture. For each tile it automatically and adaptively
selects portions of the model as occluders using a bucket sort in Z.
A hierarchical Z-buffer is constructed after accumulating critical
coverage within the tile. Critical coverage is a simple heuristic
that exploits frame to frame visibility coherence. This hierarchy is
built and used for visibility testing only if a simple test indicates
that it will be worthwhile. The method aims to be simple enough
for low cost hardware implementation yet effective enough to give
significant performance improvement in scenes of high depth
complexity.

Compared to the traditional Z-buffer method, AHV can
reduce both the computation and bandwidth costs. Compared to a
deferred shading pipeline (where the texturing and shading are not
computed if the Z-buffer test fails), AHV can reduce the
computation cost with little additional bandwidth cost. To the best
of our knowledge, AI-IV is the first algorithm to integrate
occlusion maps into a tiled architecture.

1.2 Background

View frustum culling [4] and hidden surface removal [9,24]
have long been used in 3D graphics. The Z-buffer [1,2] is
surprisingly persistent as the basic hidden surface removal method
for modern PC graphics accelerators despite its brute force
approach and lack of support for occlusion culling.

Software algorithms for static scenes, that perform an object
space preprocessing operation to construct a binary space
partitioning (BSP) data structure [lo], or a potentially visible set
(PVS) for cell-to-cell visibility in an object space Octree [24,18],
have been used to perform visibility culling. Major performance
improvements are achieved by identifying and eliminating those
polygons that can not be seen IYom some regions of space. This
saves the cost of scan converting, shading and texturing those
polygons.

75

Another class of object space methods for dynamic data sets
involves dynamic identification of convex occluding objects and
identifies spaces where objects are occluded [5,17]. Alternatively,
portals such as windows and doors are used to produce culling
planes in a manner similar to view frustum culling [18]. These
object space methods have difficulty in building up or identifying
those collections of small objects that together may form an
effective occluding assemblage.

Image space hierarchies have been used for anti-aliased
texture mapping [25], hierarchical Z-buffers and z tests for
visibility culling [12,13,14], and area coverage trees [15]. The
combination of an object space Octree for rendering front to back,
and an image space z pyramid for visibility culling [14], delivers
the best occlusion results, albeit at significant cost. Progressive
hierarchical Z-Buffering updates the HZ with each rendered pixel
and thus provides the most “exact” hierarchical Z-buffer method.
This approach would require significant changes to a graphics
hardware pipeline and it bears the high cost of a full screen
hierarchical Z-buffer. We are not aware of any hardware
implementation.

An alternative to object space sorting is a more ad-hoc
method of occluder selection combined with an image space
hierarchical occlusion map [26]. This algorithm is a hybrid
solution that can be implemented in software. Unfortunately, it is
not well suited to commercial graphics hardware.

Tiled architectures have been thoroughly analyzed for cost
benefit tradeoffs. The statistics of polygon coverage and
redundancy have been modeled [3,6,7,8,11,16,20,21,22]. This
paper revisits hierarchical Z-buffering and evaluates its potential
costs and benefits in a tiled architecture. The unique properties of
a tiled architecture allow the integration of a simplified, adaptive
version of hierarchical Z-buffering. The result reduces both
computation and bandwidth costs significantly and can be
implemented with a fairly small number of changes to the
pipeline.

2 Adaptive Hierarchical Visibility

Bin sorted
polygons for tile

construct
hierarchical ZB
from near bins

Pixels

Figure 1. The pipeline on the right bucket sorts polygons into
tiles and at the same time bucket sorts into z bins within each tile.
For each tile some number of bins are drawn then the resulting Z-
bufjPer is used to construct a hierarchical Z -bufSer.

2.1 Overview

Figure 1 shows a generalized graphics rendering pipeline
and the associated AHV data structures. The display screen is
partitioned into tiles. Each tile is 128 by 128 pixels, although the
size may be different based on memory costs and other factors.
The algorithm proceeds as follows. For a given point in time, a
display frame is generated by sorting the polygons of the scene
into the sy tiles that they overlap. The polygons for a tile are also
z sorted into bins using a bucket sort. The tiles are then rendered
sequentially. To render a tile, polygons are rendered from the
nearest polygon bins using an ordinary Z-buffer (ZB). This
continues until a coverage parameter reaches a threshold value.
Then an HZ is constructed from the Z-buffer. Polygons from
subsequent bins undergo a visibility test against the HZ before
they are rendered. They are not scan-converted or drawn if this
test shows that they are completely hidden.

The sections below will describe the algorithm in more
detail.

2.2 Tile and 2 Bin Sorting

In addition to dividing the screen into x,y tiles as in
traditional chunking, each screen tile is further bucket sorted into
bins using a z (depth) value. Each tile now has its own list of z
sorted bins of polygons. For big polygons, exact triangle biting
is performed using a computation of the intersection of the triangle
with the tile. Exact binning for large triangles can reduce the
computation and bandwidth overhead of overlap regardless of
whether or not AHV is implemented.

