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Figure 1. Comparison of different antialiasing techniques for “Edgar” model. Left: absolute RGB errors with respect to 64x supersampling, 
multiplied by 4 (the bigger the error the darker the pixel). Right: percentage of pixels with luminosity error exceeding the threshold (i.e. for 
MLAA, 0.1% of pixels have errors exceeding 0.13). The maximum threshold error is 1.0.  
 

Abstract 
Post-processing antialiasing methods are well suited for deferred shading because they decouple antialiasing from the rest of graphics 
pipeline. In morphological methods, the final image is filtered with a data-dependent filter. The filter coefficients are computed by analyzing 
the non-local neighborhood of each pixel. Though very simple and efficient, such methods have intrinsic quality limitations due to spatial 
undersampling and temporal aliasing. We explore an alternative formulation in which filter coefficients are computed locally for each pixel 
by supersampling geometry, while shading is still done only once per pixel. 
During pre-processing, each geometric subsample is converted to a single bit indicating whether the subsample is different from the central 
one. The ensuing binary mask is then used in the post-processing step to retrieve filter coefficients, which were precomputed for all possible 
masks. For a typical 8 subsamples, it results in a sub-millisecond performance, while improving the image quality by about 10 dB. 
To compare subsamples, we use a novel symmetric angular measure, which has a simple geometric interpretation. We propose to use this 
measure in a variety of applications that assess the difference between geometric samples (rendering, mesh simplification, geometry encoding, 
adaptive tessellation). 
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1     Introduction 
Rendering is about sampling. Modern graphics hardware effi-
ciently antialiases texture samples, allowing shading parameters to 
be processed at a lower rate than geometric characteristics. This is 
rather fortunate, as shading is the most expensive part of the 
graphics pipeline. 
Table 1 shows a high-level snapshot of existing antialiasing techni-
ques. We used shades of gray to indicate typical sampling rates for 
a number of entities required for antialiasing computations (a 
white color for a single sample per pixel and scaling up to a black 
color for many subsamples). This table illustrates the fact that all 
of these values can be sampled at different rates. Bandwidth 
requirements are estimated for the deferred shading pipeline 
[GPB04]. This makes hardware-accelerated multisample anti-
aliasing and coverage sampling antialiasing [Ake93, You06] less 
efficient, since all color subsamples have to be written to output 
buffers for later processing.  
Morphological methods [IK99, Res09, BHD10, Per10, Bir11, 
JME*11, Lot11, JES*12] are the most economical in conserving 
bandwidth, as they require only a single color sample per pixel. 
These methods hallucinate silhouette edges from color (or depth) 

discontinuity data and then blend the colors around the found 
edges. This results in plausible single image antialiasing, 
comparable with more evolved image-space optimization 
techniques [DH72, Fat07]. However, this plausibility is broken in 
animation sequences, as the silhouettes might be reconstructed 
differently in subsequent frames.  
On the contrary, geometric methods [BWG03, CD05, Mal10, 

GG12, Per12] antialias pixels intersected by precisely computed 
silhouette edges. Though very accurate, this limits the usability of 
such methods to moderately complex scenes. 
Temporal aliasing artifacts are handled in high-quality variants of 
Subpixel Morphological Antialiasing [JES*12] and TXAA [Lot12] 
by processing additional color subsamples. TXAA uses hardware 
multi-sampling, an advanced sample-to-pixel filter, and temporal 
supersampling. SMAA addresses temporal aliasing from a 
software perspective by supplementing morphological antialiasing 
with additional multi/supersampling strategies.  Naïve combination 
of supersampling and morphological methods results in excessive 
blurring in the spatial domain and ghosting in the temporal 
domain. SMAA resolves this by offsetting the reconstructed 
silhouettes to match the subpixel positions, which is computatio-
nally efficient. 
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no antialiasing  x     

multisampling antialiasing MSAA [Ake93]       

coverage sampling antialiasing CSAA [You06]  
 

    

supersampling antialiasing SSAA [Lel80]  x     

MLAA [Res09, BHD10, Per10, Bir11, JME*11],  
FXAA [Lot11], SMAA 1x [JES*12]  x     

a directionally adaptive edge antialiasing  
[IYP09, Joh12] x      

geometric methods 
[BWG03, CD05, Mal10, GG12, Per12] x x     

edge blurring: directionally localized DLAA [And11];  
normal filter NFAA, screen-space SSAA [Uni11]  x     

temporal reprojection [NSL*07, YNS*09, Kap10]  x     

spatial/temporal supersampling + morphological  
antialiasing SMAA 4x [JES*12]  x     

deferred MSAA [Pet10]  x     

subpixel reconstruction antialiasing SRAA [CML11]  x     

surface based antialiasing SBAA [SV12]       

resampling antialiasing RSAA (this paper)       

 
legend: sampling rate per pixel x:   many    all    ∞   

 
Table 1. Guestimate of sampling rates for different antialiasing 
techniques. Bandwidth (last column) is estimated for the deferred 
shading pipeline. 

Unlike these two techniques, we restrict ourselves to a single color 
sample per pixel, but allow multiple geometric subsamples 
(positions and normals). Similar approaches were tried before. In 
sub-pixel reconstruction (SRAA), cross-bilateral filtering is 
applied to upsample per-pixel colors using multisampled geometry 
[YSL08, CML11]. Deferred MSAA [Pet10] averages the positions 
of those MSAA samples, whose depths are meaningfully different 
from that of the central one. The resulting coordinates are then 
used to bilinearly filter the final image. 
Our approach requires a geometry pre-pass, at which a bitmask is 
computed for each pixel. At post-processing stage, this mask is 
used to fetch filter coefficients from a precomputed lookup table. 
We call our new algorithm Resampling Antialiasing (RSAA). 
Each bit in the mask corresponds to an MSAA subsample 
indicating whether the subsample is different from the pixel center. 
The similarity is determined by analyzing geometric data alone, 
relying on the fact that color and geometry are closely correlated. 
The bitmask splits all subsamples in a pixel into two clusters, 
depending on whether they are similar or dissimilar to the pixel 
center.  
Conceptually, RSAA 

1. Sets the colors of all subsamples in the similar cluster to 
the color of the central subsample. 

2. Assumes that all subsamples in the dissimilar cluster 
have the same color, and that this color can be acquired 
from the pixel neighborhood. 

