
High-Quality Volume Rendering Using Texture Mapping Hardware

Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter and Arie Kaufman+

Center for Visual Computing (CVC)t
and Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400, USA

Abstract

Wt present a method Jor volume rendering of regular grids
cclhic~h takes advantage of <?D texture mapping hardware cur-
rc,rhlly available on graphics workstations. Our method pro-
ducts accurate shadang for arbitrary and dynamically chang-
ing directionul lights, viewing parameters, and transfer func-
lior~. TIlis is achieved by hardware interpolating the data
values and gradients before software classification and shad-
rng. The method works equally well for parallel and perspec-
tive projections. We present two approaches for OUT method:
one which takes advantage of software ray casting optimita-
Irons nnd another which takes advantage of hardware blend-
ing (Acceleration.

CR Categories: 13.1 [Computer Graphics]: Hardware
Architecture; 1.3.3 [Computer Graphics]: Picture/Image
Generation; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Color, shading, shadowing, and tex-
ture

Keywords: volume rendering, shading, ray casting, tex-
t,ure mapping, solid texture, hardware acceleration, parallel
rendering

1 Introduction

Volumetric data is pervasive in many areas such as medi-
cal diagnosis, geophysical analysis, and computational fluid
dynamics. Visualization by interactive, high-quality vol-
umr rendering enhances the usefulness of this data. To
date, many volume rendering methods have been proposed
011 general and special purpose hardware, but most fail to
achieve reasonable cost-performance ratios. We propose a
lligh-quality volume rendering method suitable for imple-
mentation on machines with 3D texture mapping hardware.

Akelcy [l] first. mentioned the possibility of accelerating
vollune rendering using of 3D texture mapping hardware,
hpecifically on the SGI Reality Engine. The method is to

store the volume as a solid texture on the graphics hardware,
then to sample the texture using planes parallel to the image
plane and composite them into the frame buffer using the
blending hardware. This approach considers only ambient,
light and quickly produces unshaded images. The images
could be improved by volumetric shading, which implements
a full lighting equation for each volume sample.

Cabral et al. [3] rendered 512x512~64 volumes into a
512 x512 window (presumably with 64 sampling planes) in
0.1 seconds on a four Raster Manager SGJ RealityEnginrb
Onyx with one 150MHz CPU. Cullip and Neumann [4]
also produced 512x512 images on the SGI RealityEngine
(again presumably 64 sampling planes since the volume is
128 x 128 x64) in 0.1 seconds. All of these approaches keep
time-critical computations inside the graphics pipeline at the
expense of volumetric shading and image quality.

Van Gelder and Kim [6] proposed a method by which
volumetric shading could be incorporated at the expense of
interactivity. Their shaded renderings of 256 x256 x 113 vol-
umes into 600’ images with 1000 samples along each ray took
13.4 seconds. Their method is slower than Cullip and Neu-
mann’s and Cabral et al.‘s because they must re-shade thr
volume and reload the texture map for every frame because
the colors in the texture memory are view dependant.

Cullip and Neumann also described a method utilizing
the PixelFlow machine which pre-computes the z, u and z
gradient components and uses the texture mapping to intcr-
polate the density data and the three gradient components.
(The latter is implemented partially in hardware and par-
tially in software on the 128’ SIMD pixel processors [5].)
All four of these values are used to compute Phong shaded
samples which are cornposited in the frame buffer. They prc-
dieted that 2563 volume could be rendered at over 1 OHz into
a 640x512 image with 400 sample planes. Although this is
the first proposed solution to implement full Phong lighting
functionality, it has never been realized (as far as we know)
because it would require 43 processor cards, a number which
can not easily fit into a standard workstation chassis [4].

Sommer et al. [13] described a method to render 128”
volumes at 4002 resolution with 128 samples per ray in 2.71
seconds. They employ a full lighting equation by computing
a smooth gradient from a second copy of the volume stored
in main memory. Therefore, they do not have to reload the
texture maps when viewing parameters change. However,
this rendering rate is for isosurface extraction; if translucent,
projections are required, it takes 33.2 seconds for the samr
rendering. They were the first, to propose to resample thr
texture volume in planes parallel to a row of image pixels so
that a whole ray was in main memory at one time. They
mention the pot>ential to also interpolate gradients wibh t,he
hardware.