The estimated z value (EZ) used to sort a polygon is defined
as the depth in Z-buffer coordinates of the nearest point of the
polygon that exists within the x,y extent of the tile. If the polygon
is entirely contained by the tile, the value is simply the smallest z
value of all the vertices. If the polygon is small, this value is still
used even if the triangle straddles multiple tiles. For the exact
binning of big polygons, the z value is the minimum z of the
intersection points of the triangle with the tile edges plus any
triangle vertices lying within the tile. The x,y bounding box
(Ebox) of the area of overlap between the triangle and the tile is
computed as follows. If the triangle is small and straddles one or
more tiles, the intersection of the triangle’s bounding box with the
tile is used. For large triangles the bounding box of the exact
intersection between polygon and tile is used.

The EZ and Ebox of the triangle will eventually be used for
testing against the HZ for occlusion. The binning operation is
implemented by the following code that also accumulates depth
distribution statistics and the total estimated overlap area of
triangles with the tile. The total estimated Overlap area is used
later to determine whether and where to construct the HZ. The
depth distribution statistics are used in the next frame to setup Z
buckets:

for each triangle, tri, in the scene {
for each tile, tile, the triangle overlaps {

tri.EZ = EstimateZ(tri, tile);
tri.Ebox = EstimateBox(tri, tile);
locate bin b in tile such that

b.MinZ 4ri. EZ< b.MaxZ;
b.AddTriangle(tri);
tile.MeanZ f= tri.EZ;
tile.StdZ += tri.EZ l tri.EZ;
tile.TotalArea += tri.Ebox.Area;

I
I

76

2.3 Review of Hierarchical Z-Buffer
Atter some number of bii of triangles for the current tile

are rendered using a standard Z-buffer, the HZ is computed. Let
h&j) be the Z-buffer array for a tile of size 128x128. The
hierarchical Z-buffer at level k is computed horn

hk(i,j)=e=D~~-*(hk-l(Di+a,Dj+b))
a=O,b=O

where D is the degree of the HZ. Each value at level k is the
maximum of the corresponding D by D region of level k-l as
shown in figure 2. The root of this hierarchy is a single pixel
containing the maximum 2 or furthest point of the scene in the tile.

A function HZVisQuety(-310x) is needed that can test a
triangle against the HZ to see if it is completely hidden. The Sbox
of a triangle is the x,y screen coordinate bounding box of the
portion of the triangle inside the tile (Ebox) together with its
minimum z value EZ.

The technique of selecting a level L for testing is well suited to
hardware pipelining because it constrains the triangle occlusion
test cost to a prescribed per-pixel fraction of pixel Z-buffering
cost.

2.4 When to Build the HZ
Progressive hierarchical visibility (PHV) updates the HZ

with each pixel rendered. This has a significant impact on the
rendering pipeline. Much of the visibility culling benefit is
obtained with a simple method that builds the HZ once, at some
selected point, and then uses it for subsequent visibility testing.
AHV constructs the HZ from the Z-buffer once, based on an
adaptive, pixel coverage value that exploits tiame to hame
coherence.

Covenga l Remaining Pixels
t&=3.86 -o-dc.4.16 > dc=4.47 jl-dc = 5.75

h-z h-t

I I I I I l/l II I PI I

Figure 2. Hierarchical Z-buffer construction. Each level k has
values that are the maximum of the values in a D by D region of
the previous level.

HZVisQuety first computes L, the level in HZ to test the Sbox
for visibility. Secondly, HZVisQuery tests the box against level L.
For a simple architecture it is desirable to only compute one HZ
level and to test every polygon’s visibility using only this level.
The level L to construct and use is determined by the desired cost
of visibility testing using the following

L = log& sqrt(I/ Cppt))
Where Cppt is the desired cost per pixel of HZ testing expressed
as a fraction of the total cost of rendering a pixel in a standard Z-
buffer architecture. For example, if we wish to spend l/l6 as
much time per pixel on HZ testing as on rendering then Cppt is
l/16. A polygon covers n pixels at the lowest level, n/d at the
next and so on. A visibility test at level L need only test the
number of HZ elements that the polygon covers at that level.
Testing a polygon at level L fixes the HZ per pixel test cost at a
constant. If the pyramid is of degree D=2, choosing Cppt=1/16,
gives L=2; and choosing Cppt=1/256 gives L=4. After the
selection of L, the triangle is tested against level L of HZ as
follows:

for each pixel in level L of the HZ covered by Sbox {
if (PixelZ > MinZ)

return true;

)
return false;

0 0.2 0.4
#occbida~ngtt

0.6 1

Figure 3. HZ pixel coverage weighted by the number of
remaining pixels versus the percentage of polygons used as
occluders. Four tiles with dtyerent depth complexities (dc) are
plotted.

Vbibility Cost

-de= 3.86 -m--dc= 4.18 dc= 4.47 -dc= 5.75

Q.OOE+M

B.OOE+M

7.00E+O4

'Ti B.OOE+M

" 5.00E+o4

Is
4.00EM4

I
3.00E+M

Z.OOE+M

l.o0E+04

O.OOE+OO

0 0.2 0.4 0.6 0.6 1

Xoccludonlltrhngbs

Figure 4. As more occluders are rendered before constructing the
HZ, the tile s total per-pixel cost is plotted for the same four tiles
asj?gure 3. Visibility cost represents the total visibility resolution
cost of the tile when HZ is constructed and used a#er the given
f/action of triangles are rendered.