3. Computes the final pixel color by blending the colors of 
these two clusters with weights proportional to their 
coverage. 

This is all executed in a single bilinear texture request. In effect, 
RSAA attempts to emulate supersampling. This would work for 
simple scenes consisting of polygons of only two colors. For such 

scenes, we could precompute the optimal filtering coefficients for 
all possible bitmasks by minimizing the average error. This is 
essentially how we compute the lookup table, which is then used 
for real scenes.  

This approach works as long as assumptions 1 and 2 are accurate. 
This allows antialiasing quality closely matching the quality of 
MSAA, which is used for geometry sampling, except for scenes 
with a substantial amount of sub-pixel detail (see Figures 1 and 9). 
Even for such scenes, the quality of RSAA exceeds that of any 
morphological method with a single color sample per pixel. In 
comparison with hardware-accelerated MSAA, RSAA (and other 
post-processing methods) allows a significant bandwidth reduction 
in deferred shading applications.  

RSAA depends on a considerable correlation between geometry 
and shading parameters. For most situations, this is a correct 
assumption. However, violation of this assumption can result in 
whimsical artifacts. We resolve this by adding an additional 
verification step, which mitigates spurious filtering decisions by 
verifying that assumption 2 is indeed true. 

In all comparisons with MLAA in this paper, we have used the 
original implementation [Res09], as our goal was to ascertain the 
quality of different antialiasing techniques. The subsequent 
modifications [Per10, Bir11, JME*11, JES*12] were aiming at 
improving performance and content-specific optimizations. We 
observed that SMAA at 1x preset does not improve the peak 
signal-to-noise ratio, compared with the original MLAA 
implementation. The likely explanation is that most of the 
performance-driven versions of MLAA, unlike the original 
version, restrict the neighborhood size and use half-edge silhouette 
intersections only. 

A detailed account of state-of-the-art filtering approaches for real-
time antialiasing can be found in [JGY*11]. 

2     Antialiasing through Resampling 
During the pre-processing pass, we compare each subsample in a 
pixel with the pixel center, setting up a bit mask ('1' for similar, '0' 
for different subsamples). This mask, in effect, allows retrieving 
precomputed filter coefficients. To fully utilize hardware texture 
unit, we restrict ourselves to the situations when filtering is done 
through bilinear interpolation by issuing a single texel request per 
pixel. 

For each pixel, we fetch texture coordinate offsets from a pre-
computed lookup table, using the mask as an index. At the post-
processing step, the final color of each pixel is computed by 
bilinearly interpolating the original image at the position defined 
by the fetched offset vector. Figure 2 shows such offsets for a 
given triangle as red vectors.  

The offsets are precomputed for all possible masks and stored in a 
lookup table. For any given mask, the 2D offset vector is chosen to 
minimize the average error for a realistic training data set. 
Automated learning of low-dimensional parametric models from 
training data is a standard paradigm in computer vision; we 
explain the details of our approach in section 2.3. 

In principle, any similarity measure can be used for subsample 
comparison. Each choice has its own pros and cons. In the next 
section, we describe a novel approach that we call sum of the 
absolute dot products (SADP). It has a simple geometric 
interpretation, is reasonably fast, and robustly handles difficult 
cases. SADP can be used in various computer graphics problems 
that infer sample similarity from geometric data. In particular, 
most methods in Table 1 can benefit from this new measure. 
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Figure 2. RSAA offsets for a single triangle (shown as red vectors 
from pixel centers). Blue dots stand for subsamples that are similar 
to the pixel center, red for subsamples that differ. 

 

Figure 3. Three ways to detect different samples: using (a) depth, 
(b) normals, (c) the new SADP test. 

2.1 Geometry        Similarity Measure 
One of the most widely used approaches is to compare the depth of 
two subsamples, since it is readily available in the graphics 
pipeline. Deferred MSAA [Pet10] uses linearized depth to measure 
subsample similarity. Besides requiring calibration and 
linearization, this approach cannot reliably detect corners, as 
shown in Figure 3a (d1 == d2). 
Corner detection could be resolved with a measure that uses 
subsample normals – for example, their dot product. However, this 
measure will not be able to distinguish spaced-out almost-parallel 
surfaces as in Figure 3b. 
We can hope that combining these two approaches will somehow 
avoid the described pitfalls, and this combination is indeed used in 
practice. Surface based antialiasing [SV12] sorts out MSAA 
subsamples using the dot product of the subsample normals, in 
addition to their depth distribution. Nevertheless, assigning 
weights to the utilized components is non-trivial and scene-
dependent. The situation in Figure 3b might still be problematic if 
the distance between two planes were small.  
For two subsamples with positions p1 and p2 and (geometric) 
normals n1 and n2, we propose to use the following measure: 

sadp(n1, n2, r12)  =  (|n1 ∙ r12| + |n2 ∙ r12|) / length(r12) 
where  r12 = p1 − p2. 
 

(1) 

This is a sum of the absolute dot products of two normals and a 
normalized vector from one subsample to another. We call it 
SADP. HLSL implementation of this measure is given in Listing 1 
(lines 36-38). 

 

Figure 4. Pixels with non-zero RSAA offsets for Happy Buddha at 
three different simplification levels (10K, 100K, and 1M triangles). 
Pixel colors are proportional to the maximum dissimilarity value. 

For two subsamples on the same polygon, SADP is zero, and it 
increases as angles between normals and r12 become bigger. When 
the dot products are relatively small, each dot product is close to  
π/2 − α, where α is the angle between the normal and r12.  
To cluster subsamples, we will also need a similarity threshold. 
Two subsamples with SADP exceeding the threshold will be 
considered dissimilar. To choose the threshold, let’s remember that 
interpolated normals are used to create a smoothly varying illumi-
nation of a coarse mesh [Pho75]. For a triangle, the maximum 
angle between all its per-vertex normals signifies a tolerance thres-
hold of what is still considered to be “smooth”. This value, avera-
ged over all geometry, can be used as the SADP threshold as well.  
The RSAA authentication phase (section 2.4) can remove the majority 
of “wrong” offsets, so, in a practical sense, exact choice of the 
threshold is not that important. In all examples in this paper, we have 
used the value 0.4, which corresponds to two angles of about 11°. 
Among other desirable SADP properties, it is symmetric and does 
not depend on camera position. Figure 4 shows a Happy Buddha 
model at three different simplification levels. All pixels in which 
subsamples differ from the pixel center by more than 0.4 are marked 
with a gray color. The color intensity is proportional to the SADP 
value. SADP generally allows detecting sharp mesh creases. The total 
number of these creases decreases as the mesh becomes smoother. 
For specific applications, SADP clustering can be supplemented 
by other factors, including light visibility, material ids, etc. (see 
discontinuity buffer discussion in [Kel98]). 

