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Abstract 

Wt present a method Jor volume rendering of regular grids 
cclhic~h takes advantage of <?D texture mapping hardware cur- 
rc,rhlly available on graphics workstations. Our method pro- 
ducts accurate shadang for arbitrary and dynamically chang- 
ing directionul lights, viewing parameters, and transfer func- 
lior~. TIlis is achieved by hardware interpolating the data 
values and gradients before software classification and shad- 
rng. The method works equally well for parallel and perspec- 
tive projections. We present two approaches for OUT method: 
one which takes advantage of software ray casting optimita- 
Irons nnd another which takes advantage of hardware blend- 
ing (Acceleration. 

CR Categories: 13.1 [Computer Graphics]: Hardware 
Architecture; 1.3.3 [Computer Graphics]: Picture/Image 
Generation; 1.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism-Color, shading, shadowing, and tex- 
ture 

Keywords: volume rendering, shading, ray casting, tex- 
t,ure mapping, solid texture, hardware acceleration, parallel 
rendering 

1 Introduction 

Volumetric data is pervasive in many areas such as medi- 
cal diagnosis, geophysical analysis, and computational fluid 
dynamics. Visualization by interactive, high-quality vol- 
umr rendering enhances the usefulness of this data. To 
date, many volume rendering methods have been proposed 
011 general and special purpose hardware, but most fail to 
achieve reasonable cost-performance ratios. We propose a 
lligh-quality volume rendering method suitable for imple- 
mentation on machines with 3D texture mapping hardware. 

Akelcy [l] first. mentioned the possibility of accelerating 
vollune rendering using of 3D texture mapping hardware, 
hpecifically on the SGI Reality Engine. The method is to 

store the volume as a solid texture on the graphics hardware, 
then to sample the texture using planes parallel to the image 
plane and composite them into the frame buffer using the 
blending hardware. This approach considers only ambient, 
light and quickly produces unshaded images. The images 
could be improved by volumetric shading, which implements 
a full lighting equation for each volume sample. 

Cabral et al. [3] rendered 512x512~64 volumes into a 
512 x512 window (presumably with 64 sampling planes) in 
0.1 seconds on a four Raster Manager SGJ RealityEnginrb 
Onyx with one 150MHz CPU. Cullip and Neumann [4] 
also produced 512x512 images on the SGI RealityEngine 
(again presumably 64 sampling planes since the volume is 
128 x 128 x64) in 0.1 seconds. All of these approaches keep 
time-critical computations inside the graphics pipeline at the 
expense of volumetric shading and image quality. 

Van Gelder and Kim [6] proposed a method by which 
volumetric shading could be incorporated at the expense of 
interactivity. Their shaded renderings of 256 x256 x 113 vol- 
umes into 600’ images with 1000 samples along each ray took 
13.4 seconds. Their method is slower than Cullip and Neu- 
mann’s and Cabral et al.‘s because they must re-shade thr 
volume and reload the texture map for every frame because 
the colors in the texture memory are view dependant. 

Cullip and Neumann also described a method utilizing 
the PixelFlow machine which pre-computes the z, u and z 
gradient components and uses the texture mapping to intcr- 
polate the density data and the three gradient components. 
(The latter is implemented partially in hardware and par- 
tially in software on the 128’ SIMD pixel processors [5].) 
All four of these values are used to compute Phong shaded 
samples which are cornposited in the frame buffer. They prc- 
dieted that 2563 volume could be rendered at over 1 OHz into 
a 640x512 image with 400 sample planes. Although this is 
the first proposed solution to implement full Phong lighting 
functionality, it has never been realized (as far as we know) 
because it would require 43 processor cards, a number which 
can not easily fit into a standard workstation chassis [4]. 

Sommer et al. [13] described a method to render 128” 
volumes at 4002 resolution with 128 samples per ray in 2.71 
seconds. They employ a full lighting equation by computing 
a smooth gradient from a second copy of the volume stored 
in main memory. Therefore, they do not have to reload the 
texture maps when viewing parameters change. However, 
this rendering rate is for isosurface extraction; if translucent, 
projections are required, it takes 33.2 seconds for the samr 
rendering. They were the first, to propose to resample thr 
texture volume in planes parallel to a row of image pixels so 
that a whole ray was in main memory at one time. They 
mention the pot>ential to also interpolate gradients wibh t,he 
hardware. 