When objects are sorted in depth order, the rate of occlusion
(the fraction of triangles being occluded) is roughly proportional
to the accumulated coverage (the fraction of the tile’s pixels that
have been hit). When accumulated coverage is one, updates to the
HZ increase total cost, without improving occlusion culling.

Coverage is easily computed during rendering by counting
the number of fresh z writes (a write into a z that was cleared).
The HZ is constructed when the fraction of polygons rendered
(FOPR) for the current frame time reaches the ideal traction
computed for last frame. More precisely, during the last frame we

77

compute and save the FOPR, F-, for which the following
expression was a maximum

(Pixels-remaining;) *(Coverage - HZ-Test-Co st)
where pixels remaining is the sum of all polygon areas still to
process. If the coverage is quite high and many pixels remain,
then the occlusion savings will likely be high. If there is good
temporal coherence, then the ideal fraction computed during the
last frame will also be a good estimation for the ideal place to
construct the HZ this frame. So when the current frame FOPR
reaches F,, the HZ is constructed. This will be fully explained
in section 3.

Figures 3 & 4 give further motivation to this choice of
coverage metric. Figure 3 shows how the tile coverage times the
remaining pixels reaches a clear maximum as an increasing
fraction of the polygons are rendered. Figure 4 data indicates that
there is an optimal point at which to construct the HZ in order to
minimize total rendering cost. This optimal point corresponds
quite closely to the maximum point in figure 3. The data for four
tiles with depth complexities ranging f+om 3.86 to 5.75 are shown.

2.5 Adaptive Visibility Algorithm

Once the triangles for a tile are z sorted into bins as
described above, the polygons are rendered starting with those in
the nearest bin. The complete algorithm is given here

for each tile in the screen {
numTriRendered = numTested = numOccluded = 0;
for tile bins b = b. to b, {

for each triangle tri in b {
Vis = true;
if (HZExist) {

numTested++;
Vis = HZVisQuety(tri.Sbox);
if (!Vis)

numOccluded++;

I
if (Vis) {

render triangle tri;
UpdateldealHZPlace();
numTriRendered++;

1
1
if (!HZExist) {

if (ReachedldealHZPlace()) {
if (tile. IsHZWorthWhile())

ConstructHZ();
1

1
setup buckets in tile using tile.MeanZ and tile.STDZ;
if (numTested > 0)

HZOcclusionRate = numOccluded I numTested;

1

UpdateldealHZPlace() is used to locate the best place to
construct the HZ. Using the optimal coverage metric from the last
frame obviates a deadly stall of the pipeline by exploiting frame to
frame temporal coherence. ReachedIdealHZPlace() is used to
check if we have reached the ideal place to construct HZ as
determined during the previous tie. The IsHZWorthWhile()
function returns the value of the following inequality:
(HZBuildCost + numTriangleTests * HZTestCost) c
(numTriangleTests*HZOcclusionRate*ScanConvettCost)
using the following definitions.

numTriangleTests: Number of the triangles left to be
rendered after the HZ has been constructed. This is the number of
triangles in the tile minus the number of triangles (occluders)
already rendered when HZ construction started, and minus the
number of triangles rendered while HZ was being constructed.

ScanConvertCost can be set to the averageTriangleArea
with a normalized Z-buffering cost of 1 per pixel.

HZTestCost is proportional to the averageTriangleArea,
that is, HZTestCost = Cppt * averageTriangleArea.

The inequality requires that the cost of building the HZ plus
the expected cost of testing polygons against it, is less than the
cost of rendering the expected number of occluded polygons. So
the HZ is only built if it is likely to be useful and this is
determined by a simple computation.

3 Cost Benefit Analysis
A cost model is needed in order to compare the cost of

AHV, PHV and Z-buffering in a more analytic manner. The total
pixel rendering cost of a deferred shading pipeline is considered.
The total pixel rendering cost Ctp for all three algorithms is the
sum of visibility (resolution) cost Cvis plus the cost of rendering
visible pixels Gender or:

Ctp = Cvis + Crender
With the same scene and same depth sorting strategy, AHV,

PHV and Z-buffering yields the same number of visible pixels
because AHV and PI-IV do not reduce or increase the actual
number of visible pixels, they are only used to reduce the number
of Z-buffer tests. So the difference between the pixel cost of three
algorithms lies entirely in visibility cost.

For a deferred shading ordinary Z-buffer algorithm (ZB) the
cost Cvis is the same as Czb. If the per pixel Z-buffer cost is
normalized to I, the Czb is just the total number of pixels Tp in all
the triangles within the tile or

Czb = Tp

3.1 Cost Model of PHV

In PHV, whenever a pixel’s z value is modified, the change
to the Z-buffer is propagated to higher levels of the HZ in an
update operation. For our cost comparisons, only one level of the
HZ is updated so that the HZ being used is the same for PHV as
for AHV. As pixel p is being rendered, fhnction V@) is used to
denote the probability that the p” pixel is visible. For pixel one
V(I)=1 and for the pixel p. when the last visible pixel has been
drawn V&$=0. If the pixels are rendered in perfect near to far
order, then V(j) will be a monotonically decreasing function. We
refer to the area under the V@) curve integrated between 0 and p.
as Km the sum of all visible pixels.