2.2 Similarity Measure           Two Clusters 

We want to split all subsamples in a pixel into two clusters based on 
their similarity. This is one of the most common problems in science 
and there are multiple approaches to its solution. The simplest 
approach is putting all subsamples with similarity measures below 
the given threshold in one cluster, and all others in another. This is 
not advisable, as it fails to maximize the dissimilarity between the 
clusters. Indeed, in the case with the similarity = {0.4, 0.4, 0.4, 0.5, 

1.1, 1.2, 1.2, 1.3}, all eight subsamples will be put into the “dis-
similar” cluster. This is clearly not desirable and, if anything, we 
would like to err on the side of caution and put the questionable 
subsamples into the “similar” cluster. 
 

d 1 d 2
n 1

n 2

n 2n 1

r 12
(a) (b) (c)

p2p 1
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Figure 5. Subsamples similar to the pixel center are shown as blue, 
dissimilar – as white. Bottom: the best offset is shown as red vector 
(and it is not orthogonal to the yellow SVM classifier on top image). 

This problem can be solved with k-means [Mac67], but this 
algorithm is iterative and generally time-consuming. We have 
opted for a single iteration, consisting of two steps: 

1. Maximum of all similarity values is found (maxsim). 
2. If maxsim exceeds a given threshold, all subsamples are 

classified into two groups by comparing their similarity 
values with maxsim/2 + threshold/2. Otherwise, no 
actions are taken (pixel’s color will not be modified). 

This classifier would split the group above into {0.4, 0.4, 0.4, 0.5} 
and {1.1, 1.2, 1.2, 1.3}, which is the desired result. The bias 
threshold/2 is introduced to favor the center of the pixel for which 
the color is known a priori. 
Listing 2 provides HLSL implementation of this classifier: step 1 
in lines 195–202 and step 2 in lines 276–288. 
The subpixel reconstruction algorithm [CML11] does not expli-
citly classify the subsamples, instead using their similarity values 
as an input to cross-bilateral upsampling filter. It is a very 
interesting approach, allowing 1 ms execution on GeForce 560 at 
1080p. It is not void of artifacts and its combination with 
morphological methods is advised [JGY*11]. Some of these 
artifacts are due to the differences between bilateral filtering and 
bona fide supersampling. We believe that SADP measure (1) can 
reduce SRAA artifacts.  
Deferred MSAA [Pet10] utilizes non-adaptive (linearized) depth 
thresholding. It might be interesting to see if adaptive clustering, 
introduced in this section, will improve deferred MSAA quality. 

2.3 Two Clusters           Resampling Offsets 

We want to compute resampling offsets based on a bit mask that 
characterizes two clusters. We will first describe the prior art 
solutions followed by our approach. 

In simple cases, the found clusters could be separated by a line. 
This intuitively corresponds to a situation of two distinct surfaces 
overlapping the pixel. If these surfaces were simple polygons and 
we knew the neighborhood, this would allow very accurate 
reconstruction, perhaps even using the Hough transformation 
[DH72]. Indeed, looking at Figure 2, the reconstruction error is 
necessarily bounded by a small value.  

Geometric antialiasing methods [BWG03, CD05, Mal10, GG12, 
Per12] use scene data to improve image quality. In our case, we 
would like to restrict ourselves only to sampled data. Moreover, 
we do not want to infer costs associated with accessing subsamples 
in the neighboring pixels. If we restrict ourselves only to the cur-
rent pixel data, the accuracy of the silhouette reconstruction (either 
explicit or assumed) will suffer. Notably different cases may result 
in the same clustering, as shown in the bottom of Figure 5. 

Deferred MSAA [Pet10] avoids explicit silhouette reconstruction 
by directly computing the resampling offsets. This is done by 
averaging directions to all dissimilar subsamples. Considering the 
situation at the top of Figure 5, the resampling offset will be 
computed by averaging vectors C3, C4, and C5. Though very 
simple, it appears that this approach does not scale well with the 
increased number of samples. If only subsamples 2, 3, 5, and 6 
were different, the resulting offset would be close to zero and the 
final pixel color would not change meaningfully. It would differ 
significantly from the supersampled solution, in which only 
subsamples 0, 1, 4, and 7 will have color C. 

Support Vector Machine (SVM) methods allow classification of 
both linearly separable (as in Figure 5) and inseparable data sets 
[BB00]. This might seem like a good idea; Figure 5 shows such 
classification as a yellow line. This line maximizes the minimum 
distance to the two clusters. We could just consider the orthogonal 
vector as a direction of the resampling offset, but this approach has 
its drawbacks as well. It is derived for a continuous case, while in 
computer graphics sampling positions are predefined, essentially 
making the problem discrete.   

The red vector on the two images at the bottom of Figure 5 
deviates from the vector orthogonal to the SVM line by tilting 
down. Consequently, when the final image is bilinearly resampled, 
the pixel with coordinates [0.5,-0.5] will contribute more. Since 
this pixel is blue on the left image and white on the right, the 
resampled color for the pixel C will be closer to blue for the 
situation on the left. This is exactly the result we want to achieve 
since it corresponds more closely to the supersampled solution, 
which basically uses area of the trapezoids overlapping the pixel C 
to blend between white and blue colors, and this area is bigger on 
the left. Indirectly, we will be able to take into account samples 
outside the current pixel, even though we are using only the 
current pixel data.  

To actually find the best values for the resampling offsets in each 
of 255 cases (for 8 subsamples), we will approach this problem 
from a computer vision perspective. In CV problems, it is 
customary to come up with a generic model and then train it on 
experimental data. Since our model has 2 parameters (resampling 
coordinates) for each of 255 cases, we just treat it as an 
optimization problem: find the values of these parameters which 
minimize average error for the given training set. 
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Figure 6. Why authentication is needed: without it, the color of the 
chosen pixel C will have significant contributions from pixels A and B.  

It is possible to have a domain-specific training set (for example, 
for each game), and it is quite likely that it will result in the most 
accurate solution for a particular domain. We tried to come up 
with a broader approach that will work in all cases. 

