
Reducing Aliasing Artifacts through Resampling
Alexander Reshetov

Intel Labs

 No AA MLAA RSAA 8x MSAA

Figure 1. Comparison of different antialiasing techniques for “Edgar” model. Left: absolute RGB errors with respect to 64x supersampling,
multiplied by 4 (the bigger the error the darker the pixel). Right: percentage of pixels with luminosity error exceeding the threshold (i.e. for
MLAA, 0.1% of pixels have errors exceeding 0.13). The maximum threshold error is 1.0.

Abstract
Post-processing antialiasing methods are well suited for deferred shading because they decouple antialiasing from the rest of graphics
pipeline. In morphological methods, the final image is filtered with a data-dependent filter. The filter coefficients are computed by analyzing
the non-local neighborhood of each pixel. Though very simple and efficient, such methods have intrinsic quality limitations due to spatial
undersampling and temporal aliasing. We explore an alternative formulation in which filter coefficients are computed locally for each pixel
by supersampling geometry, while shading is still done only once per pixel.
During pre-processing, each geometric subsample is converted to a single bit indicating whether the subsample is different from the central
one. The ensuing binary mask is then used in the post-processing step to retrieve filter coefficients, which were precomputed for all possible
masks. For a typical 8 subsamples, it results in a sub-millisecond performance, while improving the image quality by about 10 dB.
To compare subsamples, we use a novel symmetric angular measure, which has a simple geometric interpretation. We propose to use this
measure in a variety of applications that assess the difference between geometric samples (rendering, mesh simplification, geometry encoding,
adaptive tessellation).

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation — Antialiasing
Keywords: antialiasing, post-processing effects, deferred shading, clustering

e-mail: alexander.reshetov@intel.com

1 Introduction
Rendering is about sampling. Modern graphics hardware effi-
ciently antialiases texture samples, allowing shading parameters to
be processed at a lower rate than geometric characteristics. This is
rather fortunate, as shading is the most expensive part of the
graphics pipeline.
Table 1 shows a high-level snapshot of existing antialiasing techni-
ques. We used shades of gray to indicate typical sampling rates for
a number of entities required for antialiasing computations (a
white color for a single sample per pixel and scaling up to a black
color for many subsamples). This table illustrates the fact that all
of these values can be sampled at different rates. Bandwidth
requirements are estimated for the deferred shading pipeline
[GPB04]. This makes hardware-accelerated multisample anti-
aliasing and coverage sampling antialiasing [Ake93, You06] less
efficient, since all color subsamples have to be written to output
buffers for later processing.
Morphological methods [IK99, Res09, BHD10, Per10, Bir11,
JME*11, Lot11, JES*12] are the most economical in conserving
bandwidth, as they require only a single color sample per pixel.
These methods hallucinate silhouette edges from color (or depth)

discontinuity data and then blend the colors around the found
edges. This results in plausible single image antialiasing,
comparable with more evolved image-space optimization
techniques [DH72, Fat07]. However, this plausibility is broken in
animation sequences, as the silhouettes might be reconstructed
differently in subsequent frames.
On the contrary, geometric methods [BWG03, CD05, Mal10,

GG12, Per12] antialias pixels intersected by precisely computed
silhouette edges. Though very accurate, this limits the usability of
such methods to moderately complex scenes.
Temporal aliasing artifacts are handled in high-quality variants of
Subpixel Morphological Antialiasing [JES*12] and TXAA [Lot12]
by processing additional color subsamples. TXAA uses hardware
multi-sampling, an advanced sample-to-pixel filter, and temporal
supersampling. SMAA addresses temporal aliasing from a
software perspective by supplementing morphological antialiasing
with additional multi/supersampling strategies. Naïve combination
of supersampling and morphological methods results in excessive
blurring in the spatial domain and ghosting in the temporal
domain. SMAA resolves this by offsetting the reconstructed
silhouettes to match the subpixel positions, which is computatio-
nally efficient.

0

0.05

0.1

0.15

0.2

0.1 0.2 0.3 0.4 0.5

%
 o

f
p

ix
el

s
w

it
h

 e
rr

o
r

>
th

re
sh

o
ld

threshold error

no AA

MLAA

RSAA

MSAA

High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

c© The Eurographics Association 2012.

DOI: 10.2312/EGGH/HPG12/077-086

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGGH/HPG12/077-086

 quantity

antialiasing method de

pt
h

co
ve

ra
ge

ge

om
et

ry

sh
ad

in
g

va
lu

es

st
or

ag
e

BW

no antialiasing x

multisampling antialiasing MSAA [Ake93]

coverage sampling antialiasing CSAA [You06]

supersampling antialiasing SSAA [Lel80] x

MLAA [Res09, BHD10, Per10, Bir11, JME*11],
FXAA [Lot11], SMAA 1x [JES*12] x

a directionally adaptive edge antialiasing
[IYP09, Joh12] x

geometric methods
[BWG03, CD05, Mal10, GG12, Per12] x x

edge blurring: directionally localized DLAA [And11];
normal filter NFAA, screen-space SSAA [Uni11] x

temporal reprojection [NSL*07, YNS*09, Kap10] x

spatial/temporal supersampling + morphological
antialiasing SMAA 4x [JES*12] x

deferred MSAA [Pet10] x

subpixel reconstruction antialiasing SRAA [CML11] x

surface based antialiasing SBAA [SV12]

resampling antialiasing RSAA (this paper)

legend: sampling rate per pixel x: many all ∞

Table 1. Guestimate of sampling rates for different antialiasing
techniques. Bandwidth (last column) is estimated for the deferred
shading pipeline.

Unlike these two techniques, we restrict ourselves to a single color
sample per pixel, but allow multiple geometric subsamples
(positions and normals). Similar approaches were tried before. In
sub-pixel reconstruction (SRAA), cross-bilateral filtering is
applied to upsample per-pixel colors using multisampled geometry
[YSL08, CML11]. Deferred MSAA [Pet10] averages the positions
of those MSAA samples, whose depths are meaningfully different
from that of the central one. The resulting coordinates are then
used to bilinearly filter the final image.
Our approach requires a geometry pre-pass, at which a bitmask is
computed for each pixel. At post-processing stage, this mask is
used to fetch filter coefficients from a precomputed lookup table.
We call our new algorithm Resampling Antialiasing (RSAA).
Each bit in the mask corresponds to an MSAA subsample
indicating whether the subsample is different from the pixel center.
The similarity is determined by analyzing geometric data alone,
relying on the fact that color and geometry are closely correlated.
The bitmask splits all subsamples in a pixel into two clusters,
depending on whether they are similar or dissimilar to the pixel
center.
Conceptually, RSAA

1. Sets the colors of all subsamples in the similar cluster to
the color of the central subsample.

2. Assumes that all subsamples in the dissimilar cluster
have the same color, and that this color can be acquired
from the pixel neighborhood.

3. Computes the final pixel color by blending the colors of
these two clusters with weights proportional to their
coverage.

This is all executed in a single bilinear texture request. In effect,
RSAA attempts to emulate supersampling. This would work for
simple scenes consisting of polygons of only two colors. For such

scenes, we could precompute the optimal filtering coefficients for
all possible bitmasks by minimizing the average error. This is
essentially how we compute the lookup table, which is then used
for real scenes.