All of these texture map based rnethods either non-

69

Data, Gradients Classification,
map to colors

Data, Gradients Classification,
map to colors

Data, Gradients Classification,
map to colors

3-4 parameter
texture memory

4 4

software texture LUT 3-4 parameter
software texture LUT

v

Main Memory v
3-4 parameter

and CPU
hardware texture LUT

texture memory

+ + v
Frame Buffer Frame Buffer Frame Buffer

(a) (b) w

Figl~r~ 1: 7’hree architectures for texture map based volume rendering: (a) Our architecture, (b) T ra z tonal architectule o,/ d’t’
VLtr Cielder ccnd Kim, and (c) Ideal architecture of Van Gelder and Kim. The thick lines are the operations which must br,

prrjorttketl ,for every frame.

illt rractivcly recompute direction-dependent shading each
I.imc, any of the viewing parameters change, compute only
direction-independent shading, or compute no shading at
all. Our method shades every visible sample with view-
tlependent lighting at interactive rates.

We do not, adapt the ray casting algorithm to fit within
(,hc% existing graphics pipeline, which would compromise the
image quality. Instead, we only utilize the hardware where
it 1)rovides run time advantages, but maintain the integrity
of t,hr ray casting algorithm. For the portions of the volume
rrntlrr-ing pipeline which can not be performed in graphics
hartlware (specifically shading) we use the CPU.

111 volumr rendering by ray casting, data values and gra-
dicnt,s are estimated at evenly spaced intervals along rays
c~manating from pixels of the final image plane. Resam-
plirig t.hese data values and gradients is often the most time
consuming task in software implementations. The texture
mapping hardware on high-end graphics workstations is de-
signed to perform resampling of solid textures with very high
throughput,. We leverage this capability to implement high
throughput density and gradient, resampling.

Shading is t,he missing key in conventional texture map
based volume rendering. This is one of the reasons that pure
grallhirs hardware methods suffer from lower image qual-
ity I.han software implementations of ray-casting. For high-
clualit,y images, our method implements full Phong shading
using t,hr estimated surface normal (gradient) of the density.
Wr pr-r-compui,ca t,he estimated gradient of the density and
st,orr it, in texture memory. We also pre-compute a lookup
t.ablc (LIJT) to store the effect of an arbitrary number of
light sources using full Phong shading.

The final step in volume rendering is the compositing, or
I)lerrding, of the color samples along each ray into a final im-
age color. Most graphics systems have a frame buffer with
an o1’acit.y channel and efficient blending hardware which
can he used for back-to-front cornpositing. In the next sec-
tion we present our architecture, in Sec. 3 we present our
remlcring optimization technique in Sec. 4 we compare our
method to existing methods, in Sec. 5 we present our paral-
lcl implemeniat~ion, and finally in Sec. 6 we give our results
and draw conclusions.

2 Architectural Overview

t:ig l(a) shows our architecture in which density and gradi-
ents are loaded int,o t,he texture memory once and resampled

by the texture hardware along rays cast, through the volume.
The sample data for each ray (or slice) is then transferred
to a buffer in main memory and shaded by the CPU. The
shaded samples along a ray are cornposited and the final
pixels are moved to the frame buffer for display. Alterna-
tively within the same architecture, the shaded voxels can
be cornposited by the frame buffer.

Fig. l(b) shows the architecture that is traditionally used
in texture map based shaded volume rendering. One of the
disadvantages of this architecture is that the volume must
be re-shaded and re-loaded every time any of the viewing
parameters changes. Another problem with this method is
that, RGBo values are interpolated by the texture hardware.
Therefore, when non-linear mappings from density to RGBa
are used, the interpolated samples are incorrect. We present,
a more detailed comparison of the various methods in Sec. 4.

In Fig. l(c), Van Gelder and Kim’s [6] Ideal architecturcx
is presented. In this architecture, the raw density and vol-
ume gradients are loaded into the texture memory one time
only. The density and gradients are then interpolated by the
text,ure hardware and passed to a post-texturing LUT. The
density values and gradients are used as an index into the
LUT to get the RGBa values for each sample. The LIJ’l
is based on the current view direction and can be created
using any lighting model desired (e.g., Phong) for any level
of desired image quality. This method solves the problems
of the current architecture including pre-shading the volume
and interpolating RBGo values. However, a post-texturing
LUT would need to be indexed by the local gradient which
would require an infeasibly large LUT (see Sec. 2.2).

2.1 Sampling

Ray casting is an image-order algorithm, which has the
drawback of multiple access of voxel data, since sampling
within the dataset usually requires the access of eight, or
more neighboring data points [2, 111. Ray casting using tex-
ture mapping hardware the multiple voxel accesses by using
the hardware to perform the resampling.