We created a training data set with 106 cases when one or two 
randomly generated lines intersected a pixel. These lines split the 
plane into polygons. Subsamples in the same polygon as the pixel 
center were assigned the color white, while others were set to 
black.  

For each bit mask (generating subsample clustering), we looked on 
all cases from the training data that would create such a mask. If a 
particular mask could be created by a single line crossing the pixel, 
we used only those cases from the training set; otherwise two lines 
were used. This was done in spirit of Ockham's razor, preferring 
the simplest possible explanation.  

If we use DirectX 8x MSAA subsamples, 40 possible configu-
rations can be explained by just a single line, while 151 can be 
explained by two lines. For the remaining cases, direction to the 
most distant (from the center of the pixel) dissimilar subsample 
was used as the direction of the resampling vector and its length 
was chosen to approximate the coverage area. 

A float array uva[512] in Listing 3 contains 256 resampling offsets 
for 8x MSAA subsamples. 

2.4 Authentication of Resampling Offsets 

This section describes some RSAA problems and suggests ways to 
mitigate them. Essentially, RSAA works by blending colors 
assigned to two clusters. One of these clusters contains a pixel 
center, and its color is always available. This is not the case for the 
second cluster, which has to get its color by resampling the pixel 
neighborhood. This may create problems in certain situations. 

In Figure 6, the pixel C is intersected by two small triangles, blue 
and green, which are detected by SADP. The final color of pixel C 

will be computed by bilinearly resampling the image at the 
position indicated by the black arrow. Accordingly, it will be 
greatly affected by the colors of pixels A and B, belonging to the 
red background object. This is not the desired result, as we would 
prefer to blend colors C and D. 

This situation could not only occur with small geometric details, 
but also near sharply curved silhouette edges.  

One way to fight this would be to verify that dissimilar subsamples 
are more comparable with the nearest outside pixel than with the 
current pixel center, and move them to the similar cluster other-
wise. This process would reclassify subsamples 1, 4, and 6, while 
using only subsample 2 to find the resampling offset. HLSL 
implementation of this approach (executed at the geometry pre-
processing step) is given in Listing 2, starting at line 136. 

The disadvantage of this method is that it requires processing of all 
subsamples in a pixel without first deciding whether we need the 
resampling offset for the pixel at all.  

An alternative way to address this problem is to reduce the length 
of the resampling vector in problematic situations once we decide 
that resampling is indeed necessary. To detect such situations in 
the post-processing step, we first choose one dissimilar subsample, 
which is the furthest away from the pixel center, as a represen-
tative of the dissimilar cluster (it will be subsample 6 in Figure 6). 
Then, we compare two SADP values. One is the difference 
between the pixel center and the representative dissimilar 
subsample. Another is the difference between the pixel center and 
the outside pixel that is closest to the representative subsample 
(pixel A). This will result in halving the length of the black 
resampling vector, thus reducing the artifact. Ideally, we would 
just compare subsample 6 and pixel A, but we do not want to keep 
g-buffer data for all subsamples at the post-processing stage. The 
rationale for this is that we want the dissimilar subsamples to be 
closer to the outside pixels than to the similar subsamples. This 
implementation is given in Listing 3 starting at line 294. 

The most accurate approach is to assign a color to the dissimilar 
cluster by checking the representative subsample against all 
neighboring pixels and then blending the colors of the two clusters 
with weights proportional to their coverage areas. With a suitable 
neighborhood size, this helps fight severe undersampling effects at 
the price of increased execution time.  

In short, we can always be sure of the color of the central 
subsample and, by proxy, the color of the similar cluster. The 
accuracy of the color assigned to the dissimilar cluster can be 
increased with an additional processing. 

3     Implementation Details 

3.1 Data Layout Optimization 

RSAA similarity masks are used to fetch resampling offsets for each 
pixel (by indexing array uva[] in Listing 3). These masks can be 
stored as per-pixel indices during the geometry pre-pass. However, 
since individual bits are not addressable and locks are too expensive, 
it is more expedient to output per-subsample SADP values during 
the pre-pass. These values will then be retrieved at the post-
processing step and converted to a bona fide binary index for each 
pixel. Per-subsample SADP values are also required for the post-
processing authentication mode (section 2.4). Since SADP values 
are used only in comparison operations, it is possible to compress 
them. In the accompanying listings, compression/decompression to 
and from 8-bit values is executed in lines 174 and 199. 
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In addition to the compressed SADP values, we use the 
DXGI_FORMAT_R16G16_UINT buffer to store/retrieve compressed 
normals at pixel centers (see EncodeNormal/DecodeNormal 
functions in Listing 1). These surface normals can be supplied by 
an application, but we opted for a more generic solution, 
computing the normals in the geometry shader (preGS shader in 
Listing 2). Typically, normals will be a part of a deferred shading 
pipeline, so this may be unnecessary. Rough estimation of the 
accuracy of the normals, compressed to 32 bits, is 2 π / 2

16-2 = 
3.8∙10

-4, which is quite sufficient for our needs (this is signi-
ficantly smaller than threshold = 0.4). 

3.2 Geometry Pre-pass Optimization 
RSAA requires processing of multiple subsamples per pixel. For 
fully covered pixels, this is unnecessary (since all SADP values 
will be zero anyway). DirectX 11 allows the recognition of these 
situations by looking at the coverage mask (SV_Coverage 
semantics). This optimization reduces the processing time by about 
0.2 ms on the NVIDIA GeForce GTX 580, and we provide such 
implementation in the preGS shader (line 104). The disadvantage 
of this method is that it requires a DirectX 11 capable card. It is 
also possible to optimize this pass in DirectX 9, for example, by 
comparing primitive ids. This approach will be application-
specific, however, particularly if hardware tessellation is used. 
Another DirectX 11 specific optimization is to use geometry 
multisampling. Ordinarily, all values except depth are sampled at 
pixel centers. Yet, subsample values can be explicitly accessed in 
pull-mode by using the EvaluateAttributeAtSample function. 
However, this is not allowed for SV_Position variables. We remedy 
this by replicating positions (lines 86 and 126). Since we are using 
geometric normals, pull-mode evaluation is unnecessary for nor-
mals (which are computed for each triangle in the preGS shader). 