This approach works as long as assumptions 1 and 2 are accurate.
This allows antialiasing quality closely matching the quality of
MSAA, which is used for geometry sampling, except for scenes
with a substantial amount of sub-pixel detail (see Figures 1 and 9).
Even for such scenes, the quality of RSAA exceeds that of any
morphological method with a single color sample per pixel. In
comparison with hardware-accelerated MSAA, RSAA (and other
post-processing methods) allows a significant bandwidth reduction
in deferred shading applications.

RSAA depends on a considerable correlation between geometry
and shading parameters. For most situations, this is a correct
assumption. However, violation of this assumption can result in
whimsical artifacts. We resolve this by adding an additional
verification step, which mitigates spurious filtering decisions by
verifying that assumption 2 is indeed true.

In all comparisons with MLAA in this paper, we have used the
original implementation [Res09], as our goal was to ascertain the
quality of different antialiasing techniques. The subsequent
modifications [Per10, Bir11, JME*11, JES*12] were aiming at
improving performance and content-specific optimizations. We
observed that SMAA at 1x preset does not improve the peak
signal-to-noise ratio, compared with the original MLAA
implementation. The likely explanation is that most of the
performance-driven versions of MLAA, unlike the original
version, restrict the neighborhood size and use half-edge silhouette
intersections only.

A detailed account of state-of-the-art filtering approaches for real-
time antialiasing can be found in [JGY*11].

2 Antialiasing through Resampling
During the pre-processing pass, we compare each subsample in a
pixel with the pixel center, setting up a bit mask ('1' for similar, '0'
for different subsamples). This mask, in effect, allows retrieving
precomputed filter coefficients. To fully utilize hardware texture
unit, we restrict ourselves to the situations when filtering is done
through bilinear interpolation by issuing a single texel request per
pixel.

For each pixel, we fetch texture coordinate offsets from a pre-
computed lookup table, using the mask as an index. At the post-
processing step, the final color of each pixel is computed by
bilinearly interpolating the original image at the position defined
by the fetched offset vector. Figure 2 shows such offsets for a
given triangle as red vectors.

The offsets are precomputed for all possible masks and stored in a
lookup table. For any given mask, the 2D offset vector is chosen to
minimize the average error for a realistic training data set.
Automated learning of low-dimensional parametric models from
training data is a standard paradigm in computer vision; we
explain the details of our approach in section 2.3.

In principle, any similarity measure can be used for subsample
comparison. Each choice has its own pros and cons. In the next
section, we describe a novel approach that we call sum of the
absolute dot products (SADP). It has a simple geometric
interpretation, is reasonably fast, and robustly handles difficult
cases. SADP can be used in various computer graphics problems
that infer sample similarity from geometric data. In particular,
most methods in Table 1 can benefit from this new measure.

78

Figure 2. RSAA offsets for a single triangle (shown as red vectors
from pixel centers). Blue dots stand for subsamples that are similar
to the pixel center, red for subsamples that differ.

Figure 3. Three ways to detect different samples: using (a) depth,
(b) normals, (c) the new SADP test.

2.1 Geometry  Similarity Measure
One of the most widely used approaches is to compare the depth of
two subsamples, since it is readily available in the graphics
pipeline. Deferred MSAA [Pet10] uses linearized depth to measure
subsample similarity. Besides requiring calibration and
linearization, this approach cannot reliably detect corners, as
shown in Figure 3a (d1 == d2).
Corner detection could be resolved with a measure that uses
subsample normals – for example, their dot product. However, this
measure will not be able to distinguish spaced-out almost-parallel
surfaces as in Figure 3b.
We can hope that combining these two approaches will somehow
avoid the described pitfalls, and this combination is indeed used in
practice. Surface based antialiasing [SV12] sorts out MSAA
subsamples using the dot product of the subsample normals, in
addition to their depth distribution. Nevertheless, assigning
weights to the utilized components is non-trivial and scene-
dependent. The situation in Figure 3b might still be problematic if
the distance between two planes were small.
For two subsamples with positions p1 and p2 and (geometric)
normals n1 and n2, we propose to use the following measure:

sadp(n1, n2, r12) = (|n1 ∙ r12| + |n2 ∙ r12|) / length(r12)
where r12 = p1 − p2.

(1)

This is a sum of the absolute dot products of two normals and a
normalized vector from one subsample to another. We call it
SADP. HLSL implementation of this measure is given in Listing 1
(lines 36-38).

Figure 4. Pixels with non-zero RSAA offsets for Happy Buddha at
three different simplification levels (10K, 100K, and 1M triangles).
Pixel colors are proportional to the maximum dissimilarity value.

For two subsamples on the same polygon, SADP is zero, and it
increases as angles between normals and r12 become bigger. When
the dot products are relatively small, each dot product is close to
π/2 − α, where α is the angle between the normal and r12.
To cluster subsamples, we will also need a similarity threshold.
Two subsamples with SADP exceeding the threshold will be
considered dissimilar. To choose the threshold, let’s remember that
interpolated normals are used to create a smoothly varying illumi-
nation of a coarse mesh [Pho75]. For a triangle, the maximum
angle between all its per-vertex normals signifies a tolerance thres-
hold of what is still considered to be “smooth”. This value, avera-
ged over all geometry, can be used as the SADP threshold as well.
The RSAA authentication phase (section 2.4) can remove the majority
of “wrong” offsets, so, in a practical sense, exact choice of the
threshold is not that important. In all examples in this paper, we have
used the value 0.4, which corresponds to two angles of about 11°.
Among other desirable SADP properties, it is symmetric and does
not depend on camera position. Figure 4 shows a Happy Buddha
model at three different simplification levels. All pixels in which
subsamples differ from the pixel center by more than 0.4 are marked
with a gray color. The color intensity is proportional to the SADP
value. SADP generally allows detecting sharp mesh creases. The total
number of these creases decreases as the mesh becomes smoother.
For specific applications, SADP clustering can be supplemented
by other factors, including light visibility, material ids, etc. (see
discontinuity buffer discussion in [Kel98]).

2.2 Similarity Measure  Two Clusters

We want to split all subsamples in a pixel into two clusters based on
their similarity. This is one of the most common problems in science
and there are multiple approaches to its solution. The simplest
approach is putting all subsamples with similarity measures below
the given threshold in one cluster, and all others in another. This is
not advisable, as it fails to maximize the dissimilarity between the
clusters. Indeed, in the case with the similarity = {0.4, 0.4, 0.4, 0.5,

1.1, 1.2, 1.2, 1.3}, all eight subsamples will be put into the “dis-
similar” cluster. This is clearly not desirable and, if anything, we
would like to err on the side of caution and put the questionable
subsamples into the “similar” cluster.

d 1 d 2
n 1

n 2

n 2n 1

r 12
(a) (b) (c)

p2p 1

79

Figure 5. Subsamples similar to the pixel center are shown as blue,
dissimilar – as white. Bottom: the best offset is shown as red vector
(and it is not orthogonal to the yellow SVM classifier on top image).

This problem can be solved with k-means [Mac67], but this
algorithm is iterative and generally time-consuming. We have
opted for a single iteration, consisting of two steps:

1. Maximum of all similarity values is found (maxsim).
2. If maxsim exceeds a given threshold, all subsamples are

classified into two groups by comparing their similarity
values with maxsim/2 + threshold/2. Otherwise, no
actions are taken (pixel’s color will not be modified).