Graphics pipelines work on primitives, or geometric,
shapes defined by vertices. Traditionally, volume rendering
has been achieved on texturing hardware systems by orien,-
ing polygons parallel to the image plane and then composit-
ing these planes into the frame buffer as in Fig. 2.

Because of the way that the texture hardware interpolat,es
values, the size of the original volume does not adversely af-
fect the rendering speed of texture map based volume ren-

70

Final Image Plane
Resampling

Polygon Slices

l”igltre 2: Polyqon primitives for texture based volume ren-
dr,rng ,when thk final image zs oriented parallel to one of the
,ftrc,t s o,f the volume

Figure 3: Sphere rendered using (a) g-bit fixed-point Phong
shading calculations, and (b) with a S-bit, $-index LUT

derers. Instead, the image size and number of samples along
each ray dictat,e how many texture map resamplings are
c-omputed. This is true as long as the volume data fits in
t,he texture memory of the graphics system. A typical high-
end graphics system is equipped with 64 MBytes of texture
memory which holds volumes up to 2563 with 32-bits per
voxc*l. Newer hardware supports fast paging between main
and texture memory for higher virtual texture memory than
is physically available [la, 81.

2.2 Shading Options

The 3-4 parameter LUT presented by all three architectures
in Fi?. 1 is used to optimize the computation of the lighting
equat,lon for shading of samples. The LUT summarizes the
con(.ribution of ambient, diffuse, and specular shading for
rvery gradient direction in the LUT.

Wr present alternatives to compute the shading of the
re-sampled points along the rays. Van Gelder and Kim im-
plied that a 3-4 parameter LUT within the graphics pipeline
collld be used. Even if there were only four viewing param-
eLers to consider, four 8-bit indices into a LUT would mean
2X? = 4 Gigaentrics in the table. Since this is an RGBcv
r,:al)l~ it would consume 16 GBytes of memory. Furthermore,
it would require 4 Gigacalculations to compute the LUT.
If t.hc same calculat,ions were used on the resampled data,
t,hen a 400 x 400 x 256 projection of a volume could be shaded
with 40 Megacalculations, or two orders of magnitude less

than computing the LUT. If the table is to be indexed by
only four parameters (G,, G,, G,, density value) then the
table would need to be recomputed every time any light 01
viewing parameter changed, or every frame in the usual case.
Trade-offs could occur to also use eye and light position as
indices, but the table is already much too large. Reducing
the precision brings the table downn to a much more man-
ageable size. However, that deteriorates the image quality.
Fig. 3(a) shows a sphere generated with an 8-bit fixed-point
Phong calculation and Fig. 3(b) with a 4-index Phong LUT
with 5-bits per index and 8-bit values. Five bits is about,
the largest that can be considered for a manageable lookup
table since 324 x4Bytes = 4 MBytes.

Fortunately, with the Phong lighting model it is possible
to reduce the size of the LUT by lirst normalizing the gra-
dient and using a Reflectance Map [14]. With this method,
the Phong shading contribution for 6nZ surface normals is
computed. They are organized as six n2 tables that map to
the six sides of a cube with each side divided into n2 equal
patches. Each sample gradient vector G2,Y,Z is normalized
by its maximum component to form Gu,v,lndez, where index
ennumerates the six major directions. A direct lookup re-
turns RGBcv intensities which are modulated with the object.
color to form the shaded sample intensity.

Trade-offs in image quality and frame rate occur with the
choice of shading implementation. We have chosen to imple-
ment reflectance map shading because it delivers good image
quality with fast LUT creation and simple lookup.

2.3 Pre-computation of Volume Gradients

To be able to compute accurately shaded volumes we pre-
compute the G,, G, and G, central difference gradient val-
ues at each voxel position. Our voxel data type is then four
8-bit values which we load into an RGBcY type texture map,
although the fields are really three gradient values and raw
density. These gradient values are then interpolated along
with the raw density values to the sample positions by the
3D texture mapping hardware. Assuming a piecewise linear
gradient function, this method produces the same gradient,
values at the sample locations as if gradients themselves were
computed at unit voxel distances from the sample point. The
gradient computation needs to occur only once for any vol-
ume of data being rendered, regardless of changes in the
viewing parameters. Since the gradients are processed off-
line, we have chosen to compute high-quality Sobel gradients
at the expense of speed. Computing gradients serially off-
line for a 2563 volume takes 12 seconds on a 200MHz CPU.