4     Discussion 

4.1 Performance vs Quality 
Performance can be measured precisely and leaves little room for 
interpretation. This is not the case with image quality. The image 
processing community has adopted peak-signal-to-noise ratio 
(PSNR) as an objective gauge, while no generally accepted or 
widely used metric exists for rendering problems. This is quite 
understandable, considering the differing goals of these commu-
nities: accurate reconstruction of a known image compared with 
creating a believable illusion.  
Even so, PSNR is a useful tool, particularly for comparison of 
similar methods applied to the same scene [HTG08]. We used it to 
compare different variants of RSAA. Figure 7 shows perfor-
mance/quality tradeoffs, considering the following factors: 

- 4 or 8 MSAA geometric subsamples per pixel; 
- either the depth or SADP test is used for subsample 

differentiation; 
- three authentication modes (no authentication, post-

processing authentication, pre-pass authentication) defined 
by authentication_mode in Listing 1. 

By choosing a single factor from each row above, we will get 12 
possible combinations. Figure 7 shows the obtained quality impro-
vement and the incurred performance penalty for all of them. 
SADP, in comparison with the depth-only test, improves quality 
by up to 3 dB while incurring a penalty of about 0.1 ms on the 
NVIDIA GeForce GTX 580. The difference between 4 and 8 
subsamples is more significant: about 4 dB and a 0.4 ms penalty. 

The performance data in this chart excludes the time required for 
computing and storing per-pixel normals, which we assume could 
be a part of the deferred shading pipeline anyway. Our imple-
mentation of EncodeNormal/DecodeNormal functions in Listing 1 
incurs a 0.25 ms penalty. 
PSNR measurements are also rather convenient when analyzing 
the temporal behavior of different methods. Figure 9 shows PSNR 
values (with respect to 64x supersampling) for two animation 
sequences. Though absolute PSNR values vary from frame to 
frame, distance between different antialiasing techniques remains 
almost constant, with one important exception. When the UNC 
exploding dragon finally disintegrates into thousands of pieces, 
RSAA quality goes below 4x MSAA, while still exceeding one for 
MLAA. MSAA is generally more robust to such calamity by using 
more color samples for problematic pixels.  
PSNR may not say much about what artifacts are actually 
noticeable. In Figure 1, we used a different approach by counting the 
number of pixels for which the luminosity error exceeds a given 
threshold. Though aliasing artifacts affect only a fraction of pixels, 
they are quite noticeable due to the hyperacuity of human vision.  
For more fine-tuned methods to compare images, a calibrated 
visual metric [MKR*11] or other methods may be considered. We 
have opted for PSNR, as it is generally well known, and provides 
important yardsticks for visual quality (45 dB considered to be 
‘very good’). 

4.2 Limitations 
RSAA’s problems are most noticeable when its assumptions are 
broken, i.e., when there are more than two distinct surfaces 
overlapping a pixel or when there are not enough valid samples in 
the neighborhood (see Figure 8). The first situation typically 
corresponds to the intersection of two silhouettes when the 
background is also visible. This occurs less frequently than typical 
MLAA artifacts caused by mispredicting a single silhouette line.  
It also seems that humans are wired to pay particular attention to 
silhouettes, while deciphering triple-overlapping regions is more 
difficult.   
There is no cure for the significant undersampling, except more 
samples at run-time or prefiltering at off-time. 

5     Summary  
RSAA translates knowledge about the geometry, sampled at a 
higher rate than the shading parameters, into better images. This 
knowledge, obtained in the pre-processing step, is converted to the 
resampling coordinates, which are applied in the post-processing 
step, leaving the rest of the pipeline intact.  

 

Figure 7. Performance-quality tradeoffs for the different RSAA 
variants. 0, 1, and 2 stand for {no, post, and pre}-processing 
authentication respectively. The data is gathered on an NVIDIA 
GeForce GTX 580 at 1280x720 resolution. 

8 subsamples (depth, SADP)

4 subsamples (depth, SADP)
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Figure 8. Aliasing artifacts for the different techniques. MLAA pre-
dicts silhouette edges that may be different from the real ones (top 
of the racket, the right pupil, space between eyes). This results in 
high-frequency temporal aliasing. RSAA artifacts are mostly 
restricted to situations in which three or more distinct surfaces 
overlap a pixel (left edge of the racket) or when there are no valid 
color samples in the vicinity of a pixel (the space between the 
eyebrow and the head). SSAA allows effective implicit texture 
mipmapping (see the center of the racket). For other techniques, 
this has to be done explicitly. 

It appears that an 8X increase in the geometry sampling rate still 
allows noticeable improvements in quality. Beyond that, there is a 
point of diminishing returns, mostly reducing errors, which are 
already rather small, and not really addressing undersampling 
artifacts. The intriguing question is whether undersampling can be 
mitigated by using the third dimension, i.e. computing 3D 
resampling offsets for mipmaped images. We believe that this is 
possible, given that the SADP measure would allow the detection 
of undersampling by measuring the standard deviation (std) among 
subsamples. This value can be used to choose a proper mipmaping 
level (0 for small std and then increasing with std). 
RSAA allows for about a 10 dB improvement in image quality. To 
improve it even further, there is always the possibility of 
increasing the sampling rate for shading parameters and then 
downsampling for the final image. This is true for most anti-
aliasing methods from Table 1 (and was actually done for FXAA 
and SMAA).  
We have provided a set of quality/performance tradeoffs that may 
be useful in practical applications. Among the contributions that 
might be interesting for researchers and practitioners are: 

- Novel geometric similarity measure (section 2.1). 
- Fast adaptive clustering (2.2). 
- Computer vision approach to precomputing resampling 

offsets (2.3). 
- Authentication methods (2.4). 
- Subsample processing through pull-mode attribute 

evaluation, consistent with DirectX 11 (section 3). 
In a typical scene, geometry and colors are highly correlated. We 
propose a new way to learn and exploit this correlation by 
applying computer vision principles.  
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Listing 1.  common.hlsl 

#define authentication_mode 1 // 0 (no), 1/2 for post/pre pass) 1 
#define dbits               8 // 8, 16, or 32 (for differencesMS) 2 
 3 
// dbits == 8 requires DXGI_FORMAT_R8_UINT, etc. 4 
// dscale is used to encode/decode sadot() values as integers. 5 
#define dscale float(1 << (dbits - (dbits == 32? 2:1))) 6 
 7 
uint2 EncodeNormal(float3 n) { 8 