This classifier would split the group above into {0.4, 0.4, 0.4, 0.5}
and {1.1, 1.2, 1.2, 1.3}, which is the desired result. The bias
threshold/2 is introduced to favor the center of the pixel for which
the color is known a priori.
Listing 2 provides HLSL implementation of this classifier: step 1
in lines 195–202 and step 2 in lines 276–288.
The subpixel reconstruction algorithm [CML11] does not expli-
citly classify the subsamples, instead using their similarity values
as an input to cross-bilateral upsampling filter. It is a very
interesting approach, allowing 1 ms execution on GeForce 560 at
1080p. It is not void of artifacts and its combination with
morphological methods is advised [JGY*11]. Some of these
artifacts are due to the differences between bilateral filtering and
bona fide supersampling. We believe that SADP measure (1) can
reduce SRAA artifacts.
Deferred MSAA [Pet10] utilizes non-adaptive (linearized) depth
thresholding. It might be interesting to see if adaptive clustering,
introduced in this section, will improve deferred MSAA quality.

2.3 Two Clusters  Resampling Offsets

We want to compute resampling offsets based on a bit mask that
characterizes two clusters. We will first describe the prior art
solutions followed by our approach.

In simple cases, the found clusters could be separated by a line.
This intuitively corresponds to a situation of two distinct surfaces
overlapping the pixel. If these surfaces were simple polygons and
we knew the neighborhood, this would allow very accurate
reconstruction, perhaps even using the Hough transformation
[DH72]. Indeed, looking at Figure 2, the reconstruction error is
necessarily bounded by a small value.

Geometric antialiasing methods [BWG03, CD05, Mal10, GG12,
Per12] use scene data to improve image quality. In our case, we
would like to restrict ourselves only to sampled data. Moreover,
we do not want to infer costs associated with accessing subsamples
in the neighboring pixels. If we restrict ourselves only to the cur-
rent pixel data, the accuracy of the silhouette reconstruction (either
explicit or assumed) will suffer. Notably different cases may result
in the same clustering, as shown in the bottom of Figure 5.

Deferred MSAA [Pet10] avoids explicit silhouette reconstruction
by directly computing the resampling offsets. This is done by
averaging directions to all dissimilar subsamples. Considering the
situation at the top of Figure 5, the resampling offset will be
computed by averaging vectors C3, C4, and C5. Though very
simple, it appears that this approach does not scale well with the
increased number of samples. If only subsamples 2, 3, 5, and 6
were different, the resulting offset would be close to zero and the
final pixel color would not change meaningfully. It would differ
significantly from the supersampled solution, in which only
subsamples 0, 1, 4, and 7 will have color C.

Support Vector Machine (SVM) methods allow classification of
both linearly separable (as in Figure 5) and inseparable data sets
[BB00]. This might seem like a good idea; Figure 5 shows such
classification as a yellow line. This line maximizes the minimum
distance to the two clusters. We could just consider the orthogonal
vector as a direction of the resampling offset, but this approach has
its drawbacks as well. It is derived for a continuous case, while in
computer graphics sampling positions are predefined, essentially
making the problem discrete.

The red vector on the two images at the bottom of Figure 5
deviates from the vector orthogonal to the SVM line by tilting
down. Consequently, when the final image is bilinearly resampled,
the pixel with coordinates [0.5,-0.5] will contribute more. Since
this pixel is blue on the left image and white on the right, the
resampled color for the pixel C will be closer to blue for the
situation on the left. This is exactly the result we want to achieve
since it corresponds more closely to the supersampled solution,
which basically uses area of the trapezoids overlapping the pixel C
to blend between white and blue colors, and this area is bigger on
the left. Indirectly, we will be able to take into account samples
outside the current pixel, even though we are using only the
current pixel data.

To actually find the best values for the resampling offsets in each
of 255 cases (for 8 subsamples), we will approach this problem
from a computer vision perspective. In CV problems, it is
customary to come up with a generic model and then train it on
experimental data. Since our model has 2 parameters (resampling
coordinates) for each of 255 cases, we just treat it as an
optimization problem: find the values of these parameters which
minimize average error for the given training set.

80

Figure 6. Why authentication is needed: without it, the color of the
chosen pixel C will have significant contributions from pixels A and B.

It is possible to have a domain-specific training set (for example,
for each game), and it is quite likely that it will result in the most
accurate solution for a particular domain. We tried to come up
with a broader approach that will work in all cases.

We created a training data set with 106 cases when one or two
randomly generated lines intersected a pixel. These lines split the
plane into polygons. Subsamples in the same polygon as the pixel
center were assigned the color white, while others were set to
black.

For each bit mask (generating subsample clustering), we looked on
all cases from the training data that would create such a mask. If a
particular mask could be created by a single line crossing the pixel,
we used only those cases from the training set; otherwise two lines
were used. This was done in spirit of Ockham's razor, preferring
the simplest possible explanation.

If we use DirectX 8x MSAA subsamples, 40 possible configu-
rations can be explained by just a single line, while 151 can be
explained by two lines. For the remaining cases, direction to the
most distant (from the center of the pixel) dissimilar subsample
was used as the direction of the resampling vector and its length
was chosen to approximate the coverage area.

A float array uva[512] in Listing 3 contains 256 resampling offsets
for 8x MSAA subsamples.

2.4 Authentication of Resampling Offsets

This section describes some RSAA problems and suggests ways to
mitigate them. Essentially, RSAA works by blending colors
assigned to two clusters. One of these clusters contains a pixel
center, and its color is always available. This is not the case for the
second cluster, which has to get its color by resampling the pixel
neighborhood. This may create problems in certain situations.

In Figure 6, the pixel C is intersected by two small triangles, blue
and green, which are detected by SADP. The final color of pixel C

will be computed by bilinearly resampling the image at the
position indicated by the black arrow. Accordingly, it will be
greatly affected by the colors of pixels A and B, belonging to the
red background object. This is not the desired result, as we would
prefer to blend colors C and D.

This situation could not only occur with small geometric details,
but also near sharply curved silhouette edges.

One way to fight this would be to verify that dissimilar subsamples
are more comparable with the nearest outside pixel than with the
current pixel center, and move them to the similar cluster other-
wise. This process would reclassify subsamples 1, 4, and 6, while
using only subsample 2 to find the resampling offset. HLSL
implementation of this approach (executed at the geometry pre-
processing step) is given in Listing 2, starting at line 136.

The disadvantage of this method is that it requires processing of all
subsamples in a pixel without first deciding whether we need the
resampling offset for the pixel at all.

An alternative way to address this problem is to reduce the length
of the resampling vector in problematic situations once we decide
that resampling is indeed necessary. To detect such situations in
the post-processing step, we first choose one dissimilar subsample,
which is the furthest away from the pixel center, as a represen-
tative of the dissimilar cluster (it will be subsample 6 in Figure 6).
Then, we compare two SADP values. One is the difference
between the pixel center and the representative dissimilar
subsample. Another is the difference between the pixel center and
the outside pixel that is closest to the representative subsample
(pixel A). This will result in halving the length of the black
resampling vector, thus reducing the artifact. Ideally, we would
just compare subsample 6 and pixel A, but we do not want to keep
g-buffer data for all subsamples at the post-processing stage. The
rationale for this is that we want the dissimilar subsamples to be
closer to the outside pixels than to the similar subsamples. This
implementation is given in Listing 3 starting at line 294.