The visibility cost model of PHV can be represented as:

Cph = ‘~WP) * [I+ Cppu (p)l+Cppt (p))dp
0

where Cppt is the HZ query cost for pixel p, and Cppu is the HZ
update cost for pixel p. For a single level HZ of degree 0, every
D*D pixels causes one HZ test, so the Cppt can be normalized to
I/@. On the other hand, Cppu varies depending on the attributes
of the triangle that p belongs to. In ordinary Z-buffer, the number
of Z values accessed while scan converting a triangle is the area of
the triangle. In PHV the number of z values accessed while scan
converting a triangle T is equal to the number of DxD tiles that T

78

overlaps, multiplied by L?, because every one of these DxD tiles
can cause an update entry in the HZ. The number of DxD tiles,
M: that a triangle overlaps can be determined by the formula:

Where A, is the area of the triangle. The formula means that the
number of DxD tiles a triangle covers is the number of DxD tiles
inside the triangle plus the number of DxD tiles intersected by the
triangle edges. It is a good estimation of the overlap factor for fat
triangles. For skinny triangles, NT can be worse. The per pixel
HZ update cost then would be:

c
PPU

&.$-l
t

It is simple to show that this value ranges from Dz to 0 as
triangle size varies corn 1 to infinity. Since triangle size is
trending smaller, the HZ update cost can be significant in PI-IV.

Figure 5. Model based expected PHV cost as a function of
sequentially rendered pixels, is compared to expected ordinary Z-
buffer method cost. The probability of pixel visibility is also
plotted. Total PHV cost is the gray area under the PHV cost
curve. po identifies the pixel after which all pixels are hidden.

Figure 5 shows how the PHV cost is accrued as pixels are
rendered, compared to the ZB cost and to the accumulation of
visible pixels. It gives a good intuitive comparison of the cost of
PHV vs. ZB as Tp changes. For Tp<pa which happens when
depth complexity is low, PI-IV can be more expensive than ZB
since the cost of updating the HZ can not be offset by the savings
of not rendering hidden pixels. As Tp-ps (or depth complexity)
increases, the benefit of PI-IV over ZB increases.

3.2 Cost Model of AHV
The visibility determination cost model of AHV, using the

above, idealized analysis, is given by
Cah = pm + (Tp - pHZ)(Cppt + V(p&) + HZBuildCost

where pHz is the number of pixels Z-buffer tested before the HZ
build, V(p,, is the HZ test pass rate (ie. the fraction of pixels
visible after construction of the HZ), and HZBuildCost is the cost
of building the HZ.

Cah, the visibility cost for AHV is the sum of Z-buffer test
cost of all the objects up until the HZ is built, plus the cost of HZ
testing the remaining objects and cost of Z-buffer testing all pixels
passing HZ tests, and plus the cost of building the HZ.

TP

Figure 6. Model based expected AHV cost as a function of
sequentially rendered pixels, is compared to expected ordinary Z-
buffer method cost. The probability of pixel visibility is also
plotted. The total AHV cost is the gray area under the AHV cost
curve plus a fmed construction cost. The dark area represents the
saving of AHV over ZB. AHV is only constructed if size of the
dark area is greater than the construction cost. ps ident@es the
pt?cel after which all pixels are hidden. pHz ident$es the pixel
aftr which HZ is constructed.

Figure 6 shows how the AI-IV cost accrues as pixels are
rendered compared to traditional ZB cost. Like figure 5, figure 6
gives a good intuitive comparison of the cost of AHV vs. ZB.
Unlike PHV, AHV is never worse than ZB. For scenes with very
low depth complexity, AHV does not construct or use an
occlusion map, so the cost is the same as ZB. For scenes with
medium to high depth complexity, it is obvious fiorn figure 6 that
the cost savings of AHV over ZB depends on selecting the right
place to construct HZ.

The optimal HZ construction point happens when Cah is at
a minimum or when the savings of Cah over Czb is greatest since
Czb is fixed at Tp. We use Csav to denote the saving of Cah over
Czb:

Csav = Czb - Cah

=TP-p,,z - (Tp - p,)(Cppr + V(p,)) - HZBuiZdCost

= (Tp - pHz)(l - V(pHz) - Cppt) - HZBuiZdCod

Since HZBuildCost is constant, maximizing Csav is equivalent to
maximizing (WP - p&(1 - P(pHz) - Cppt)). In this formula, Tp,

pnz and Cppt are well defined and measurable. V@mJ is hard to
measure locally because it is defined as the probability that pixel
pm is visible if pixels O...pHzl are rendered. To measure V@)
accurately for some p, we need to summarize the probability over
all pixels afler p and compute the expected value. It is impossible
to do this within a frame. An alternative approach would be to
estimate V(p) by computing it for the next N pixels.
Unfortunately, the next N pixels can give an incorrect estimate of
the distribution of pixels to follow and lead to a local minimum
that gives poor global performance. Instead, the following
expression involving the coverage function Cov is maximized:

(TP - PHZ xCO”(P) - CPPt) (1)
where &v(p) is defined as the ratio of the number of non empty
pixels in the tile after pixels 0.g are rendered over the total
number of non empty pixels in the tile after all pixels are rendered.
Cov(p) is a good approximation to I-V@), since it is clearly the
case that the bigger the coverage at p, the bigger the probability
that pixels after p will be occluded. In fact, as triangles approach
the size of a single pixel, Vfj) = 1-Cove).