// We do not care about normal's orientation, 9 
// since it will be used as abs(dot(n,r)). 10 

  const float scale = (1<<(16-2)) - 1; 11 
  return uint2(floor(((n.z < 0? -1:1)*n.xy + 2) * scale)); 12 
} 13 
 14 
float3 DecodeNormal(uint2 c) { 15 
  const float scale = (1<<(16-2)) - 1; 16 
  float3 n; 17 
  n.xy = (c - 2) / scale; 18 
  n.z = sqrt(1 - n.x*n.x - n.y*n.y); 19 
  return n; 20 
} 21 
 22 
float3 ScreenToWorld(float3 s) { 23 
  // http://www.gamedev.net/topic/ 24 
     506573-reconstructing-position-from-depth-data/ 25 
 26 
  float x = +((s.x / halfwidth ) - 1); 27 
  float y = -((s.y / halfheight) - 1); 28 
 29 

float4 world_position_4d =  30 
    mul(float4(x, y, s.z, 1), WorldViewProjectionInverse); 31 
 32 
  return world_position_4d.xyz / world_position_4d.w; 33 
} 34 
 35 
float sadot(float3 r12, float3 n1, float3 n2) { 36 
  return (abs(dot(n1,r12)) + abs(dot(n2,r12))) * rcp(length(r12)); 37 
} 38 

Listing 2.  prepassShaders.hlsl 

 39 
struct VSInput { 40 
  float4 PositionOS : POSITION; 41 
  // ... 42 
}; 43 
 44 
struct preVSOutput { 45 
  float4 PositionCS : SV_Position; 46 
  float3 PositionWS : POSITIONWS; 47 
}; 48 
 49 
struct prePSInput { 50 
  float4 PositionSS : SV_Position; 51 
  float3 PositionWS : POSITIONWS; 52 
  float3 NormalWS   : NORMALWS; 53 
}; 54 
 55 
struct prePSOutput { 56 
  uint SampleDifference  : SV_Target0; 57 
}; 58 
 59 
preVSOutput preVS(in VSInput input) { 60 
  preVSOutput output; 61 
    // The world-space position 62 
    output.PositionWS = mul(input.PositionOS, World).xyz; 63 
    // The clip-space position 64 
    output.PositionCS = 65 
      mul(input.PositionOS, WorldViewProjection); 66 
    return output; 67 
} 68 
 69 
[maxvertexcount(3)] 70 
void preGS(triangle preVSOutput input[3],  71 
           inout TriangleStream<prePSInput> TriStream, 72 
           uint id : SV_PrimitiveID) { 73 
 74 
    prePSInput output; 75 

84

http://timothylottes.blogspot.com/2012/03/unofficial-txaa-info.html
http://mynameismjp.wordpress.com/2010/08/16/deferred-msaa
http://unity3d.com/support/documentation/Components/index.html
http://www.gamedev.net/topic/506573-reconstructing-position-from-depth-data/
http://www.gamedev.net/topic/506573-reconstructing-position-from-depth-data/


 76 
    // Compute triangle’s geometric normal 77 
    float3 n3 = normalize( 78 
      cross(input[2].PositionWS - input[0].PositionWS,  79 
            input[0].PositionWS - input[1].PositionWS)); 80 
 81 
    [unroll] for (int i = 0; i < 3; i++) { 82 
      // The pull-model evaluation of SV_Position 83 
      // (using EvaluateAttributeAtSample) is not allowed, 84 
      // so we circumvent it by replicating the data. 85 
      output.PositionSS = input[i].PositionCS; 86 
      output.PositionWS = input[i].PositionWS; 87 
      output.NormalWS   = n3; 88 
      TriStream.Append(output); 89 
    } 90 
 91 
    TriStream.RestartStrip(); 92 
} 93 
 94 
Texture2D<uint2> normal_data : register(t0); 95 
// depth_data is used only for authentication_mode == 2 96 
Texture2D<float> depth_data  : register(t1);  97 
 98 
prePSOutput prePS(in prePSInput input,  99 
                  in uint si: SV_SampleIndex,  100 
                  in uint coverage: SV_Coverage) {  101 
  prePSOutput ret; 102 
 103 
  // A shortcut for fully covered pixels. 104 
  if (coverage == (1 << 8) - 1) { 105 
    ret.SampleDifference = 1; // decoded to 0 106 
    return ret; 107 
  } 108 
 109 
  float2  positionSS = input.PositionSS.xy; 110 
  uint2 sampleIndex2 = uint2(positionSS); 111 
  uint3 sampleIndex3 = uint3(sampleIndex2, 0); 112 
 113 
  uint2 nci = normal_data.Load(sampleIndex3); 114 
 115 
  // A shortcut for background subsamples. Those subsamples 116 
  // could only be compared with foreground subsamples  117 
  // (since the relevant shaders are called only for  118 
  // the foreground geometry). 119 
  // In this case, we assume that they are always "different". 120 
  if (nci.x == 0) { 121 
    ret.SampleDifference = uint(dscale) + 1; 122 
    return ret; 123 
  } 124 
 125 
  // subsample's position and normal 126 
  float3 ps = EvaluateAttributeAtSample(input.PositionWS, si); 127 
  float3 ns = input.NormalWS; 128 
  // center's position and normal 129 
  float3 pc = input.PositionWS; 130 
  float3 nc = DecodeNormal(nci); 131 
  // the difference 132 
  float  sc = sadot(ps - pc, ns, nc); 133 
 134 
  const float threshold = 0.2f; // half 135 
 136 
  #if authentication_mode == 2 137 
 138 

if (sc > threshold) { 139 
static const float2 sampleOffset[] = { 140 

      float2( 0, -1), // ___________________ 141 
      float2( 0,  1), // |               7 | 142 
      float2( 1,  0), // |      3          | 143 
      float2(-1, -1), // |         0       | 144 
      float2(-1,  1), // |  5     .    2   | 145 
      float2(-1,  0), // |       1         | 0------> x-axis 146 
      float2( 0,  1), // |    4            | | 147 
      float2( 1, -1)  // |           6     | | 148 
    };               // |_________________| V y-axis 149 
 150 
    // Consider the pixel in the neighborhood  151 
    // which is the closest to the current subsample. 152 
    sampleIndex2 += sampleOffset[si]; 153 
    uint2 noi = normal_data.Load(int3(sampleIndex2, 0)); 154 
    if (noi.x) { // is the candidate pixel in foreground? 155 
      float  zo = depth_data.Load(int3(sampleIndex2, 0)); 156 
      float3 no = DecodeNormal(noi); 157 
      float3 po = ScreenToWorld( 158 
        float3(positionSS + sampleOffset[si], zo)); 159 
      float  so = sadot(ps - po, ns, no); 160 
      if (so > sc) { 161 
        // There are bigger differences between the candidate  162 
        // pixel and the current subsample than between the  163 
        // current subsample and the pixel center, 164 