All of these texture map based rnethods either non- 
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Figl~r~ 1: 7’hree architectures for texture map based volume rendering: (a) Our architecture, (b) T ra z tonal architectule o,/ d’t’ 
VLtr Cielder ccnd Kim, and (c) Ideal architecture of Van Gelder and Kim. The thick lines are the operations which must br, 

prrjorttketl ,for every frame. 

illt rractivcly recompute direction-dependent shading each 
I.imc, any of the viewing parameters change, compute only 
direction-independent shading, or compute no shading at 
all. Our method shades every visible sample with view- 
tlependent lighting at interactive rates. 

We do not, adapt the ray casting algorithm to fit within 
(,hc% existing graphics pipeline, which would compromise the 
image quality. Instead, we only utilize the hardware where 
it 1)rovides run time advantages, but maintain the integrity 
of t,hr ray casting algorithm. For the portions of the volume 
rrntlrr-ing pipeline which can not be performed in graphics 
hartlware (specifically shading) we use the CPU. 

111 volumr rendering by ray casting, data values and gra- 
dicnt,s are estimated at evenly spaced intervals along rays 
c~manating from pixels of the final image plane. Resam- 
plirig t.hese data values and gradients is often the most time 
consuming task in software implementations. The texture 
mapping hardware on high-end graphics workstations is de- 
signed to perform resampling of solid textures with very high 
throughput,. We leverage this capability to implement high 
throughput density and gradient, resampling. 

Shading is t,he missing key in conventional texture map 
based volume rendering. This is one of the reasons that pure 
grallhirs hardware methods suffer from lower image qual- 
ity I.han software implementations of ray-casting. For high- 
clualit,y images, our method implements full Phong shading 
using t,hr estimated surface normal (gradient) of the density. 
Wr pr-r-compui,ca t,he estimated gradient of the density and 
st,orr it, in texture memory. We also pre-compute a lookup 
t.ablc (LIJT) to store the effect of an arbitrary number of 
light sources using full Phong shading. 

The final step in volume rendering is the compositing, or 
I)lerrding, of the color samples along each ray into a final im- 
age color. Most graphics systems have a frame buffer with 
an o1’acit.y channel and efficient blending hardware which 
can he used for back-to-front cornpositing. In the next sec- 
tion we present our architecture, in Sec. 3 we present our 
remlcring optimization technique in Sec. 4 we compare our 
method to existing methods, in Sec. 5 we present our paral- 
lcl implemeniat~ion, and finally in Sec. 6 we give our results 
and draw conclusions. 

2 Architectural Overview 

t:ig l(a) shows our architecture in which density and gradi- 
ents are loaded int,o t,he texture memory once and resampled 

by the texture hardware along rays cast, through the volume. 
The sample data for each ray (or slice) is then transferred 
to a buffer in main memory and shaded by the CPU. The 
shaded samples along a ray are cornposited and the final 
pixels are moved to the frame buffer for display. Alterna- 
tively within the same architecture, the shaded voxels can 
be cornposited by the frame buffer. 

Fig. l(b) shows the architecture that is traditionally used 
in texture map based shaded volume rendering. One of the 
disadvantages of this architecture is that the volume must 
be re-shaded and re-loaded every time any of the viewing 
parameters changes. Another problem with this method is 
that, RGBo values are interpolated by the texture hardware. 
Therefore, when non-linear mappings from density to RGBa 
are used, the interpolated samples are incorrect. We present, 
a more detailed comparison of the various methods in Sec. 4. 

In Fig. l(c), Van Gelder and Kim’s [6] Ideal architecturcx 
is presented. In this architecture, the raw density and vol- 
ume gradients are loaded into the texture memory one time 
only. The density and gradients are then interpolated by the 
text,ure hardware and passed to a post-texturing LUT. The 
density values and gradients are used as an index into the 
LUT to get the RGBa values for each sample. The LIJ’l 
is based on the current view direction and can be created 
using any lighting model desired (e.g., Phong) for any level 
of desired image quality. This method solves the problems 
of the current architecture including pre-shading the volume 
and interpolating RBGo values. However, a post-texturing 
LUT would need to be indexed by the local gradient which 
would require an infeasibly large LUT (see Sec. 2.2). 