79

As all the terms in (1) are easily measured while rendering
the triangles in frame n, we can find the fraction of polygons
rendered (FOPR) for which (1) is maximum in frame n. This ideal
FOPR or F,, for frame n is saved and when frame n+I is
processed, HZ is built when the FOPR reaches K*F,,, and it is
deemed to be worthwhile.

3.3 AHV vs. PHV

Figure 5 and 6 together gives us some insight into how AHV
compares with PHV. As Tp-p. goes to infinity (high depth
complexity), pHz approaches p0 and the ratio Cph/Cuh approaches
one. As Tp approaches 0 (low depth complexity), Al-IV will be
better than PHV because the gain of removing a small number of
hidden pixels can not justify the update cost of PHV.

For tiles with medium depth complexity, the performance of
AI-IV vs. PHV depends on the distribution of triangles. The
weakness of PHV lies in the update overhead, while the weakness
of AI-IV lies in waiting for the “best” place to construct and use
the occlusion map.

There are two extreme cases of triangle distribution where
there is a clear winner between AI-IV and PI-IV.

PI-IV beats AHV when a few large triangles come first and
fill up an area of the tile while leaving other areas uncovered (so
AHV will not build its HZ). If many small triangles hidden
behind these come along, followed by large triangles to fill other
parts of the tile, PHV will win, because the initial large occluders
incur little update overhead to accumulate into an effective
occlusion map. AI-IV has an advantage if the visibility of the
pixels drops slowly at first then sharply. This can happen when
many small triangles come first and gradually merge to build
coverage. PHV suffers from testing triangles that are not hidden
and from incrementally updating an ineffective HZ.

4 Optimization

4.1 Early Termination

One simple optimization is to always maintain the maximum
Z-buffer value written so far in a tile. When the tile becomes fully
covered, any subsequent Z-bucket whose minimum z value
exceeds the maximum Z-buffer value can be ignored because all
of its triangles will be occluded.

4.2 Chunk Rejection

The occlusion rate or occlusion effectiveness of both AHV
and PHV drops as the average triangle size of the scene increases.
This is due to the fact that AHV and PHV are both rejecting at the
triangle level. The larger the triangle, the wider the depth range
across the triangle, and the less likely the bounding box test will
pass. A simple optimization can be done to increase occlusion
rate for both AHV and PHV for scan converters that generate
pixels in 4x4 chunks [191. For such scan converters, each 4x4
chunk yields one HZ test (when HZ has degree 4). The pixel
processing within a chunk is aborted when the chunk fails the HZ
test. This optimization significantly increases occlusion rates for
both AI-IV and PHV in scenes with large triangles. It does not
change the cost relationship between AHV and PHV because the
increase of query granularity is orthogonal to the HZ construction
difference between AHV and PHV.

5 Experimentation and Results
We have implemented PHV and AI-IV in a functional

simulator and instrumented the measurement of the following
quantities. Potential Depth Complexity was measured as the total
number of Z-buffer tests. HZ Test Cost was measured as the total
number of HZ tests. And finally, Visibility Cost was measured as
the cost of determining all visible pixels inside all potentially
visible triangles.

For the Z-buffer method, the visibility cost is the same as the
potential depth complexity. For AHV, visibility cost is the sum of
potential depth complexity, HZ test cost, and HZ construction
cost. For PHV, visibility cost is the sum of potential depth
complexity, HZ test cost, and the Z-buffer reads for updating HZ.

All the simulation results we present are gathered using the
same configuration. Tile size is 128x128. The degree D of HZ is
4, so the HZ test cost per pixel is l/16. Both PHV and AI-IV use
only a single level of HZ. The number of z buckets for each tile is
10. Here is the area and depth distribution of the four test scenes
we used:

Figure 7. Per pixel depth complexity for scene tiles

1 Avg Area 1 Min Area 1 Max Area
Canyon 31 14 954
Island 1389 43 5418
Babylon 1 1163 76 3323
Babylon 2 535 24 2112

Figure 8. Average triangle area for scene tiles.

The following tables summarize the performance of PHV
and AHV for the four test scenes:

Avg VisCost Min VisCost Max VisCost
Canyon 2.11 1.03 4.56
Island 1.47 1.0 2.96
Babylon 1 1 1.44 1 .76 1 2.56
Babylon 2 1 2.06 1 .81 1 3.3

Figure 9. PHV method: Per pixel visibility cost for scene tiles

Figure IO. AHV method: Per pixel visibility cost for scene tiles

80

I-
--

NwmaikadVWbUltyCoot

I 3 5 7 9 11 13 15 17 19
lib Mmkr

_--.-

1 3 5 7 9 II 13 15 17 19

Figure II. Canyon Scene.

Depnl Compl*xKy

1 2 3 4 5 8 7 8 9 10 lj 12 19 (4 15 18 17 18 1920

TIIe Number - -.--
Normrlked Vt~ibillty Cost 1

1 2 S 4 6 6 7 8 9 1011121314151817181920

ilk Number

1 3 5 7 9 11 13 15 ;7 19
Tile Mum bor

Figure 12. Island Scene.