The most accurate approach is to assign a color to the dissimilar
cluster by checking the representative subsample against all
neighboring pixels and then blending the colors of the two clusters
with weights proportional to their coverage areas. With a suitable
neighborhood size, this helps fight severe undersampling effects at
the price of increased execution time.

In short, we can always be sure of the color of the central
subsample and, by proxy, the color of the similar cluster. The
accuracy of the color assigned to the dissimilar cluster can be
increased with an additional processing.

3 Implementation Details

3.1 Data Layout Optimization

RSAA similarity masks are used to fetch resampling offsets for each
pixel (by indexing array uva[] in Listing 3). These masks can be
stored as per-pixel indices during the geometry pre-pass. However,
since individual bits are not addressable and locks are too expensive,
it is more expedient to output per-subsample SADP values during
the pre-pass. These values will then be retrieved at the post-
processing step and converted to a bona fide binary index for each
pixel. Per-subsample SADP values are also required for the post-
processing authentication mode (section 2.4). Since SADP values
are used only in comparison operations, it is possible to compress
them. In the accompanying listings, compression/decompression to
and from 8-bit values is executed in lines 174 and 199.

6
4

5

3

1

2

7

0

C

A B

D

81

In addition to the compressed SADP values, we use the
DXGI_FORMAT_R16G16_UINT buffer to store/retrieve compressed
normals at pixel centers (see EncodeNormal/DecodeNormal
functions in Listing 1). These surface normals can be supplied by
an application, but we opted for a more generic solution,
computing the normals in the geometry shader (preGS shader in
Listing 2). Typically, normals will be a part of a deferred shading
pipeline, so this may be unnecessary. Rough estimation of the
accuracy of the normals, compressed to 32 bits, is 2 π / 2

16-2 =
3.8∙10

-4, which is quite sufficient for our needs (this is signi-
ficantly smaller than threshold = 0.4).

3.2 Geometry Pre-pass Optimization
RSAA requires processing of multiple subsamples per pixel. For
fully covered pixels, this is unnecessary (since all SADP values
will be zero anyway). DirectX 11 allows the recognition of these
situations by looking at the coverage mask (SV_Coverage
semantics). This optimization reduces the processing time by about
0.2 ms on the NVIDIA GeForce GTX 580, and we provide such
implementation in the preGS shader (line 104). The disadvantage
of this method is that it requires a DirectX 11 capable card. It is
also possible to optimize this pass in DirectX 9, for example, by
comparing primitive ids. This approach will be application-
specific, however, particularly if hardware tessellation is used.
Another DirectX 11 specific optimization is to use geometry
multisampling. Ordinarily, all values except depth are sampled at
pixel centers. Yet, subsample values can be explicitly accessed in
pull-mode by using the EvaluateAttributeAtSample function.
However, this is not allowed for SV_Position variables. We remedy
this by replicating positions (lines 86 and 126). Since we are using
geometric normals, pull-mode evaluation is unnecessary for nor-
mals (which are computed for each triangle in the preGS shader).

4 Discussion

4.1 Performance vs Quality
Performance can be measured precisely and leaves little room for
interpretation. This is not the case with image quality. The image
processing community has adopted peak-signal-to-noise ratio
(PSNR) as an objective gauge, while no generally accepted or
widely used metric exists for rendering problems. This is quite
understandable, considering the differing goals of these commu-
nities: accurate reconstruction of a known image compared with
creating a believable illusion.
Even so, PSNR is a useful tool, particularly for comparison of
similar methods applied to the same scene [HTG08]. We used it to
compare different variants of RSAA. Figure 7 shows perfor-
mance/quality tradeoffs, considering the following factors:

- 4 or 8 MSAA geometric subsamples per pixel;
- either the depth or SADP test is used for subsample

differentiation;
- three authentication modes (no authentication, post-

processing authentication, pre-pass authentication) defined
by authentication_mode in Listing 1.

By choosing a single factor from each row above, we will get 12
possible combinations. Figure 7 shows the obtained quality impro-
vement and the incurred performance penalty for all of them.
SADP, in comparison with the depth-only test, improves quality
by up to 3 dB while incurring a penalty of about 0.1 ms on the
NVIDIA GeForce GTX 580. The difference between 4 and 8
subsamples is more significant: about 4 dB and a 0.4 ms penalty.

The performance data in this chart excludes the time required for
computing and storing per-pixel normals, which we assume could
be a part of the deferred shading pipeline anyway. Our imple-
mentation of EncodeNormal/DecodeNormal functions in Listing 1
incurs a 0.25 ms penalty.
PSNR measurements are also rather convenient when analyzing
the temporal behavior of different methods. Figure 9 shows PSNR
values (with respect to 64x supersampling) for two animation
sequences. Though absolute PSNR values vary from frame to
frame, distance between different antialiasing techniques remains
almost constant, with one important exception. When the UNC
exploding dragon finally disintegrates into thousands of pieces,
RSAA quality goes below 4x MSAA, while still exceeding one for
MLAA. MSAA is generally more robust to such calamity by using
more color samples for problematic pixels.
PSNR may not say much about what artifacts are actually
noticeable. In Figure 1, we used a different approach by counting the
number of pixels for which the luminosity error exceeds a given
threshold. Though aliasing artifacts affect only a fraction of pixels,
they are quite noticeable due to the hyperacuity of human vision.
For more fine-tuned methods to compare images, a calibrated
visual metric [MKR*11] or other methods may be considered. We
have opted for PSNR, as it is generally well known, and provides
important yardsticks for visual quality (45 dB considered to be
‘very good’).

4.2 Limitations
RSAA’s problems are most noticeable when its assumptions are
broken, i.e., when there are more than two distinct surfaces
overlapping a pixel or when there are not enough valid samples in
the neighborhood (see Figure 8). The first situation typically
corresponds to the intersection of two silhouettes when the
background is also visible. This occurs less frequently than typical
MLAA artifacts caused by mispredicting a single silhouette line.
It also seems that humans are wired to pay particular attention to
silhouettes, while deciphering triple-overlapping regions is more
difficult.
There is no cure for the significant undersampling, except more
samples at run-time or prefiltering at off-time.

5 Summary
RSAA translates knowledge about the geometry, sampled at a
higher rate than the shading parameters, into better images. This
knowledge, obtained in the pre-processing step, is converted to the
resampling coordinates, which are applied in the post-processing
step, leaving the rest of the pipeline intact.

Figure 7. Performance-quality tradeoffs for the different RSAA
variants. 0, 1, and 2 stand for {no, post, and pre}-processing
authentication respectively. The data is gathered on an NVIDIA
GeForce GTX 580 at 1280x720 resolution.

8 subsamples (depth, SADP)

4 subsamples (depth, SADP)

82

Figure 8. Aliasing artifacts for the different techniques. MLAA pre-
dicts silhouette edges that may be different from the real ones (top
of the racket, the right pupil, space between eyes). This results in
high-frequency temporal aliasing. RSAA artifacts are mostly
restricted to situations in which three or more distinct surfaces
overlap a pixel (left edge of the racket) or when there are no valid
color samples in the vicinity of a pixel (the space between the
eyebrow and the head). SSAA allows effective implicit texture
mipmapping (see the center of the racket). For other techniques,
this has to be done explicitly.