2.1 Sampling 

Ray casting is an image-order algorithm, which has the 
drawback of multiple access of voxel data, since sampling 
within the dataset usually requires the access of eight, or 
more neighboring data points [2, 111. Ray casting using tex- 
ture mapping hardware the multiple voxel accesses by using 
the hardware to perform the resampling. 

Graphics pipelines work on primitives, or geometric, 
shapes defined by vertices. Traditionally, volume rendering 
has been achieved on texturing hardware systems by orien,- 
ing polygons parallel to the image plane and then composit- 
ing these planes into the frame buffer as in Fig. 2. 

Because of the way that the texture hardware interpolat,es 
values, the size of the original volume does not adversely af- 
fect the rendering speed of texture map based volume ren- 
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l”igltre  2: Polyqon  primitives  for texture based  volume ren-
dr,rng ,when thk final image zs oriented  parallel to one of the
,ftrc,t  s o,f the volume

Figure 3: Sphere  rendered using (a) g-bit fixed-point  Phong
shading calculations, and (b) with a S-bit, $-index LUT

derers.  Instead, the image size  and number  of samples  along
each ray dictat,e  how many texture  map resamplings  are
c-omputed.  This is true as long as the volume data fits in
t,he texture memory  of the graphics  system.  A typical  high-
end graphics  system is equipped  with 64 MBytes of texture
memory  which holds volumes  up to 2563 with 32-bits per
voxc*l.  Newer hardware  supports  fast paging  between  main
and texture memory  for higher virtual  texture  memory  than
is physically  available [la, 81.

2.2 Shading  Options

The 3-4 parameter  LUT presented  by all three architectures
in Fi?. 1 is used to optimize the computation  of the lighting
equat,lon  for shading of samples.  The LUT summarizes  the
con(.ribution of ambient,  diffuse, and specular  shading for
rvery gradient direction  in the LUT.

Wr present alternatives  to compute the shading  of the
re-sampled  points  along the rays. Van Gelder  and Kim im-
plied that a 3-4 parameter  LUT within the graphics  pipeline
collld be used. Even if there were  only four  viewing  param-
eLers  to consider,  four 8-bit indices  into a LUT would  mean
2X? = 4 Gigaentrics  in the table. Since this is an RGBcv
r,:al)l~ it would consume  16 GBytes  of memory.  Furthermore,
it would require 4 Gigacalculations  to compute the LUT.
If t.hc  same calculat,ions were  used on the resampled  data,
t,hen  a 400 x 400 x 256 projection  of a volume could  be shaded
with  40 Megacalculations, or two orders of magnitude  less

than computing the LUT. If the table is to be indexed  by
only four parameters  (G,, G,, G,, density value) then the
table would  need to be recomputed every time any light 01
viewing  parameter  changed,  or every frame in the usual case.
Trade-offs  could  occur to also use eye  and light position  as
indices, but the table is already much too large. Reducing
the precision  brings the table downn  to a much more man-
ageable  size.  However, that deteriorates  the image quality.
Fig. 3(a) shows a sphere generated  with an 8-bit fixed-point
Phong  calculation  and Fig. 3(b) with a 4-index  Phong  LUT
with 5-bits  per index  and 8-bit values.  Five bits is about,
the largest that can be considered  for a manageable  lookup
table since 324 x4Bytes  = 4 MBytes.

Fortunately,  with the Phong lighting model  it is possible
to reduce the size of the LUT by lirst normalizing  the gra-
dient and using a Reflectance  Map [14]. With this  method,
the Phong shading contribution for 6nZ surface normals  is
computed. They are organized  as six n2 tables that map to
the six sides  of a cube with each side  divided  into n2 equal
patches.  Each sample  gradient  vector  G2,Y,Z is normalized
by its maximum  component to form Gu,v,lndez,  where index
ennumerates  the six major directions.  A direct lookup  re-
turns RGBcv  intensities which are modulated with the object.
color to form the shaded  sample  intensity.