1 -e-Nowf +AHV

1 3 5 7 8 11 13 15 17 19 ;I 23
ni0 Numkr

Normrllxrd ViolblMy CoU

.~. 1~. . . .
1 3 6 7 9 1i *a 16 17 19 21 23

Tlls Numbw

--

I----
~-_-.-

Depth Complexity

I 3 5 7 9 11 13 15 17 i9 21 23’

Tllo Mum bw

I Normrlizod Vbibllity Cost

I- -- - 1 3 5 7 9 11 13 IS 17 19 21 23

file Num bSr

8 11 13 15 17 19 2, 23
’ 3 5 ’ Tile Number I

Figure 14. Babylon 2.

81

The charts above show the details of the simulation results.
For each scene, three charts are used to analyze performance and
culling effectiveness. Each plotted point represents a tile. In all
charts the tiles are numbered in the order of original potential
depth complexity.

The depth complexity chart compares the culling
effectiveness of AI-IV and PHV. The data plotted with diamonds
shows the potential depth complexity of Z-buffering, with squares
shows the reduced potential depth complexity after AHV, with
triangles shows the potential depth complexity after PHV.

The visibility cost chart shows the performance of visibility
determination for Z-buffer, AHV, and PHV. The visibility cost is
plotted using diamonds for the Z-buffer method, squares for AHV,
and triangles for PHV.

The triangle area chart shows the triangle area distribution
across the tiles.

The simulation results agree well with the predictions of the
analytic cost models. The tiles in the test scenes cover a wide
range of triangle distributions in terms of area and depth
complexity. In most of the tiles, both methods are quite effective
at reducing potential depth complexity. AHV, though simpler, is
almost as effective as PHV in most cases. In terms of total
visibility cost, AHV is more efficient than PHV for tiles with
small triangles, while PI-IV is more efficient than AHV for tiles
with large triangles.

At the scene level, AHV performs better than PHV in the
canyon scene because this scene contains a high percentage of
tiles with very small triangles. In scene Babylon 1, PHV does
better than AI-IV because most of the tiles in this scene contain
large triangles which quickly accumulate into an effective
occlusion map without incurring much HZ update overhead. In
the island scene and Babylon 2, overall performance of PI-IV and
AI-IV are similar because the triangle sizes are distributed across
the tiles more evenly than the previous two cases.

Overall, AI-IV shows a significant performance advantage
over Z-buffer. For the tiles measured, AI-IV achieved saving
factors ranging Corn 1 to 7. Even for tiles with medium depth
complexity, AI-IV? performance improvement over Z-buffer was
more than 50%. The advantage of AHV over Z-buffer increases
with depth complexity regardless of triangle size. This fact plus
the fact that AHV is simpler to implement make AI-IV more suited
to hardware implementation than PHV given that triangle sizes are
trending smaller.

6

6.1

Comparison with other work

Object Space Algorithms

Much work has been done in computational geometry on
visibility determination and hidden surface removal. Even though
visibility algorithms with nice asymptotic bounds exist, they are
often not practical for scenes with thousands of triangles and
edges. We are not aware of any general and practical 3D visibility
algorithm.

The work by Teller [23] on cells and portals gives very
effective methods in the domain of 3D scenes with room like
structures. It requires preprocessing on the database to define the
boundaries of the cells. The algorithm lacks support for general
3D scenes, like outdoor scenes with no clear subdivision of space
into cells and portals, or for scenes with many moving objects
where the amount of preprocessing that can be done is limited.

In general, object space algorithms have the following
fundamental advantages over image space algorithms:
1. Early rejection of occludees. Objects can be rejected prior to

perspective transformation. Objects can be rejected as a
group.

2. Independent of viewpoint and direction. Object space
algorithms and data structures are constructed to answer
visibility queries for any viewpoint and view direction. This
makes these algorithms potentially useful for vision, global
illumination and collision detection.

3. Independent of image space complexity.

Because of these fundamental advantages, object space
visibility algorithms will continue to be important. AHV is an
image space technique like traditional Z-buffering; it is not
designed to replace efficient object space visibility culling. Rather
it performs visibility culling that augments the object space
culling.

6.2 Hierarchical Occlusion Map

HOM [26] is a hybrid method. It attempts to reject
occludees early and in groups of objects, yet it is dependent on
image space complexity and viewpoint. For each frame, a small
set of occluders are selected and rendered. Then a hierarchical
occlusion map is constructed to efficiently answer overlap queries
for projected bounding boxes. HOM does not contain depth
information, so when the projected bounding box is entirely
covered by the HOM, a depth test against either a single plane or a
depth estimation buffer is done to determine if the object is
hidden. This is a software method that can be effective for scenes
with high depth complexity, but does not lend itself well to
hardware implementation due to the following issues:
1. The effectiveness of HOM is intrinsically tied to occluder

selection, yet the algorithm does not provide a systematic
method to select good occluders. This means that the
algorithm’s effectiveness is hard to predict given a 3D model.

2. Because HOM has no depth information, an additional data
structure called depth estimation buffer is used for depth
comparison. This additional complexity is not well suited for
hardware pipelining.