        // so we will ignore this subsample completely. 165 
         sc = 0; 166 
     } 167 
    } 168 
  } 169 
  #endif 170 
 171 
  // For foreground subsamples, it will be always >= 1. 172 
  // For background subsamples, ret.SampleDifference == 0  173 
  // (since RT is cleared every frame). 174 
  ret.SampleDifference = uint(dscale * sc) + 1; 175 
  return ret; 176 
} 177 

Listing 3.  postprocessingShader.hlsl 
Texture2D<float4>    color_data : register(t0); 178 
Texture2D<uint2>    normal_data : register(t1); 179 
Texture2DMS<uint> differencesMS : register(t2); 180 
// depth_data is used only for authentication_mode == 1 181 
Texture2D<float>     depth_data : register(t3); 182 
 183 
float4 postPS(in PSInput input) : SV_Target { 184 
 185 
  float2  positionSS = input.PositionSS.xy; 186 
  uint2 sampleIndex2 = uint2(positionSS); 187 
  uint3 sampleIndex3 = uint3(sampleIndex2, 0); 188 
 189 
 // Encoded normal @ pixel's center. 190 
  uint2 nci = normal_data.Load(sampleIndex3); 191 
 192 
  float maxsim = 0; // maximum   similarity 193 
  float d[8];       // subsample similarity 194 
 195 
  [unroll] for (uint i = 0; i < 8; i++) { 196 
    uint sci = differencesMS.Load(sampleIndex2, i); 197 
    // fg - bg tramps all other differences. 198 
    // sc = sample in fg? decode it : big_number; 199 
    float sc = sci? (sci - 1) / dscale : nci.x; 200 
    d[i] = sc; 201 
    maxsim = max(maxsim, sc); 202 
  } 203 
 204 
  const float threshold = 0.2f; // half 205 
 206 
  float4 color; 207 
 208 
  static const float uva[] = { 209 
     0.889, -0.889, -0.799,  0.000,  0.839,  0.176, -0.755, -0.250,  210 
     0.084,  0.778,  0.070,  0.668,  0.044,  0.661,  0.145, -0.536,  211 
    -0.803, -0.066, -0.735, -0.096,  0.683,  0.107,  0.562,  0.164,  212 
     0.025,  0.703, -0.509, -0.058, -0.552, -0.011, -0.356, -0.042,  213 
     0.682,  0.283, -0.757,  0.025,  0.707,  0.204,  0.587,  0.175,  214 
     0.667, -0.667,  0.556, -0.556,  0.073, -0.571,  0.051,  0.430,  215 
    -0.621,  0.023, -0.019,  0.616,  0.589,  0.088,  0.468,  0.144,  216 
     0.556, -0.556,  0.444, -0.444,  0.444, -0.444,  0.333, -0.333,  217 
    -0.057, -0.792, -0.098,  0.694,  0.426, -0.426, -0.045,  0.565,  218 
     0.065, -0.729, -0.033, -0.609,  0.065, -0.591,  0.090, -0.477,  219 
     0.636, -0.140, -0.114,  0.561,  0.538,  0.144,  0.389,  0.199,  220 
    -0.017, -0.658,  0.033,  0.453,  0.312, -0.312,  0.041,  0.315,  221 
     0.700,  0.000,  0.589, -0.244, -0.074, -0.605,  0.506,  0.107,  222 
     0.556, -0.556,  0.444, -0.444,  0.067, -0.480,  0.049,  0.367,  223 
     0.369,  0.230,  0.357,  0.237,  0.447,  0.120,  0.332,  0.140,  224 
     0.000,  0.318,  0.000,  0.314, -0.071,  0.438, -0.103,  0.247,  225 
    -0.767,  0.120,  0.706, -0.176,  0.737,  0.081, -0.606, -0.230,  226 
    -0.598,  0.203, -0.537, -0.095, -0.296, -0.347, -0.435, -0.100,  227 
     0.101,  0.761, -0.631, -0.127,  0.617,  0.099,  0.484, -0.090,  228 
    -0.620, -0.128, -0.455, -0.065, -0.511,  0.051, -0.319, -0.042,  229 
     0.667, -0.667,  0.556, -0.556,  0.634,  0.136, -0.540,  0.074,  230 
     0.556, -0.556,  0.444, -0.444, -0.148, -0.376, -0.139, -0.214,  231 
     0.556, -0.556,  0.444, -0.444,  0.534,  0.148,  0.376, -0.061,  232 
     0.444, -0.444,  0.333, -0.333, -0.415,  0.068, -0.210, -0.029,  233 
     0.667, -0.667,  0.556, -0.556,  0.564,  0.031,  0.444, -0.444,  234 
     0.556, -0.556,  0.444, -0.444,  0.039, -0.484,  0.039, -0.371,  235 
     0.556, -0.556,  0.386, -0.909,  0.446,  0.145,  0.371, -0.074,  236 
     0.444, -0.444, -0.633,  0.377,  0.236, -0.236, -0.074,  0.170,  237 
     0.556, -0.556,  0.444, -0.444,  0.241, -0.283,  0.432,  0.097,  238 
     0.444, -0.444,  0.333, -0.333,  0.088, -0.339,  0.051, -0.246,  239 
     0.395, -0.896,  0.368, -0.936,  0.284, -0.171,  0.243, -0.087,  240 
     0.488, -0.488,  0.474, -0.474,  0.159, -0.174,  0.068, -0.073,  241 
    -0.720,  0.416,  0.145,  0.699,  0.676,  0.263, -0.616, -0.210,  242 
     0.042,  0.688,  0.122,  0.604,  0.038,  0.638,  0.118,  0.505,  243 
     0.286,  0.667,  0.152,  0.518,  0.238,  0.556, -0.494, -0.075,  244 
     0.238,  0.556, -0.227,  0.255,  0.190,  0.444,  0.094,  0.320,  245 
     0.684,  0.684,  0.730, -0.015, -0.759,  0.030, -0.500,  0.085,  246 
     0.238,  0.556, -0.392, -0.928,  0.081,  0.596, -0.110,  0.323,  247 
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     0.238,  0.556,  0.366,  0.366,  0.190,  0.444, -0.347,  0.081,  248 
     0.190,  0.444,  0.646,  0.452,  0.143,  0.333,  0.044,  0.243,  249 
     0.286,  0.667,  0.042, -0.612,  0.238,  0.556,  0.447, -0.070,  250 
     0.238,  0.556,  0.039, -0.531,  0.190,  0.444,  0.098, -0.400,  251 
     0.238,  0.556,  0.169,  0.369,  0.190,  0.444,  0.190,  0.206,  252 
     0.190,  0.444, -0.066,  0.343,  0.143,  0.333,  0.078,  0.229,  253 
     0.238,  0.556,  0.623, -0.046,  0.190,  0.444,  0.328,  0.151,  254 
     0.190,  0.444,  0.000,  0.266,  0.143,  0.333,  0.047, -0.280,  255 
     0.039,  0.404,  0.340,  0.200,  0.259,  0.349,  0.162,  0.140,  256 
     0.119,  0.270,  0.437,  0.267,  0.240,  0.307,  0.050,  0.112,  257 
    -0.000, -0.682, -0.640, -0.111, -0.000, -0.679,  0.540, -0.177,  258 
    -0.320, -0.283, -0.441, -0.129, -0.319, -0.281, -0.344, -0.158,  259 
    -0.556, -0.079, -0.565, -0.144, -0.444, -0.063,  0.405,  0.034,  260 
    -0.347,  0.960, -0.307,  0.118, -0.313,  1.000, -0.212,  0.055,  261 