Trade-offs  in image quality  and frame rate occur with the
choice  of shading implementation.  We have chosen to imple-
ment reflectance  map shading because  it delivers good image
quality  with fast LUT creation  and simple lookup.

2.3 Pre-computation of Volume  Gradients

To be able to compute accurately  shaded volumes  we pre-
compute the G,, G, and G, central  difference gradient val-
ues at each voxel position.  Our voxel data type is then four
8-bit  values  which we load into an RGBcY type texture  map,
although  the fields are really three gradient  values and raw
density. These  gradient  values  are then interpolated  along
with the raw  density  values to the sample  positions  by the
3D texture  mapping  hardware.  Assuming  a piecewise  linear
gradient function, this method produces  the same gradient,
values  at the sample  locations as if gradients  themselves  were
computed at unit voxel distances  from the sample  point.  The
gradient computation  needs to occur only once for any vol-
ume of data being  rendered,  regardless of changes in the
viewing parameters.  Since the gradients  are  processed  off-
line,  we have chosen  to compute high-quality  Sobel gradients
at the expense  of speed. Computing gradients  serially off-
line  for a 2563 volume  takes  12 seconds  on a 200MHz  CPU.

3 Rendering Optimization Techniques

Software ray casting  algorithms  enjoy speedup  advantages
from several different optimization techniques;  we consider
two of them. The first  is space leaping,  or skipping ovel
areas of insignificant  opacity.  In this technique,  the opacity
of a given sample  (or area of samples)  is checked before  any
shading  computations are performed.  If the opacity  is under
some threshold,  the shading and compositing calculations
are skipped  because  the samples  minimally  contribute  to the
final pixel color for that ray.

A second  optimization technique  employed  by software
ray casting  is the so-called  early ray termination.  In this
technique,  only possible  in front-to-back traversal, the sam-
pling, shading  and compositing operations  are terminated
once the ray reaches full opacity.  In other words, the ray has
reached  the point  where everything  behind  it is obscured  by
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other ol),jc,c-ts closer t,o the viewer. Since we are using the 
I~ardwarr lo l)erform all interpolations, we can only elimi- 
lliltf: shading and cornpositing operations. However, these 
ol)c,rat.ions t,,vl)ically dominate the rendering time. 

I3~4OW. WC’ ljropose two methods to apply these optimiza- 
I iolr I,(~c.liliiq\l(~s (,o sped up the computation of accurat,ely 
el~atlctl vol~~mc rcntlrring utilizing t,exturc, mapping hard- 
\Vi,l‘(‘. 

3.1 Planes: Cornpositing on the CPU 

t’rovious t,exture map based volume rendering methods re- 
salnple a volume by dispatching polygons down the graphics 
i’il>clinc, parallel to the image plane. The textured polygons 
arc 1.11c:n blcndcd into the frame buffer without ever leav- 
iug I he graphics hardware [I, 7, 3, 4, 61. Fig. 2 shows the 
corn man polygon resampling direction 

III c-ontraht, since we propose t,o shade the samples in the 
(It’lr and take advantage of the two optimization techniques 
tlisc,lissocl earlier, we wish to have all the samples for a ray in 
tl~ca main mc~mory a( one time. For this reason we have cho- 
W~I all al(,crrlat,ive order for accessing the resampling func- 
tionillitp of the IID texture map hardware. Polygons are 
forwartlcd to t,he graphics pipeline oriented in such a way 
t.hat, they arc coplaner with the rays that, would end up br- 
illg r~ row of’ I)ixc:ls in the fillal image plane. Fig. 4 shows the 
l~olygo~~ orirnt,at,ion for t,his method. 