3. One of the key attributes of HOM is “approximate culling”,
yet this feature adds another element of unpredictability to
the algorithm. In fact, this feature can introduce inter&me
aliasing when small objects become alternately hidden and
visible from frame to frame.

4. Efficient querying against an HOM is difficult to do in a
hardware pipeline. This is a drawback shared by traditional
hierarchical Z-buffering as well.

6.3 Hierarchical 2 Buffer

Ned Greene’s work [13,14,15] on hierarchical Z-buffering
forms the background for our AI-IV approach. This algorithm was
interesting due to its effectiveness as an occlusion algorithm and
its simplicity. It showed great potential for hardware pipelining.
Yet full screen hierarchical Z-buffer faces some serious problems
for hardware implementation:
1. Effectiveness of the algorithm is tied to some level of object

space depth sorting.
2. Full screen progressive hierarchical Z-buffering impacts

hardware complexity.

82

3. Query against hardware HZ is difftcult to pipeline.
A tiled architecture offers a unique opportunity to revisit this

method because some of the above drawbacks go away or become
less of a problem:
1. While binning a triangle into (x,y) tiles, we can bin the

triangle into z buckets almost for free either in the CPU or
the graphics pipeline. Bucketing in z gives us a good depth
sort and a good method for occluder selection.

2. Depth complexity is not evenly distributed over the whole
screen. In a tiled architecture, the HZ can be adaptively
invoked when needed.

3. AHV in a tiled architecture requires little change to the
pipeline and incurs little cost.

7 Conclusion
In this paper we have presented an adaptive hierarchical

visibility algorithm in a tiled architecture that can significantly
reduce the computation cost for scan converting triangles. The
algorithm has the following unique properties:

Adaptation: Tiled architectures sort in image space to
facilitate cache coherence in the frame-buffer and Z-buffers. This
increases geometry bandwidth while reducing frame-buffer and Z-
buffer bandwidth. AHV takes advantage of this sorting stage even
further to sort the triangles in z using a bucket sort that does not
increase geometry bandwidth. For each tile it gathers statistics
regarding the distribution of depth and triangle area. These
statistics are used later to determine whether it is worthwhile to
construct the occlusion map, and if so, to decide when it should be
built to minimize total rendering cost.

Temporal Coherence: AHV takes advantage of frame to
frame coherence in the following ways:
1. For each tile, the depth distribution of frame n is used to

ensure good distribution of triangles in the z buckets in tiame
n+l.

2. For each tile, statistics from frame n are used to decide when
to build the HZ for frame n+l. The maximum of coverage
times remaining pixels is found in frame n. The
corresponding percentage of triangles rendered is saved and
used to decide when to build the HZ in frame n+l. Since
temporal coherence increases as frame rate increases, it is
likely to be important in the future.

7.1 Strength

AHV integrated into a tiled architecture is simpler for
hardware implementation than other hierarchical visibility
methods. It performs comparably to a comprehensive hierarchical
visibility method such as PHV, and better in small polygon cases.
Performance gains from such culling can approach a factor of 16,
the difference between a visibility test and scan conversion.

AHV reduces both the computation and bandwidth costs
over a traditional Z-buffer method. Compared to a deferred
shading pipeline, AHV can reduce the computational cost with
little additional bandwidth cost.

AHV has advantages over full screen progressive
hierarchical Z-buffering methods in that 1) it adaptively selects a
good visibility solution for each tile based on statistics gathered
during tile processing, and 2) it is easier to implement in a
graphics hardware pipeline.

AHV improves on full screen mode, hierarchical occlusion
map methods by offering 1) cheaper and more effective occluder

selection through 3D binning, 2) fast pixel accurate occlusion
instead of approximate occlusion, and 3) simpler and easier
integration in a hardware pipeline.

7.2 Weakness

AHV works well as an instrument to accelerate hidden
surface removal in a tiled architecture, but it is not a general
visibility determination mechanism. The effectiveness of
occlusion culling depends on how early in the pipeline objects are
rejected and at what granularity they are rejected.

The impact of AHV is constrained by rejecting triangles
post transformation. Since scenes with high pixel depth
complexity often have high geometry complexity, it is highly
possible for the computation and bandwidth costs of transforming
and lighting of such scenes to exceed the geometry processing
capabilities of the system. In which case AHV’s reduction of the
rendering cost alone can not change the total throughput.

The effectiveness of AHV depends on choosing a good
place to construct the HZ. The optimal point is when
(OcclusionProbability(py0 * PixelsRemaining) is a maximum.
Since there is no way of determining “OcclusionProbability”
efficiently for each triangle, the “Coverage” value is used to
approximate it. This approximation has the desirable property that
as triangle size approaches subpixel, Coverage = Occusion
Probability. However, there are still triangle distributions where
this approximation breaks down. This is similar to caching where
the ideal page to replace is the one that is least likely to be used in
the future. Because we can not predict the future, we use an
approximation like the page that is least recently used. This works
well most of the time but not all of the time.

8 Future work
The weakness of the algorithm should be addressed in the

future. First, we would like to do a comprehensive study of scenes
to see how well the use of coverage as an approximation of
occlusion rate works. Second, we would like to study some
alternative binning strategies where triangles are sorted by a
weighted sum of area and depth to see if that would enable earlier
construction of HZ and better occlusion rate. Third but certainly
not the last, we would like to investigate the integration of AHV
into a scene manager where the HZ can be used to do occlusion
queries for groups of objects.