3 Rendering Optimization Techniques

Software ray casting algorithms enjoy speedup advantages
from several different optimization techniques; we consider
two of them. The first is space leaping, or skipping ovel
areas of insignificant opacity. In this technique, the opacity
of a given sample (or area of samples) is checked before any
shading computations are performed. If the opacity is under
some threshold, the shading and compositing calculations
are skipped because the samples minimally contribute to the
final pixel color for that ray.

A second optimization technique employed by software
ray casting is the so-called early ray termination. In this
technique, only possible in front-to-back traversal, the sam-
pling, shading and compositing operations are terminated
once the ray reaches full opacity. In other words, the ray has
reached the point where everything behind it is obscured by

71

Final image plane

Resampling polygon
perpendicular to

All rays for a row of final image plane

final image pixels.

other ol),jc,c-ts closer t,o the viewer. Since we are using the
I~ardwarr lo l)erform all interpolations, we can only elimi-
lliltf: shading and cornpositing operations. However, these
ol)c,rat.ions t,,vl)ically dominate the rendering time.

I3~4OW. WC’ ljropose two methods to apply these optimiza-
I iolr I,(~c.liliiq\l(~s (,o sped up the computation of accurat,ely
el~atlctl vol~~mc rcntlrring utilizing t,exturc, mapping hard-
\Vi,l‘(‘.

3.1 Planes: Cornpositing on the CPU

t’rovious t,exture map based volume rendering methods re-
salnple a volume by dispatching polygons down the graphics
i’il>clinc, parallel to the image plane. The textured polygons
arc 1.11c:n blcndcd into the frame buffer without ever leav-
iug I he graphics hardware [I, 7, 3, 4, 61. Fig. 2 shows the
corn man polygon resampling direction

III c-ontraht, since we propose t,o shade the samples in the
(It’lr and take advantage of the two optimization techniques
tlisc,lissocl earlier, we wish to have all the samples for a ray in
tl~ca main mc~mory a(one time. For this reason we have cho-
W~I all al(,crrlat,ive order for accessing the resampling func-
tionillitp of the IID texture map hardware. Polygons are
forwartlcd to t,he graphics pipeline oriented in such a way
t.hat, they arc coplaner with the rays that, would end up br-
illg r~ row of’ I)ixc:ls in the fillal image plane. Fig. 4 shows the
l~olygo~~ orirnt,at,ion for t,his method.

011ct~ 1.11(~ t1al.a has been loaded back int.o 1.he main rnf:n-
OI.J’. 1 Ire, raw drnsit,y vahle, and three gradient, componrnts
arc (,xt rac.t,cd and l~srd iii a reflectance map romplitat,ion
1 o g~~~~rra(,c~ ~,hr I’hong shaded RG13rw for each sample. The
sampleh are cornposited front-to-back taking advantage of
<‘ilrly ray I ermination and skipping over low opacity samples.
Sirtlllar t,o t,hc shear-warp approach [lo], t,he composition is
110~ an olthogonal projection with 110 more resampling. The
ra,v (.ornpositZiorr section is t,hrreforc computed as quickly as
in t,hc shcai.-warp approach. In fact, this method can be
vic,wcd as rc~srrrrbling t,hr shear-warp method where WC let
t II~, I cxt urc Inapping hardware perform thr shearing and per-
sl)c.c(,iv(. scaling. Furthermore, our method does not require
;I final warp sinrc tile planes are already resampled into im-
age’ ~~~acc’. ‘I’his not, only speeds up t,he total processing over
\llrar-war\). bllt removes a filtering step and thus, results in
ilighrr ~n?agc qlmlit,y. Algorithm I render-s a volume using
tll? I’liUlCS m(x1,hod.

Load texture rotation matrix

Resample first plane into frame buffer

Read first plane from frame buffer Into memory

loop over all remaining scanlines

Resample next plane into frame buffer

loop over all columns in previous plane

Inltlallze Integration variables

while withln bounds and ray not opaque

Lookup opacity 1x1 tranfer function

if sample opacity > threshold

Lookup shade in reflectance map

Composite ray color OVER sample

end if

end while

store ray color In previous row of image

end loop

Read next plane from frame buffer Into memory

end loop

Shade and composite fIna. plane as above

Algorithm 1: Planes method for texture map based volu~nt

rendering

Notice that we interlace the CPU and graphics hardwarr
computation by initiating the texture mapping calculations
for scanline y + 1 before doing the shading and compositing
on scanline y in the CPU.