011ct~ 1.11(~ t1al.a has been loaded back int.o 1.he main rnf:n- 
OI.J’. 1 Ire, raw drnsit,y vahle, and three gradient, componrnts 
arc (,xt rac.t,cd and l~srd iii a reflectance map romplitat,ion 
1 o g~~~~rra(,c~ ~,hr I’hong shaded RG13rw for each sample. The 
sampleh are cornposited front-to-back taking advantage of 
<‘ilrly ray I ermination and skipping over low opacity samples. 
Sirtlllar t,o t,hc shear-warp approach [lo], t,he composition is 
110~ an olthogonal projection with 110 more resampling. The 
ra,v (.ornpositZiorr section is t,hrreforc computed as quickly as 
in t,hc shcai.-warp approach. In fact, this method can be 
vic,wcd as rc~srrrrbling t,hr shear-warp method where WC let 
t II~, I cxt urc Inapping hardware perform thr shearing and per- 
sl)c.c(,iv(. scaling. Furthermore, our method does not require 
;I final warp sinrc tile planes are already resampled into im- 
age’ ~~~acc’. ‘I’his not, only speeds up t,he total processing over 
\llrar-war\). bllt removes a filtering step and thus, results in 
ilighrr ~n?agc qlmlit,y. Algorithm I render-s a volume using 
tll? I’liUlCS m(x1,hod. 

Load texture rotation matrix 

Resample first plane into frame buffer 

Read first plane from frame buffer Into memory 

loop over all remaining scanlines 

Resample next plane into frame buffer 

loop over all columns in previous plane 

Inltlallze Integration variables 

while withln bounds and ray not opaque 

Lookup opacity 1x1 tranfer function 

if sample opacity > threshold 

Lookup shade in reflectance map 

Composite ray color OVER sample 

end if 

end while 

store ray color In previous row of image 

end loop 

Read next plane from frame buffer Into memory 

end loop 

Shade and composite fIna. plane as above 

Algorithm 1: Planes method for texture map based volu~nt 

rendering 

Notice that we interlace the CPU and graphics hardwarr 
computation by initiating the texture mapping calculations 
for scanline y + 1 before doing the shading and compositing 
on scanline y in the CPU. 

Table 1 presents rendering times for various volumes and 
image sizes. The Translucent Solid is a 643 volume that is 
homogenous and translucent with a l/255 opacity. This es- 
tablishes a baseline of how long it, takes to process an ent)irca 
volume. Since there are no transparent voxels, every sample 
is shaded (i.c., the low opacity skipping optimization is not 
ut,ilized). Additionally, the rays do not reach full opacity for 
191 samples inside this volume, so for most cases in the table, 
the parly ray termination optimization does not take effect. 
The Translucent Sphere is a radius 32 sphere of 4/2i;5 opal 
ity in the center of a transparent 643 volume. In this volume, 
the effect, of t,he low opacity skipping optimization becomrs 
apparent. The Opaque Sphere is the same sphere, but with 
a uniform opacity of 255/255. This is the first volume to 
take advantage of early ray termination and the rendering 
times reflect that. These first three volumes were creat,ed as 
theoretical test cases. The next three MRI and CT scanned 
volumes are representative of the typical workload of a vol- 
urnf~ rendering system. All three of these contain arcas of 
t,ranslucent. “gel” with other features inside or behind t.11~ 
first, nlatcrial encountered. Renderings of the Lobster, Ml</ 
llend, Silicon and CT’ Head datasets on a four processor SCI 
Onyx2 are shown in Figs. 5, 6, 7 and 8, respectively. 

The image sizes cover a broad range (most are included 
for comparison to other methods; see Sec. 4). The number 
of samples along each ray is also included because t,he rull 
l,ime of image-order ray casting is typically proportional to 
Lhc nllmber of samples computed and not the size of t.hc, 
volume. To show this, we rendered the Opaque Sphere rzs A 
32 volume in 0.13 seconds, as a 643 volume in 0.13 seconds, 
and as a 12X” volume also in 0.13 seconds (for all of t,hrsc, 
wc rendered 100” images with 100 samples per ray using t,hc, 
Planes method). 