It appears that an 8X increase in the geometry sampling rate still
allows noticeable improvements in quality. Beyond that, there is a
point of diminishing returns, mostly reducing errors, which are
already rather small, and not really addressing undersampling
artifacts. The intriguing question is whether undersampling can be
mitigated by using the third dimension, i.e. computing 3D
resampling offsets for mipmaped images. We believe that this is
possible, given that the SADP measure would allow the detection
of undersampling by measuring the standard deviation (std) among
subsamples. This value can be used to choose a proper mipmaping
level (0 for small std and then increasing with std).
RSAA allows for about a 10 dB improvement in image quality. To
improve it even further, there is always the possibility of
increasing the sampling rate for shading parameters and then
downsampling for the final image. This is true for most anti-
aliasing methods from Table 1 (and was actually done for FXAA
and SMAA).
We have provided a set of quality/performance tradeoffs that may
be useful in practical applications. Among the contributions that
might be interesting for researchers and practitioners are:

- Novel geometric similarity measure (section 2.1).
- Fast adaptive clustering (2.2).
- Computer vision approach to precomputing resampling

offsets (2.3).
- Authentication methods (2.4).
- Subsample processing through pull-mode attribute

evaluation, consistent with DirectX 11 (section 3).
In a typical scene, geometry and colors are highly correlated. We
propose a new way to learn and exploit this correlation by
applying computer vision principles.

Acknowledgements
We would like to thank the anonymous reviewers for their detailed
and helpful comments and suggestions. We gratefully acknow-
ledge invaluable discussions with and assistance from Bill Mark.
The “Emoticon” model is a part of digital content of the DAZ
Studio. The “Exploding Dragon” is courtesy of UNC. The “Edgar”
model belongs to digital content of the Poser editor. The Happy
Buddha model is courtesy of Brian Curless and Marc Levoy
(Stanford University).

References

 [Ake93] AKELEY, K. Reality Engine graphics. In Proc. of SIGGRAPH
1993, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed.,
Computer Graphics Proceedings, Annual Conference Series, ACM,
109–116.

[And11] ANDREEV, D. Anti-Aliasing From a Different Perspective. In
Game Developers Conference, San Francisco, 2011.

[BB00] BENNETT, K., AND BREDENSTEINER, E. Duality and Geometry
in SVM Classifiers. In Proc. of the Seventeenth International
Conference on Machine Learning. Ed. Pat Langley, Morgan
Kaufmann, San Francisco, 2000, 57-64.

[BHD10] BIRI, V., HERUBEL, A., AND DEVERLY, S. Practical Morpho-
logical Antialiasing on the GPU. In SIGGRAPH 2010 Talks, ACM,
New York, NY, USA, No. 45.

 [Bir11] BIRI, V. Morpological antialiasing and topological recon-
struction. In Proc. of GRAPP 2011.

[BWG03] BALA, K., WALTER, B., AND GREENBERG, D. Combining
Edges and Points for Interactive High-Quality Rendering. In ACM
Trans. Graph. (Proceedings of ACM SIGGRAPH 2003), 22(3),
631-640.

[CD05] CHAN, E. AND DURAND, F. Fast Prefiltered Lines. In GPU
Gems 2. Ed. Matt Pharr. Addison-Wesley, 2005.

 [CML11] CHAJDAS, M., MCGUIRE, M., AND LUEBKE, D. Subpixel
Reconstruction Antialiasing for Deferred Shading. In Proc. of 2011
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 15–21.

[DH72] DUDA, R. O. AND HART, P. E. Use of the Hough Transformation
to Detect Lines and Curves in Pictures. In Comm. ACM, 1972, v. 15,
11–15.

[Fat07] FATTAL, R. Image Upsampling via Imposed Edge Statistics. In
ACM Trans. on Graphics, 2007, 26(3), Article No.: 95.

[GG12] GJOL, MIKKEL AND GJOL, MARK. Inexpensive Anti-Aliasing
of Simple Object. In GPU Pro 3, ed. Engel W., A.K. Peters Ltd,
2012, 169–178.

[GPB04] GELDREICH, R., PRITCHARD, M., BROOKS, J. Deferred
lighting and shading. In Game Developers Conference, 2004.

[HEM*10] HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND
SEIDEL, H. Spatio-temporal Upsampling on the GPU. In Proc. of
2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 91–98.

[HTG08] HUYNH-THU, Q., GHANBARI, M. Scope of validity of PSNR in
image/video quality assessment. In Electronics Letters, 2008,
44(13), 800–801.

[IK99] ISSHIKI, T. AND KUNIEDA, H. Efficient Anti-Aliasing Algorithm for
Computer Generated Images. In Proc. of IEEE International
Symposium on Circuits and Systems, 1999, v. 4, 532–535.

 [IYP09] IOURCHA, K., YANG, J. C., AND POMIANOWSKI, A. A Directionally
Adaptive Edge Anti-Aliasing Filter. In High Performance Graphics.
2009, ACM, New York, NY, USA, 127–133.

[JES*12] JIMENEZ, J., B., ECHEVARRIA, J., SOUSA, T., AND
GUTIERREZ, D. SMAA: Enhanced Subpixel Morphological
Antialiasing. In Proc. of Eurographics. 2012, 31(2).

[JGY*11] JIMENEZ, J., GUTIERREZ, D., YANG, J., RESHETOV, A.,
DEMOREUILLE, P., BERGHOFF, T., PERTHUIS, C., YU, H., MCGUIRE,
M., LOTTES, T., MALAN, H., PERSSON, E., ANDREEV, D., SOUSA, T.
Filtering approaches for real-time antialiasing. In ACM SIGGRAPH
Courses, 2011.

[JME*11] JIMENEZ, J., MASIA, B., ECHEVARRIA, J., NAVARRO, F.,
AND GUTIERREZ, D. Practical Morphological Anti-Aliasing. In
GPU Pro 2, ed. Engel W., A.K. Peters Ltd, 2011, 95–13.

83

[Joh12] JOHNSON, M. Implementing a Directionally Adaptive Edge
AA Filter using DirectX 11. In GPU Pro 3, ed. Engel W., A.K.
Peters Ltd, 2012, 275–290.

[Kap10] KAPLANYAN, A. Hybrid Anti-Aliasing. In SIGGRAPH 2010
talks. CryENGINE3: reaching the speed of light.

[Kel98] KELLER, A. Quasi-Monte Carlo Methods for Photorealistic
Image Synthesis. Ph.D. thesis, Shaker Verlag Aachen, 1998.

[Lel80] LELER, W. J. Human Vision, Anti-aliasing, and the Cheap
4000 Line Display. In Proc. of SIGGRAPH 1980, ACM Press /
ACM SIGGRAPH, New York, K. Akeley, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM, 14 (3), 308–313.

[Lot11] LOTTES, T. FXAA. NVIDIA white paper, 2011.

[Lot12] LOTTES, T. Unofficial TXAA Info. In Blogspot blog,
http://timothylottes.blogspot.com/2012/03/unofficial-txaa-info.html,
2012.