Acknowledgments
Thanks to Scott Nelson, Jim Hurley, and Jonathan Sweedler

for helpful discussions of graphics pipeline issues, and to Nola
Donato and Jeff Ma for help with the polygonal test databases.
We thank Leonidas Guibas and Milton Chen for insight into tiling
and hierarchical graphical data structures. We are grateful to Bob
Liang and Richard Wirt for supporting this work.

References
[l] E. Catmull, A subdivision algorithm for computer displq of

curved surfaces. PhD thesis, University of Utah, 1974.

[2] J. C. Chauvin (Sogitec). An advanced Z-buffer technology.
IhUGE VII, pages 76-85, 1994.

83

[3] M. Chen, G. Stall, H. Igehy, K. Proudfoot and P. Hanrahan,
Simple Models of the Impact of Overlap in Bucket
Rendering, 1998 SiggrapwEurgraphics Workshop on
Graphics Hardware, pp. 105-122..

[4] J. H. Clark, Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547-554,
1976.

[5] S. Coorg and S. Teller. A spatially and temporally coherent
object space visibility algorithm. Technical Report TM 546,
Laboratory for Computer Science, Massachusetts Institute of
Technology, 1996.

[6] M. Cox, Algorithms for Parallel Rendering, Ph.D. thesis,
Princeton University, May 1995.

[7] M. Cox, and N. Bhandari, Architectural Implications of
Hardware-Accelerated Bucket Rendering on the PC, 1997
SiggraphLEurographics Workshop on Graphics Hardware,
pp. 25-34.

PI D- Ellsworth, Polygon Rendering for Interactive
Visualizations on Multicomputers, Ph.D. thesis, University of
North Carolina at Chapel Hill, December 1996.

[9] J. Foley, A. Van Dam, J. Hughes, and S. Feiner, Computer
Graphics: Principles and Practice. Addison Wesley,
Reading, Mass., 1990.

[lo] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface
generation by a priori tree structures. Computer Graphics
(Proc. Siggraph), Vol. 14, No. 3, 1980.

[1 l] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, B. Teggs, L. Israel, Pixel-
Planes 5: A Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories, Computer Graphics
(Proc. Siggraph), Vol. 23, No. 3, July 1989, pp 79-88.

[12] C. Georges, Obscuration culling on parallel graphics
architectures, Technical Report TR95-017, Department of
Computer Science, University of North Carolina, Chapel
Hill, 1995.

[131 N. Greene, and M. Kass, Error-bounded antialiased rendering
of complex environments. Computer Graphics (Proc.
Siggraph), Vol. 28, No. 2, 1994.

[14] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer
visibility, Computer Graphics (Proc. Siggraph) Vol. 27,
1993.

[151 N. Greene, Hierarchical polygon tiling with coverage masks,
Computer Graphics (Proc. Siggraph) 1996.

[16] S. Herrod, Using Complete Machine Simulation to
Understand Computer System Behavior, Ph.D. thesis,
Stanford University, February 1998.

[17] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff and H.
Zhang. Accelerated occlusion culling using shadow fiusta.
Technical Report TR96-052, Department of Computer
Science, University of North Carolina, 1996.

[18] D. Luebke and C. Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. In ACM Interactive 3D
Graphics Conference, Monterey, CA, 1995.

[191 J. McCormack, R. McNamara, et al., Neon: a single-chip
workstation graphics accelerator, 1998
SiggrapWEurographics Workshop on Graphics Hardware,
pp. 123-132.

[20] S. Molnar, Image-Composition Architectures for Real-Time
Image Generation, Ph.D. thesis, University of North Carolina
at Chapel Hill, October 1991.

[21] S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A Sorting
Classification of Parallel Rendering, ZEEE Computer
Graphics and Applications, Vol. 14, No. 4 July 1994.

[22] S. Molnar, J. Eyles, and J. Poulton, PixelFlow: High-Speed
Rendering Using Image Composition, Computer Graphics
(Proc. Siggraph), Vol. 26, No. 2, July 1992.

[23] S. Teller and C.H. Sequin. Visibility preprocessing for
interactive walk&roughs. Computer Graphics (Proc.
Siggraph), 1991.

[24] J. Warnock, A hidden-surface algorithm for computer
generated halftone pictures, Technical Report TR 4-15, NTIS
AD-753 67 1, Department of Computer Science, University of
Utah, 1969.

[25] L. Williams, Pyramidal parametrics, Computer Graphics,
(Proc. Siggraph), 1983.

[26] H. Zhang, D. Manocha, T. Hudson, K. E. Hoff IR, Visibility
Culling using Hierarchical Occlusion Maps, Siggraph ‘97.

Figure 15. Canyon Scene, courtesy of 3D WinBench. Figure 17. Babylon 1, courtesy of Virtual Alchemy Studios.

Figure 16. Island Scene, courtesy of 3D WinBench. Figure 18. Babylon 2, courtesy of Virtual Alchemy Studio.

Adaptive Hierarchical Visibility in a Tiled Architecture
Feng Xie, Michael Shantz

142