3.2 Blend: Cornpositing in the Frame Buffer 

When we tested and studied the performance of the syskm 
WC noticed that, depending on the volume data and t,ransfrl 
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Image Size
x SampI<

per Ray
128Lx84

Translucent Translucent, opaque Lobster Silicon MRI CT
Solid Sphere Sphere Head IIead
64” 643 64’ 128” x64 128~32~ 64 x 2Xi2 128” x113

1.04 0.54 0.19 0.24 0.48 0.36 0.20
1.90 0.99 0.35 0.31 0.52 1.27 0.48
5.55 2.69 0.73 1.22 2.21 1.76 0.67
13.19 6.10 1.84 2.78 5.98 4.53 1.84
11.96 6.15 1.94 1.88 3.06 7.99 2.81

Table  1: Renderings  rates in seconds for the Planes method

I‘(’  5: (‘/’ .rc~trr~~ctl  Lobster dataset  with a translucent  shr
c red (II i).L’~i uc~conds at .2!od resolution (also in the colt
0 ,I)

ill
,r

n

i0

Load texture rotation  matrix

Resample furthest slice Into frame buffer

Read furthest slice from frame buffer Into memory

loop over all remaining  slices back-to-front

Resample next allce nto frame buffer

loop over all samples in previous ~11.~3

if sample opacity > threshold

Lookup shade in reflectance  map

Hrlte shade back into buffer

else
Hrlte clear back into buffer

end if

end loop
Blend slice buffer Into frame buffer

Read next slice from frame buffer into memory

end loop
Shade and Blend nearest slice a8 above

Algorithm  2: Blend  method for texture map based volumt
rc ndering

function,  there was  still  a substantial  amount of time spenl
in the compositing  portion  of the algorithm.  In fact,  WC
found that, the number of samples  per ray before reaching
full  opacity and terminating  is proportional  to the time  spent
coinpositing. We propose  to composite  using  the blending
hardware  of the graphics hardware  by placing  the shaded
images  back into the frame buffer and specifying the over
operator.  Of course, this requires that we  return  to using
polygons  that are parallel  to the final  image plane  as in Fig 2.
In this method,  we  can employ  the optimization  of skipping
over low opacity samples  by not shading  empty samples.
However,  since  the transparency  values reside  in the frame
buffer’s  cy channel and not in main  memory,  we  can 1101.
easily tell when a given ray has reached full opacity and can
not,  directly  employ  early  ray termination  without, reading
the frame  buffer.  Algorithm  2 renders a volume using t,his
Blend method.

Notice that we now  resample along  slices rather  than
planes.  Also,  there are two frame buffers,  one for the slices
of samples  and another  for the blending  of shaded  images.
Since  compositing  is not performed in software,  it is quickcl
than the Planes  algorithm.  However,  because of the added
data  transfer  back to the graphics pipeline  for blending  hit.0
tjhrl the frame buffer, and the fact  that shading  is performed
for all voxels,  this method  does not always produce  fast,rr
rendering rates.

Considering Table  2, the Blend  method always produces
better  rendering rates  for the first  two columns,  due to the
fact t,hat)  here the volumes are “fully  translucent”.  In other
words, sinrr the rays never reach  full  opacity, the early ter-
minnt,ion  optimization  that the Planes  method typicall,v  tlt,i-
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Image  Size
X Samples

per Ray

Translucent Translucent. Opaque Lobster Silicon MRI CT
Solid Sphere Sphere Head Head
64" 643 64,? 1282x64 128~32~ 64x256' 12g2x113

I I I /

lz? x84 0.83 0.48 0.48 / 0.26 1 0.46 1 0.35 1 0.29 1
2002 x VolDept,h 1.48 0.88 0.8: S 1 0.23 1 0.38 1 1.21 / 0.84 1

200'x200 4.64 2.63 2.66 1.31 2.50 1.83 1.49
4ooL xl28 11.30 5.40 3.19 3.04 5.13 13.49 3.44

5 l? x VolDepth 9.29 5.46 5.14 1.32 2.36 7.26 4.68

Table  2: Rendering rates in seconds for the Blend  method

,,I‘(’ 7: Stllc,on  dntaset  jlythrough showing  translucent
:fow.s rrndf,rcd in 0.29  seconds at 2Od resolution  (also
tht  c~olor sc,ctron)