Table 1 presents rendering times for various volumes and
image sizes. The Translucent Solid is a 643 volume that is
homogenous and translucent with a l/255 opacity. This es-
tablishes a baseline of how long it, takes to process an ent)irca
volume. Since there are no transparent voxels, every sample
is shaded (i.c., the low opacity skipping optimization is not
ut,ilized). Additionally, the rays do not reach full opacity for
191 samples inside this volume, so for most cases in the table,
the parly ray termination optimization does not take effect.
The Translucent Sphere is a radius 32 sphere of 4/2i;5 opal
ity in the center of a transparent 643 volume. In this volume,
the effect, of t,he low opacity skipping optimization becomrs
apparent. The Opaque Sphere is the same sphere, but with
a uniform opacity of 255/255. This is the first volume to
take advantage of early ray termination and the rendering
times reflect that. These first three volumes were creat,ed as
theoretical test cases. The next three MRI and CT scanned
volumes are representative of the typical workload of a vol-
urnf~ rendering system. All three of these contain arcas of
t,ranslucent. “gel” with other features inside or behind t.11~
first, nlatcrial encountered. Renderings of the Lobster, Ml</
llend, Silicon and CT’ Head datasets on a four processor SCI
Onyx2 are shown in Figs. 5, 6, 7 and 8, respectively.

The image sizes cover a broad range (most are included
for comparison to other methods; see Sec. 4). The number
of samples along each ray is also included because t,he rull
l,ime of image-order ray casting is typically proportional to
Lhc nllmber of samples computed and not the size of t.hc,
volume. To show this, we rendered the Opaque Sphere rzs A
32 volume in 0.13 seconds, as a 643 volume in 0.13 seconds,
and as a 12X” volume also in 0.13 seconds (for all of t,hrsc,
wc rendered 100” images with 100 samples per ray using t,hc,
Planes method).

3.2 Blend: Cornpositing in the Frame Buffer

When we tested and studied the performance of the syskm
WC noticed that, depending on the volume data and t,ransfrl

72

Image Size
x SampI<

per Ray
128Lx84

Translucent Translucent, opaque Lobster Silicon MRI CT
Solid Sphere Sphere Head IIead
64” 643 64’ 128” x64 128~32~ 64 x 2Xi2 128” x113

1.04 0.54 0.19 0.24 0.48 0.36 0.20
1.90 0.99 0.35 0.31 0.52 1.27 0.48
5.55 2.69 0.73 1.22 2.21 1.76 0.67
13.19 6.10 1.84 2.78 5.98 4.53 1.84
11.96 6.15 1.94 1.88 3.06 7.99 2.81

Table 1: Renderings rates in seconds for the Planes method

I‘(’ 5: (‘/’ .rc~trr~~ctl Lobster dataset with a translucent shr
c red (II i).L’~i uc~conds at .2!od resolution (also in the colt
0 ,I)

ill
,r

n

i0

Load texture rotation matrix

Resample furthest slice Into frame buffer

Read furthest slice from frame buffer Into memory

loop over all remaining slices back-to-front

Resample next allce nto frame buffer

loop over all samples in previous ~11.~3

if sample opacity > threshold

Lookup shade in reflectance map

Hrlte shade back into buffer

else
Hrlte clear back into buffer

end if

end loop
Blend slice buffer Into frame buffer

Read next slice from frame buffer into memory

end loop
Shade and Blend nearest slice a8 above

Algorithm 2: Blend method for texture map based volumt
rc ndering

function, there was still a substantial amount of time spenl
in the compositing portion of the algorithm. In fact, WC
found that, the number of samples per ray before reaching
full opacity and terminating is proportional to the time spent
coinpositing. We propose to composite using the blending
hardware of the graphics hardware by placing the shaded
images back into the frame buffer and specifying the over
operator. Of course, this requires that we return to using
polygons that are parallel to the final image plane as in Fig 2.
In this method, we can employ the optimization of skipping
over low opacity samples by not shading empty samples.
However, since the transparency values reside in the frame
buffer’s cy channel and not in main memory, we can 1101.
easily tell when a given ray has reached full opacity and can
not, directly employ early ray termination without, reading
the frame buffer. Algorithm 2 renders a volume using t,his
Blend method.

Notice that we now resample along slices rather than
planes. Also, there are two frame buffers, one for the slices
of samples and another for the blending of shaded images.
Since compositing is not performed in software, it is quickcl
than the Planes algorithm. However, because of the added
data transfer back to the graphics pipeline for blending hit.0
tjhrl the frame buffer, and the fact that shading is performed
for all voxels, this method does not always produce fast,rr
rendering rates.