[Mac67] MACQUEEN, J. B. Some Methods for Classification and
Analysis of Multivariate Observations. In Proc. of 5-th Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, 1967, 281-297.

[Mal10] MALAN, H. Edge Anti-Aliasing by Post-Processing. In GPU
Pro, ed. Engel W., A.K. Peters Ltd, 2010, 265–289.

[MKR*11] MANTIUK, R., KIM, K. J., REMPEL, A. G., AND HEIDRICH,
W. HDR-VDP-2: a calibrated visual metric for visibility and
quality predictions in all luminance conditions. In ACM Trans.
Graph., 2011, 40:1–40:14.

[NSL*07] NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK,
N., ISIDORO, J. R. Accelerating real-time shading with reverse re-

projection caching. In Proc. of the 22nd ACM SIGGRAPH/EURO-
GRAPHICS Symposium on Graphics Hardware, 2007, 25–35.

[Per10] PERTHUIS, C. MLAA in God of War 3. In Sony Computer
Entertainment America, PS3 Devcon, Santa Clara, 2010.

[Per12] PERSSON, E., Geometric Anti-Aliasing Methods. In GPU
Pro 3, ed. Engel W., A.K. Peters Ltd, 2012, 71–88.

[Pet10] PETTINEO, M. Deferred MSAA. In WordPress blog.
http://mynameismjp.wordpress.com/2010/08/16/deferred-msaa, 2010.

[Pho75] PHONG, B.-T. Illumination for Computer Generated Pictures.
In Communications of the ACM, 1975, vol. 18 (6), 311–317.

[Res09] RESHETOV, A. Morphological antialiasing. In High Perfor-
mance Graphics, 2009, ACM, New York, NY, USA, 109–116.

[SV12] SALVI, M. AND VIDIMCE, K. Surface Based Anti-Aliasing. In
Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2012, 159–164.

[Uni11] Unity Technologies. Unity Reference Manual.
http://unity3d.com/support/documentation/Components, 2011

[YSL08] YANG, L., SANDER, P. V., LAWRENCE, J. Geometry-Aware
Framebuffer Level of Detail. In Comput. Graph. Forum, 27(4),
1183–1188, 2008

[YNS*09] YANG, L., NEHAB, D., SANDER, P. V., SITTHIAMORN, P.,
LAWRENCE J., HOPPE H. Amortized supersampling. In ACM Trans.
Graph. 28 (2009), 135:1–135:12.

[You06] YOUNG, P. Coverage Sampled Antialiasing. In Tech. rep.,
NVIDIA, 2006.

Listing 1. common.hlsl

#define authentication_mode 1 // 0 (no), 1/2 for post/pre pass) 1
#define dbits 8 // 8, 16, or 32 (for differencesMS) 2
 3
// dbits == 8 requires DXGI_FORMAT_R8_UINT, etc. 4
// dscale is used to encode/decode sadot() values as integers. 5
#define dscale float(1 << (dbits - (dbits == 32? 2:1))) 6
 7
uint2 EncodeNormal(float3 n) { 8

// We do not care about normal's orientation, 9
// since it will be used as abs(dot(n,r)). 10

 const float scale = (1<<(16-2)) - 1; 11
 return uint2(floor(((n.z < 0? -1:1)*n.xy + 2) * scale)); 12
} 13
 14
float3 DecodeNormal(uint2 c) { 15
 const float scale = (1<<(16-2)) - 1; 16
 float3 n; 17
 n.xy = (c - 2) / scale; 18
 n.z = sqrt(1 - n.x*n.x - n.y*n.y); 19
 return n; 20
} 21
 22
float3 ScreenToWorld(float3 s) { 23
 // http://www.gamedev.net/topic/ 24
 506573-reconstructing-position-from-depth-data/ 25
 26
 float x = +((s.x / halfwidth) - 1); 27
 float y = -((s.y / halfheight) - 1); 28
 29

float4 world_position_4d = 30
 mul(float4(x, y, s.z, 1), WorldViewProjectionInverse); 31
 32
 return world_position_4d.xyz / world_position_4d.w; 33
} 34
 35
float sadot(float3 r12, float3 n1, float3 n2) { 36
 return (abs(dot(n1,r12)) + abs(dot(n2,r12))) * rcp(length(r12)); 37
} 38

Listing 2. prepassShaders.hlsl

 39
struct VSInput { 40
 float4 PositionOS : POSITION; 41
 // ... 42
}; 43
 44
struct preVSOutput { 45
 float4 PositionCS : SV_Position; 46
 float3 PositionWS : POSITIONWS; 47
}; 48
 49
struct prePSInput { 50
 float4 PositionSS : SV_Position; 51
 float3 PositionWS : POSITIONWS; 52
 float3 NormalWS : NORMALWS; 53
}; 54
 55
struct prePSOutput { 56
 uint SampleDifference : SV_Target0; 57
}; 58
 59
preVSOutput preVS(in VSInput input) { 60
 preVSOutput output; 61
 // The world-space position 62
 output.PositionWS = mul(input.PositionOS, World).xyz; 63
 // The clip-space position 64
 output.PositionCS = 65
 mul(input.PositionOS, WorldViewProjection); 66
 return output; 67
} 68
 69
[maxvertexcount(3)] 70
void preGS(triangle preVSOutput input[3], 71
 inout TriangleStream<prePSInput> TriStream, 72
 uint id : SV_PrimitiveID) { 73
 74
 prePSInput output; 75

84

http://timothylottes.blogspot.com/2012/03/unofficial-txaa-info.html
http://mynameismjp.wordpress.com/2010/08/16/deferred-msaa
http://unity3d.com/support/documentation/Components/index.html
http://www.gamedev.net/topic/506573-reconstructing-position-from-depth-data/
http://www.gamedev.net/topic/506573-reconstructing-position-from-depth-data/

 76
 // Compute triangle’s geometric normal 77
 float3 n3 = normalize(78
 cross(input[2].PositionWS - input[0].PositionWS, 79
 input[0].PositionWS - input[1].PositionWS)); 80
 81
 [unroll] for (int i = 0; i < 3; i++) { 82
 // The pull-model evaluation of SV_Position 83
 // (using EvaluateAttributeAtSample) is not allowed, 84
 // so we circumvent it by replicating the data. 85
 output.PositionSS = input[i].PositionCS; 86
 output.PositionWS = input[i].PositionWS; 87
 output.NormalWS = n3; 88
 TriStream.Append(output); 89
 } 90
 91
 TriStream.RestartStrip(); 92
} 93
 94
Texture2D<uint2> normal_data : register(t0); 95
// depth_data is used only for authentication_mode == 2 96
Texture2D<float> depth_data : register(t1); 97
 98
prePSOutput prePS(in prePSInput input, 99
 in uint si: SV_SampleIndex, 100
 in uint coverage: SV_Coverage) { 101
 prePSOutput ret; 102
 103
 // A shortcut for fully covered pixels. 104
 if (coverage == (1 << 8) - 1) { 105
 ret.SampleDifference = 1; // decoded to 0 106
 return ret; 107
 } 108
 109
 float2 positionSS = input.PositionSS.xy; 110
 uint2 sampleIndex2 = uint2(positionSS); 111
 uint3 sampleIndex3 = uint3(sampleIndex2, 0); 112
 113
 uint2 nci = normal_data.Load(sampleIndex3); 114
 115
 // A shortcut for background subsamples. Those subsamples 116
 // could only be compared with foreground subsamples 117
 // (since the relevant shaders are called only for 118
 // the foreground geometry). 119
 // In this case, we assume that they are always "different". 120
 if (nci.x == 0) { 121
 ret.SampleDifference = uint(dscale) + 1; 122
 return ret; 123
 } 124
 125
 // subsample's position and normal 126
 float3 ps = EvaluateAttributeAtSample(input.PositionWS, si); 127
 float3 ns = input.NormalWS; 128
 // center's position and normal 129
 float3 pc = input.PositionWS; 130
 float3 nc = DecodeNormal(nci); 131
 // the difference 132
 float sc = sadot(ps - pc, ns, nc); 133
 134
 const float threshold = 0.2f; // half 135
 136
 #if authentication_mode == 2 137
 138