II t’ X: (‘I scanned  Head dataset  showing  bone structures
,I( IY rl III 0.44 .uwonds at 20# re,%oltrtzon (also zn the color
Ion)

lizes  is unavailable.  Since both methods must, shade  the same
number of voxels and composite  every sample  on every lay,
lrtt,ing  the graphics hardware perform this compositing  is tZll(,
quickest. However,  for the Opaque Sphere  the Planes  method
is always faster.  This  is because 78.5% of the rays  intersect.
the sphere  and the optimization  from early ray terminat,iorl
is great,er  than the time gained  from not performing corn-
positing. We notice for the three “real”  volumes,  the Blrntl
method is quicker  when the number of samples  along each
ray is equal  to the number of voxels in that dimension  of the
volume. When the sampling  rate is close to the resolution
of the image, the excessive  slices that must  be shaded  and
ret,urned  to the frame buffer again allow  the early ray t.er-
mination  optimization  in the Planes  method  to out-perform
the Blend method.

In theory,  which method  would be optimal  can be deter-
mined  from the desired  rendering parameters,  volume den-
sity histogram,  and transfer  function.  For a more  opaque
volume, the Planes  method always produces  better  render-
ing rates.  For transparent  volumes,  if there are many slices
to render, the Planes  method  is usually  quicker,  while  if
there are few  slices the Blend method is the bet,ter  of the
two. Yet in practice,  we feel it may prove to be difficult,
to determine  how  ‘Lfew”  and “many” are defined.  For this
reason, we  prefer t)he  Planes  method,  since  it is faster  for all
opaque  volumes  and for some of the translucent  volumes.

4 Comparison  to Other Methods

Here we  compare the performance  of our rendering algorithm
to others  presented in the literature,  in terms of both image
quality and rendering rates.  The image quality comparisons
point  out quality trade-offs as they relate  to lighting  met,h-
ods. We noticed  in our testing  on different  volumes,  that.
the number of samples more  accurately  determined  the run
time  of the algorithm  than simply  the volume size. For this
reason we  have included  image  sizes and sample  counts in
our runtime tables  (see Tables  1 and 2). We also noticed
that,  the volume data  and transfer  functions  greatly  influ-
ence  rendering rates. For our method  this is probably  more
of an effect  because we  are utilizing  runtime  optimization
techniques whose performance  directly  relies on the volume
data  and transfer  functions.

Our Planes  method  renders the Lobster  at a sampling  res-
olution  of 512~512~64  in 1.88 seconds.  Our method is 19
t,irnes slower than the method of Cabral  et al. However,
their method  does not employ  directional  shading  or even
view  independent  diffuse shading.  This is a major  limi(.a-
tion t.o their method since  shading  cues are highly  regarded
as essential to visual perception  of shape and form.  Our im-
plementations  with full Phong lighting with ambient,  diffuse
and specular-  components  produces  a much  higher  quality
image.
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III comparison to Cullip and Neumann [4], our method achieves the poorest speedup because it quickly approaches 
ih again slower. Cullip and Neumann achieve better image the limit for raw rendering time imposed by the sequential 
qllality than Cabral et al. by computing a gradient coeffi- texture mapping. On the other end of the spectrum, the 
cient t,hat is used to simulate diffuse highlights. This still Translucent Sphere achieves the best speedup performance 
is root as high an image quality as our full Phong lighting, although it suffers from the slowest rendering rates. This is 
an(l if t,he light. geometry changes with respect to the vol- because the CPU bound raycasting portion of the compu- 
~IITIC‘, Cullip and Neumann’s texture maps must be recom- tation is the dominant percentage of the sequential time for 
~)~I(~(YI~ Therefore, if the viewing geometry is dynamic, t,hen this dataset.. The Lobster dataset is representative of vol- 
ollr‘ method obtains higher quaiit,y images, including specu- ume rendering applications and shows results between the 
lar Ilighlights, at, faster rates. two extremes. 

Our met,hod produces an image of Opaque Sphere in 1.84 
h~conds with the Planes method, faster than Sommer et 
al.‘h [I:33 isosurface rendering. For a translucent rendering of 
the Lobster OLIN Planes method runs 12 times faster in 2.78 
s(~~ruds. The image quality of both methods is equivalent 
sitlw t,hey both compute full lighting effects. As Sommer 
t’( al. pointed out, storing the gradients in the texture map 
!~a:. 1~11rv disadvantage of limiting the size of the volume that 
(‘all hr rendered without texture paging, so our frame rate 
is limited hy t,he amount of available texture memory, like 
all ot,hcr text,urc map based methods. 