Considering Table 2, the Blend method always produces
better rendering rates for the first two columns, due to the
fact t,hat) here the volumes are “fully translucent”. In other
words, sinrr the rays never reach full opacity, the early ter-
minnt,ion optimization that the Planes method typicall,v tlt,i-

73

Image Size
X Samples

per Ray

Translucent Translucent. Opaque Lobster Silicon MRI CT
Solid Sphere Sphere Head Head
64" 643 64,? 1282x64 128~32~ 64x256' 12g2x113

I I I /

lz? x84 0.83 0.48 0.48 / 0.26 1 0.46 1 0.35 1 0.29 1
2002 x VolDept,h 1.48 0.88 0.8: S 1 0.23 1 0.38 1 1.21 / 0.84 1

200'x200 4.64 2.63 2.66 1.31 2.50 1.83 1.49
4ooL xl28 11.30 5.40 3.19 3.04 5.13 13.49 3.44

5 l? x VolDepth 9.29 5.46 5.14 1.32 2.36 7.26 4.68

Table 2: Rendering rates in seconds for the Blend method

,,I‘(’ 7: Stllc,on dntaset jlythrough showing translucent
:fow.s rrndf,rcd in 0.29 seconds at 2Od resolution (also
tht c~olor sc,ctron)

II t’ X: (‘I scanned Head dataset showing bone structures
,I(IY rl III 0.44 .uwonds at 20# re,%oltrtzon (also zn the color
Ion)

lizes is unavailable. Since both methods must, shade the same
number of voxels and composite every sample on every lay,
lrtt,ing the graphics hardware perform this compositing is tZll(,
quickest. However, for the Opaque Sphere the Planes method
is always faster. This is because 78.5% of the rays intersect.
the sphere and the optimization from early ray terminat,iorl
is great,er than the time gained from not performing corn-
positing. We notice for the three “real” volumes, the Blrntl
method is quicker when the number of samples along each
ray is equal to the number of voxels in that dimension of the
volume. When the sampling rate is close to the resolution
of the image, the excessive slices that must be shaded and
ret,urned to the frame buffer again allow the early ray t.er-
mination optimization in the Planes method to out-perform
the Blend method.

In theory, which method would be optimal can be deter-
mined from the desired rendering parameters, volume den-
sity histogram, and transfer function. For a more opaque
volume, the Planes method always produces better render-
ing rates. For transparent volumes, if there are many slices
to render, the Planes method is usually quicker, while if
there are few slices the Blend method is the bet,ter of the
two. Yet in practice, we feel it may prove to be difficult,
to determine how ‘Lfew” and “many” are defined. For this
reason, we prefer t)he Planes method, since it is faster for all
opaque volumes and for some of the translucent volumes.

4 Comparison to Other Methods

Here we compare the performance of our rendering algorithm
to others presented in the literature, in terms of both image
quality and rendering rates. The image quality comparisons
point out quality trade-offs as they relate to lighting met,h-
ods. We noticed in our testing on different volumes, that.
the number of samples more accurately determined the run
time of the algorithm than simply the volume size. For this
reason we have included image sizes and sample counts in
our runtime tables (see Tables 1 and 2). We also noticed
that, the volume data and transfer functions greatly influ-
ence rendering rates. For our method this is probably more
of an effect because we are utilizing runtime optimization
techniques whose performance directly relies on the volume
data and transfer functions.

Our Planes method renders the Lobster at a sampling res-
olution of 512~512~64 in 1.88 seconds. Our method is 19
t,irnes slower than the method of Cabral et al. However,
their method does not employ directional shading or even
view independent diffuse shading. This is a major limi(.a-
tion t.o their method since shading cues are highly regarded
as essential to visual perception of shape and form. Our im-
plementations with full Phong lighting with ambient, diffuse
and specular- components produces a much higher quality
image.

74

III comparison to Cullip and Neumann [4], our method achieves the poorest speedup because it quickly approaches
ih again slower. Cullip and Neumann achieve better image the limit for raw rendering time imposed by the sequential
qllality than Cabral et al. by computing a gradient coeffi- texture mapping. On the other end of the spectrum, the
cient t,hat is used to simulate diffuse highlights. This still Translucent Sphere achieves the best speedup performance
is root as high an image quality as our full Phong lighting, although it suffers from the slowest rendering rates. This is
an(l if t,he light. geometry changes with respect to the vol- because the CPU bound raycasting portion of the compu-
~IITIC‘, Cullip and Neumann’s texture maps must be recom- tation is the dominant percentage of the sequential time for
~)~I(~(YI~ Therefore, if the viewing geometry is dynamic, t,hen this dataset.. The Lobster dataset is representative of vol-
ollr‘ method obtains higher quaiit,y images, including specu- ume rendering applications and shows results between the
lar Ilighlights, at, faster rates. two extremes.