if (sc > threshold) { 139
static const float2 sampleOffset[] = { 140

 float2(0, -1), // ___________________ 141
 float2(0, 1), // | 7 | 142
 float2(1, 0), // | 3 | 143
 float2(-1, -1), // | 0 | 144
 float2(-1, 1), // | 5 . 2 | 145
 float2(-1, 0), // | 1 | 0------> x-axis 146
 float2(0, 1), // | 4 | | 147
 float2(1, -1) // | 6 | | 148
 }; // |_________________| V y-axis 149
 150
 // Consider the pixel in the neighborhood 151
 // which is the closest to the current subsample. 152
 sampleIndex2 += sampleOffset[si]; 153
 uint2 noi = normal_data.Load(int3(sampleIndex2, 0)); 154
 if (noi.x) { // is the candidate pixel in foreground? 155
 float zo = depth_data.Load(int3(sampleIndex2, 0)); 156
 float3 no = DecodeNormal(noi); 157
 float3 po = ScreenToWorld(158
 float3(positionSS + sampleOffset[si], zo)); 159
 float so = sadot(ps - po, ns, no); 160
 if (so > sc) { 161
 // There are bigger differences between the candidate 162
 // pixel and the current subsample than between the 163
 // current subsample and the pixel center, 164

 // so we will ignore this subsample completely. 165
 sc = 0; 166
 } 167
 } 168
 } 169
 #endif 170
 171
 // For foreground subsamples, it will be always >= 1. 172
 // For background subsamples, ret.SampleDifference == 0 173
 // (since RT is cleared every frame). 174
 ret.SampleDifference = uint(dscale * sc) + 1; 175
 return ret; 176
} 177

Listing 3. postprocessingShader.hlsl
Texture2D<float4> color_data : register(t0); 178
Texture2D<uint2> normal_data : register(t1); 179
Texture2DMS<uint> differencesMS : register(t2); 180
// depth_data is used only for authentication_mode == 1 181
Texture2D<float> depth_data : register(t3); 182
 183
float4 postPS(in PSInput input) : SV_Target { 184
 185
 float2 positionSS = input.PositionSS.xy; 186
 uint2 sampleIndex2 = uint2(positionSS); 187
 uint3 sampleIndex3 = uint3(sampleIndex2, 0); 188
 189
 // Encoded normal @ pixel's center. 190
 uint2 nci = normal_data.Load(sampleIndex3); 191
 192
 float maxsim = 0; // maximum similarity 193
 float d[8]; // subsample similarity 194
 195
 [unroll] for (uint i = 0; i < 8; i++) { 196
 uint sci = differencesMS.Load(sampleIndex2, i); 197
 // fg - bg tramps all other differences. 198
 // sc = sample in fg? decode it : big_number; 199
 float sc = sci? (sci - 1) / dscale : nci.x; 200
 d[i] = sc; 201
 maxsim = max(maxsim, sc); 202
 } 203
 204
 const float threshold = 0.2f; // half 205
 206
 float4 color; 207
 208
 static const float uva[] = { 209
 0.889, -0.889, -0.799, 0.000, 0.839, 0.176, -0.755, -0.250, 210
 0.084, 0.778, 0.070, 0.668, 0.044, 0.661, 0.145, -0.536, 211
 -0.803, -0.066, -0.735, -0.096, 0.683, 0.107, 0.562, 0.164, 212
 0.025, 0.703, -0.509, -0.058, -0.552, -0.011, -0.356, -0.042, 213
 0.682, 0.283, -0.757, 0.025, 0.707, 0.204, 0.587, 0.175, 214
 0.667, -0.667, 0.556, -0.556, 0.073, -0.571, 0.051, 0.430, 215
 -0.621, 0.023, -0.019, 0.616, 0.589, 0.088, 0.468, 0.144, 216
 0.556, -0.556, 0.444, -0.444, 0.444, -0.444, 0.333, -0.333, 217
 -0.057, -0.792, -0.098, 0.694, 0.426, -0.426, -0.045, 0.565, 218
 0.065, -0.729, -0.033, -0.609, 0.065, -0.591, 0.090, -0.477, 219
 0.636, -0.140, -0.114, 0.561, 0.538, 0.144, 0.389, 0.199, 220
 -0.017, -0.658, 0.033, 0.453, 0.312, -0.312, 0.041, 0.315, 221
 0.700, 0.000, 0.589, -0.244, -0.074, -0.605, 0.506, 0.107, 222
 0.556, -0.556, 0.444, -0.444, 0.067, -0.480, 0.049, 0.367, 223
 0.369, 0.230, 0.357, 0.237, 0.447, 0.120, 0.332, 0.140, 224
 0.000, 0.318, 0.000, 0.314, -0.071, 0.438, -0.103, 0.247, 225
 -0.767, 0.120, 0.706, -0.176, 0.737, 0.081, -0.606, -0.230, 226
 -0.598, 0.203, -0.537, -0.095, -0.296, -0.347, -0.435, -0.100, 227
 0.101, 0.761, -0.631, -0.127, 0.617, 0.099, 0.484, -0.090, 228
 -0.620, -0.128, -0.455, -0.065, -0.511, 0.051, -0.319, -0.042, 229
 0.667, -0.667, 0.556, -0.556, 0.634, 0.136, -0.540, 0.074, 230
 0.556, -0.556, 0.444, -0.444, -0.148, -0.376, -0.139, -0.214, 231
 0.556, -0.556, 0.444, -0.444, 0.534, 0.148, 0.376, -0.061, 232
 0.444, -0.444, 0.333, -0.333, -0.415, 0.068, -0.210, -0.029, 233
 0.667, -0.667, 0.556, -0.556, 0.564, 0.031, 0.444, -0.444, 234
 0.556, -0.556, 0.444, -0.444, 0.039, -0.484, 0.039, -0.371, 235
 0.556, -0.556, 0.386, -0.909, 0.446, 0.145, 0.371, -0.074, 236
 0.444, -0.444, -0.633, 0.377, 0.236, -0.236, -0.074, 0.170, 237
 0.556, -0.556, 0.444, -0.444, 0.241, -0.283, 0.432, 0.097, 238
 0.444, -0.444, 0.333, -0.333, 0.088, -0.339, 0.051, -0.246, 239
 0.395, -0.896, 0.368, -0.936, 0.284, -0.171, 0.243, -0.087, 240
 0.488, -0.488, 0.474, -0.474, 0.159, -0.174, 0.068, -0.073, 241
 -0.720, 0.416, 0.145, 0.699, 0.676, 0.263, -0.616, -0.210, 242
 0.042, 0.688, 0.122, 0.604, 0.038, 0.638, 0.118, 0.505, 243
 0.286, 0.667, 0.152, 0.518, 0.238, 0.556, -0.494, -0.075, 244
 0.238, 0.556, -0.227, 0.255, 0.190, 0.444, 0.094, 0.320, 245
 0.684, 0.684, 0.730, -0.015, -0.759, 0.030, -0.500, 0.085, 246
 0.238, 0.556, -0.392, -0.928, 0.081, 0.596, -0.110, 0.323, 247