Given enough processors, any dataset will eventually be 
limited by the time to perform the texture mapping. The 
number of processors required to reach this limit depends 
on the time it takes for the CPU portion (raycasting) of 
the algorithm to run and the fact that that portion relies 
heavily on software data dependant optimizations. The limit 
is reached when the number of processors is equal to T,/Tt, 
where 7: is the time to perform the raycasting for one plane 
on the CPU and Tt is the time to texture map one plane in 
the graphics hardware. 

Alt~hol~gh Lacroute’s shear-warp [9] is not a texture map 
I>as~d approach, we include a comparison, since it is one 
of t hr quickest methods for rendering with a full accurate 
light,ing modc,l on a workstation class machine. For example, 
shear-warp produces fully shaded monochrome renderings at 
a ra1.e of 10 Hz, but, this is a parallel version of shear-warp 
running on a 32 processor SGI Challenge. Lacroute reports 
t,hat, a 12Xx 128x84 volume can be rendered in 0.24 seconds 
on one processor. Our Planes method renders a 1282 im- 
itgc of the Opaque Sphere with 84 samples per ray in 0.19 
seconds and the Lobster in 0.24 seconds. Our parallel im- 
l>lcmentation runs even faster (see Sec. 5). Since shear-warp 
mrlst generate three copies of a compressed data structure 
1x1‘ classification, interactive segmentation is not possible as 
is with our method. Shear-warp performs classification be- 
fort bilinear rcsampling, whereas our method performs tri- 
linear interpolation followed by classification. Additionally, 
OLII‘ method performs arbitrary parallel and perspective pro- 
,jcclions in the same time while shear-warp takes up to four 
I imczs longer for perspect,ive projections. 

6 Results and Conclusions 

We have presented a method for high-quality rendering 
of volumetric datasets which utilizes the 3D texture map 
hardware currently available in graphics workstations. The 
method produces images whose quality is not only compa- 
rable to that of accurate software ray casting, but also the 
highest quality method currently available, at a substantially 
faster frame rate than that of software ray casting. Other 
methods achieve higher frame rates than ours, but either 
lack shading, lack directional shading, or require multiple 
processors. 

Our method is accelerated by multiple processors, al- 
though the speedup is limited by the throughput of the se- 
rial graphics pipeline. Although shear-warp achieves higher 
rendering rates for multiprocessor machines, our method is 
faster on typical graphics workstations with 3D texture map- 
ping and also supports interactive classification. 

5 Parallel Implementation 

\fYe have parallelized the Planes algorithm on a four proces- 
801‘ onyx 2 worksatition with Infinite Reality graphics. We 
c.oustruct,cd a master-slave model for the parallel processing 
whcsrc r.hr rtrasl.er process implements the texture mapping 
in(.cxrfacc to the graphics hardwarc and once a plane of or- 
t llogonal rays is rrsampled hy the hardware, the work is 
far~uetl t.o a slave process for the raycasting. We use the 
shared mernory symmetric multi-processor (SMP) function- 
ality of t.he Onyx 2 and IRIX 6.4 operating system. The best 
sl)eedl~p WC can achieve with the parallel version is bound 
I>g (11~ (ime it, takes 00 perform the texture mapping for all 
I he planes. ‘l’his is b ecause the texture mapping computa- 
1iol1 must, br performed sequentially since there is only one 
graphics pipeline. 

b’igurr 9(a) shows the rendering rates for one to four pro- 
(‘rssors for various volumes. For all cases we rendered 1282 
irnagc~s with 84 samples per ra.y. The time to perform the 
~cxture mapping of 128 128x84 planes is 0.12 seconds as 
shown on t,he graph. As can be seen, t,hc rendering rates 
al~l)roach t,his theoretical best rendering time. Figure 9(b) 
presents specdup curves for the same dat,asets. The Opaque 
,S/~/,<‘?Y tlat,aset is t,he rendered the fastest. However, it also 
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