Our met,hod produces an image of Opaque Sphere in 1.84
h~conds with the Planes method, faster than Sommer et
al.‘h [I:33 isosurface rendering. For a translucent rendering of
the Lobster OLIN Planes method runs 12 times faster in 2.78
s(~~ruds. The image quality of both methods is equivalent
sitlw t,hey both compute full lighting effects. As Sommer
t’(al. pointed out, storing the gradients in the texture map
!~a:. 1~11rv disadvantage of limiting the size of the volume that
(‘all hr rendered without texture paging, so our frame rate
is limited hy t,he amount of available texture memory, like
all ot,hcr text,urc map based methods.

Given enough processors, any dataset will eventually be
limited by the time to perform the texture mapping. The
number of processors required to reach this limit depends
on the time it takes for the CPU portion (raycasting) of
the algorithm to run and the fact that that portion relies
heavily on software data dependant optimizations. The limit
is reached when the number of processors is equal to T,/Tt,
where 7: is the time to perform the raycasting for one plane
on the CPU and Tt is the time to texture map one plane in
the graphics hardware.

Alt~hol~gh Lacroute’s shear-warp [9] is not a texture map
I>as~d approach, we include a comparison, since it is one
of t hr quickest methods for rendering with a full accurate
light,ing modc,l on a workstation class machine. For example,
shear-warp produces fully shaded monochrome renderings at
a ra1.e of 10 Hz, but, this is a parallel version of shear-warp
running on a 32 processor SGI Challenge. Lacroute reports
t,hat, a 12Xx 128x84 volume can be rendered in 0.24 seconds
on one processor. Our Planes method renders a 1282 im-
itgc of the Opaque Sphere with 84 samples per ray in 0.19
seconds and the Lobster in 0.24 seconds. Our parallel im-
l>lcmentation runs even faster (see Sec. 5). Since shear-warp
mrlst generate three copies of a compressed data structure
1x1‘ classification, interactive segmentation is not possible as
is with our method. Shear-warp performs classification be-
fort bilinear rcsampling, whereas our method performs tri-
linear interpolation followed by classification. Additionally,
OLII‘ method performs arbitrary parallel and perspective pro-
,jcclions in the same time while shear-warp takes up to four
I imczs longer for perspect,ive projections.

6 Results and Conclusions

We have presented a method for high-quality rendering
of volumetric datasets which utilizes the 3D texture map
hardware currently available in graphics workstations. The
method produces images whose quality is not only compa-
rable to that of accurate software ray casting, but also the
highest quality method currently available, at a substantially
faster frame rate than that of software ray casting. Other
methods achieve higher frame rates than ours, but either
lack shading, lack directional shading, or require multiple
processors.

Our method is accelerated by multiple processors, al-
though the speedup is limited by the throughput of the se-
rial graphics pipeline. Although shear-warp achieves higher
rendering rates for multiprocessor machines, our method is
faster on typical graphics workstations with 3D texture map-
ping and also supports interactive classification.

5 Parallel Implementation

\fYe have parallelized the Planes algorithm on a four proces-
801‘ onyx 2 worksatition with Infinite Reality graphics. We
c.oustruct,cd a master-slave model for the parallel processing
whcsrc r.hr rtrasl.er process implements the texture mapping
in(.cxrfacc to the graphics hardwarc and once a plane of or-
t llogonal rays is rrsampled hy the hardware, the work is
far~uetl t.o a slave process for the raycasting. We use the
shared mernory symmetric multi-processor (SMP) function-
ality of t.he Onyx 2 and IRIX 6.4 operating system. The best
sl)eedl~p WC can achieve with the parallel version is bound
I>g (11~ (ime it, takes 00 perform the texture mapping for all
I he planes. ‘l’his is b ecause the texture mapping computa-
1iol1 must, br performed sequentially since there is only one
graphics pipeline.

b’igurr 9(a) shows the rendering rates for one to four pro-
(‘rssors for various volumes. For all cases we rendered 1282
irnagc~s with 84 samples per ra.y. The time to perform the
~cxture mapping of 128 128x84 planes is 0.12 seconds as
shown on t,he graph. As can be seen, t,hc rendering rates
al~l)roach t,his theoretical best rendering time. Figure 9(b)
presents specdup curves for the same dat,asets. The Opaque
,S/~/,<‘?Y tlat,aset is t,he rendered the fastest. However, it also

7 Acknowledgements

This work has been supported by the National Science Foun-
dation under grant MlP9527694, Office of Naval Research
under grant N000149710402, Mitsubishi Electric Research
Lab, Japan Radio Corp., Hewlett-Packard, and Intel Corp.
The Lobster dataset is courtesy of AVS, Inc. The Silicon
dataset is courtesy of Oak Ridge National Lab. The MRI
Head dataset is courtesy of Siemens. The CT Head is from
the UNC database.