85

 0.238, 0.556, 0.366, 0.366, 0.190, 0.444, -0.347, 0.081, 248
 0.190, 0.444, 0.646, 0.452, 0.143, 0.333, 0.044, 0.243, 249
 0.286, 0.667, 0.042, -0.612, 0.238, 0.556, 0.447, -0.070, 250
 0.238, 0.556, 0.039, -0.531, 0.190, 0.444, 0.098, -0.400, 251
 0.238, 0.556, 0.169, 0.369, 0.190, 0.444, 0.190, 0.206, 252
 0.190, 0.444, -0.066, 0.343, 0.143, 0.333, 0.078, 0.229, 253
 0.238, 0.556, 0.623, -0.046, 0.190, 0.444, 0.328, 0.151, 254
 0.190, 0.444, 0.000, 0.266, 0.143, 0.333, 0.047, -0.280, 255
 0.039, 0.404, 0.340, 0.200, 0.259, 0.349, 0.162, 0.140, 256
 0.119, 0.270, 0.437, 0.267, 0.240, 0.307, 0.050, 0.112, 257
 -0.000, -0.682, -0.640, -0.111, -0.000, -0.679, 0.540, -0.177, 258
 -0.320, -0.283, -0.441, -0.129, -0.319, -0.281, -0.344, -0.158, 259
 -0.556, -0.079, -0.565, -0.144, -0.444, -0.063, 0.405, 0.034, 260
 -0.347, 0.960, -0.307, 0.118, -0.313, 1.000, -0.212, 0.055, 261

 -0.556, -0.079, -0.444, -0.063, 0.232, -0.560, -0.454, 0.072, 262

 -0.034, -0.385, -0.311, -0.366, -0.263, -0.307, -0.130, -0.151, 263

 -0.444, -0.063, -0.252, 0.000, -0.333, -0.048, -0.312, 0.042, 264

 -0.333, -0.048, -0.327, -0.481, -0.331, 0.260, -0.122, -0.020, 265

 -0.556, 0.556, -0.444, 0.444, -0.444, 0.444, -0.333, 0.333, 266

 -0.000, -0.372, -0.000, -0.369, -0.000, -0.371, 0.105, -0.290, 267

 -0.444, 0.444, -0.544, 0.604, -0.333, 0.333, 0.271, 0.047, 268

 -0.518, 0.518, -0.280, 0.289, -0.505, 0.505, -0.062, 0.077, 269

 -0.267, -0.444, -0.200, -0.333, -0.674, -0.448, 0.189, -0.189, 270

 -0.141, -0.314, -0.338, -0.380, -0.286, -0.291, -0.028, -0.146, 271

 0.333, 0.067, 0.314, -0.150, 0.339, 0.445, 0.192, 0.290, 272

 0.000, 0.162, -0.170, 0.150, 0.177, -0.169, 0.000, 0.000 273

 }; 274

 static const float2 uvo[] = uva; 275

 276

 if (maxsim/2 > threshold) { 277

 maxsim = maxsim/2 + threshold; 278

 uint m = 1; // bit index 279

uint mask = 0; // bits: 0 for different, 1 for the same 280

 uint fs; // 'furthest sample' 281

 282

 [unroll] for (uint i = 0; i < 8; i++, m <<= 1) { 283

 if (d[i] <= maxsim) { 284

 mask |= m; // similar 285

 } else { 286

 fs = i; // different 287

 } 288

 } 289

 290

 positionSS += uvo[mask]; // add precomputed offset 291

 positionSS /= InputSize; // convert to [0,1] 292

 color = color_data.Sample(LinearSampler, positionSS); 293

 294

 #if authentication_mode == 1 295

static const float2 sampleOffset[] = { 296
 float2(0, -1), // ___________________ 297
 float2(0, 1), // | 7 | 298
 float2(1, 0), // | 3 | 299
 float2(-1, -1), // | 0 | 300
 float2(-1, 1), // | 5 . 2 | 301
 float2(-1, 0), // | 1 | 0------> x-axis 302
 float2(0, 1), // | 4 | | 303
 float2(1, -1) // | 6 | | 304
 }; // |_________________| V y-axis 305
 // Consider the pixel in the neighborhood 306
 // which is the closest to the different subsample fs. 307
 sampleIndex2 += sampleOffset[fs]; 308
 uint2 nco = normal_data.Load(int3(sampleIndex2, 0)); 309
 if (nci.x && nco.x) { // see if both normals are valid 310
 // The current pixel: depth, normal, position 311
 float zc = depth_data.Load(sampleIndex3); 312
 float3 nc = DecodeNormal(nci); 313
 float3 pc = ScreenToWorld(float3(positionSS, zc)); 314
 // The closest neighborhood pixel (used for blending). 315
 float zo = depth_data.Load(int3(sampleIndex2, 0)); 316
 float3 no = DecodeNormal(nco); 317
 float3 po = 318
 ScreenToWorld(float3(positionSS + sampleOffset[fs], zo)); 319
 float co = sadot(pc - po, nc, no); 320
 if (co - d[fs] > d[fs]) { // so ~ co – sc 321
 // Use 1/2 resampling offset. 322

positionSS = input.PositionSS.xy + 0.5*uvo[mask]; 323
 positionSS /= InputSize; 324
 color = color_data.Sample(LinearSampler, positionSS); 325
 } 326
 } 327
 #endif 328
 329
 } else { 330
 color = color_data.Load(sampleIndex3); // no changes 331
 } 332
 return color; 333
} 334

Figure 9. Comparison of the five different antialiasing techniques using two animations: emoticon model (top) and the UNC exploding dragon
(bottom).The peak signal-to-noise ratio is measured against 64x supersampling (the bigger the better). Note that RSAA goes below 4x MSAA
when the dragon starts disintegrating, but it is still better than MLAA. The RSAA version with 8 geometric subsamples and post-processing
authentication is used.

30

35

40

45

50

55

0 50 100 150 200 250

30

35

40

45

50

55

0 50 100 150 200 250

noAA MLAA 4x MSAA RSAA 8x MSAA

86

	1 Introduction
	2 Antialiasing through Resampling
	2.1 Geometry → Similarity Measure
	2.2 Similarity Measure → Two Clusters
	2.3 Two Clusters → Resampling Offsets
	2.4 Authentication of Resampling Offsets

	3 Implementation Details
	3.1 Data Layout Optimization
	3.2 Geometry Pre-pass Optimization

	4 Discussion
	4.1 Performance vs Quality
	4.2 Limitations

	5 Summary
	Acknowledgements
	References
	Listing common.hlsl
	Listing prepassShaders.hlsl
	Listing postprocessingShader.hlsl