    -0.556, -0.079, -0.444, -0.063,  0.232, -0.560, -0.454,  0.072,  262 

    -0.034, -0.385, -0.311, -0.366, -0.263, -0.307, -0.130, -0.151,  263 

    -0.444, -0.063, -0.252,  0.000, -0.333, -0.048, -0.312,  0.042,  264 

    -0.333, -0.048, -0.327, -0.481, -0.331,  0.260, -0.122, -0.020,  265 

    -0.556,  0.556, -0.444,  0.444, -0.444,  0.444, -0.333,  0.333,  266 

    -0.000, -0.372, -0.000, -0.369, -0.000, -0.371,  0.105, -0.290,  267 

    -0.444,  0.444, -0.544,  0.604, -0.333,  0.333,  0.271,  0.047,  268 

    -0.518,  0.518, -0.280,  0.289, -0.505,  0.505, -0.062,  0.077,  269 

    -0.267, -0.444, -0.200, -0.333, -0.674, -0.448,  0.189, -0.189,  270 

    -0.141, -0.314, -0.338, -0.380, -0.286, -0.291, -0.028, -0.146,  271 

     0.333,  0.067,  0.314, -0.150,  0.339,  0.445,  0.192,  0.290,  272 

     0.000,  0.162, -0.170,  0.150,  0.177, -0.169,  0.000,  0.000 273 

  }; 274 

  static const float2 uvo[] = uva; 275 

 276 

  if (maxsim/2 > threshold) { 277 

    maxsim = maxsim/2 + threshold; 278 

    uint m = 1;    // bit index 279 

uint mask = 0; // bits: 0 for different, 1 for the same 280 

    uint fs;         // 'furthest sample' 281 

 282 

    [unroll] for (uint i = 0; i < 8; i++, m <<= 1) { 283 

      if (d[i] <= maxsim) { 284 

        mask |= m; // similar 285 

      } else { 286 

        fs = i;    // different 287 

      } 288 

    } 289 

 290 

    positionSS += uvo[mask]; // add precomputed offset 291 

    positionSS /= InputSize; // convert to [0,1] 292 

    color = color_data.Sample(LinearSampler, positionSS); 293 

 294 

    #if authentication_mode == 1 295 

static const float2 sampleOffset[] = { 296 
      float2( 0, -1), // ___________________ 297 
      float2( 0,  1), // |               7 | 298 
      float2( 1,  0), // |      3          | 299 
      float2(-1, -1), // |         0       | 300 
      float2(-1,  1), // |  5     .    2   | 301 
      float2(-1,  0), // |       1         | 0------> x-axis 302 
      float2( 0,  1), // |    4            | | 303 
      float2( 1, -1)  // |           6     | | 304 
    };               // |_________________| V y-axis 305 
    // Consider the pixel in the neighborhood 306 
    // which is the closest to the different subsample fs. 307 
    sampleIndex2 += sampleOffset[fs]; 308 
    uint2 nco = normal_data.Load(int3(sampleIndex2, 0)); 309 
    if (nci.x && nco.x) { // see if both normals are valid 310 
      // The current pixel: depth, normal, position 311 
      float  zc = depth_data.Load(sampleIndex3); 312 
      float3 nc = DecodeNormal(nci); 313 
      float3 pc = ScreenToWorld(float3(positionSS, zc)); 314 
      // The closest neighborhood pixel (used for blending). 315 
      float  zo = depth_data.Load(int3(sampleIndex2, 0)); 316 
      float3 no = DecodeNormal(nco); 317 
      float3 po =  318 
        ScreenToWorld(float3(positionSS + sampleOffset[fs], zo)); 319 
      float  co = sadot(pc - po, nc, no); 320 
      if (co - d[fs] > d[fs]) { // so ~ co – sc 321 
        // Use 1/2 resampling offset. 322 

positionSS  = input.PositionSS.xy + 0.5*uvo[mask]; 323 
         positionSS /= InputSize;  324 
         color = color_data.Sample(LinearSampler, positionSS); 325 
      } 326 
    } 327 
    #endif 328 
 329 
  } else { 330 
    color = color_data.Load(sampleIndex3); // no changes 331 
  } 332 
  return color; 333 
} 334 

 

Figure 9. Comparison of the five different antialiasing techniques using two animations: emoticon model (top) and the UNC exploding dragon 
(bottom).The peak signal-to-noise ratio is measured against 64x supersampling (the bigger the better). Note that RSAA goes below 4x MSAA 
when the dragon starts disintegrating, but it is still better than MLAA. The RSAA version with 8 geometric subsamples and post-processing 
authentication is used. 
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