References

[I] K. Akeley. RealityEngine Graphics. In Computel
Graphics, SIGGRAPH ‘93, Anahiem, CA, August,
1993. ACM.

[2] R. Avila, L. Sobierajski, and A. Kaufman. Towards a
Comprehensive volume Visualization System. In Pro-
ceedings of Visualization ‘92, Boston, MA, October
1992. IEEE.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware. In Symposiz~m on Volume

75

0.5
k

i
0.4 I

I

2
I

0.3 I-
”

2 -
2 0.2 i .

0.1 d

i

O i-

Q---Q Transparent Sphere
D - a Lobster
8 --e Opaque Sphere
A A Texture Mapping

4
[iF

--_7_-- 6L
A Optimal Linear ,..’

..’
m Transparent Sphere

,.j
,..’

~-a Lobster .
1 e--e Opaque Sphere ,...
/ ,. .’

I

3
t . . ”

,,,, /f’.’

Ef ,..’
$

.I’
,..’

El
(I) :’

HA /,~--------

2-

Ii

:.’ _c ” //

. ,.’ ~------------O------------

1 ,,;;p
,I’

2 3 4 1 2 3 4
Number of Processors Number of Processors

(a) (b)

Figure 9: (a) Parallel rendering rates for 128x 128x84 samples and (b) Parallel speedup

Visualization, pages 91.-98, Washington D.C., October
1994. ACM.

[4] 1’. J. Cullip and U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Hardware. Technical
Report TR93-027, University of North Carolina, Chapel
IIill, 1993.

[S] .J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Las-
tra, N. England, and L. Westover. PixelFlow:
The Realization. In Proceedings of the 1997 SIG-
(:RAPI~/Eurographics Workshop on Graphics Hard-
ware, pages 57-68, Los Angeles, CA, August 1997. Eu-
rographics.

[6] A. Van Gelder and K. Kim. Direct Volume Render-
iug with Shading via ‘Three-Dimensional Textures. In
.S’ynlposizlna on Volume Visualization, pages 23-30, San
Francisco, CA, October 1996. ACM.

[7] S.-Y. Guan and R. Lipes. Innovative volume rendering
using 31) text,ure mapping. In Image Capture, Format-
ting and Display, Newport Beach, CA, February 1994.
SPIE.

[8] M. J. Kilgard. Realizing OpenGL: Two Implemen-
t,ations of One Architecture. In Proceedings of the
1,997 ,SIGGRAPH/Eurographics Workshop on Graphics
tlordwort, pages 45-56, Los Angeles, CA, August 1997.
I-Surographics.

[!I] P. 1,acroute. Analysis of a Parallel Volume Rendering
System Based on the Shear-Warp Factorization. IEEE
Tl’ronscr.ctions on Visualization and Compufer Graphics,

.!(3):218 231, September 1996.

LO] I’. Lacrout,e and M. Levoy. Fast, Volume Rendering us-
illg a Shear-warp Factorization of the Viewing Trans-
l’orm. III Computer Graphics, SIGGRAPH ‘94, pages
.153-457. Orlando, FL, July 1994. ACM.

1 l] M. Lcvoy. Display of Surfaces from Volume Data. IEEE
C’ornpulcr L’raphzcs and Applications, 5(5):29-37, May
19X8

[12] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J.
Migdal. InfiniteReality: A Real-Time Graphics Sys-
tem. In Computer Graphics, SIGGRAPH ‘97, pages
293-302, Los Angeles, CA, August 1997. ACM.

[13] 0. Sommer, A. Dietz, R. Westermann, and T. Ertl.
Tivor: An Interactive Visualization and Navigation
Tool for Medical Volume Data. In The Sixth Inter-
national Conference in Central Europe on Computer
Graphics and Visualization ‘98, February 1998.

[14] J. van Scheltinga, J. Smit, and M. Bosma. Design
of an On-Chip Reflectance Map. In Proceedings of

the iOth Eurographics Workshop on Graphics Hardware
‘95, pages 51-55, Maastricht, The Netherlands, August
1995. Eurographics.

76

