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Abstract
We present a parallel method for rendering high-quality depth-of-field effects using continuous-domain line sam-
ples, and demonstrate its high performance on commodity GPUs. Our method runs at interactive rates and has
very low noise. Our exploration of the problem carefully considers implementation alternatives, and transforms
an originally unbounded storage requirement to a small fixed requirement using heuristics to maintain quality. We
also propose a novel blur-dependent level-of-detail scheme that helps accelerate rendering without undesirable
artifacts. Our method consistently runs 4 to 5× faster than an equivalent point sampler with better image quality.
Our method draws parallels to related work in rendering multi-fragment effects.

1. Introduction

Emulating the way our eyes perceive the world adds a signif-
icant amount of realism to 3D graphics. Recent research has
demonstrated a great interest in methods that simulate blurry
effects like motion-blur and depth-of-field. In this paper, we
present a method for the latter. Traditionally, depth-of-field
effects are computed using stochastic point samples along
the lens in 4D (x,y,u,v) space, where (x,y) are coordinates
in pixel space and (u,v) are coordinates along the camera
lens. However, using point samples in this 4D space can lead
to noise artifacts. Reducing the noise to visually acceptable
levels requires hundreds of samples per pixel, making the
operation quite expensive even on a powerful device like a
modern GPU. We would prefer a method that required fewer
samples to achieve an acceptable noise level and that could
easily be parallelized.

For high-quality rendering at low cost on parallel hard-
ware, we propose using continuous line samples instead of
point samples. A line sample gathers all the information
from a line in (x,y,u,v) space rather than a single point. Each
of these line samples provide more information on the lens
than a point sample. While each line sample is more expen-
sive than a point sample, we will show that they converge
faster than point sampling (Figure 1) with a lower amount
of noise and can thus produce acceptable visual quality in a
more efficient way. While line samples can add bias to the
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process, careful design minimizes the impact on the final im-
age. Like point samples, each line sample can be evaluated
in parallel, and this makes line samples a viable candidate
for GPU rendering.

Though sampling is highly parallel, implementing a line-
sample-based depth-of-field rasterizer suitable for the GPU
is a significant challenge. The main difficulty stems from the
memory constraints of the GPU. Sampling in 4D generates
a massive amount of samples that, if not managed well, can
lead to a significant performance hit due to memory band-
width bottlenecks. Our heuristic-based prioritization scheme
keeps only the most relevant samples that contribute to the
final color of a pixel. We further optimize our rasterizer for
the GPU by introducing a level-of-detail mesh resolution
scheme to accelerate rendering. Careful kernel design, along
with our heuristics, allow us to keep most major memory
accesses on chip. We will demonstrate that just a few line
samples can give results with less noise than hundreds of
point samples while running four times faster. The result is a
tiled rasterizer that can achieve depth-of-field effects with a
significantly lower number of samples than point sampling.
This speedup allows our rasterizer to run at interactive frame
rates.

The main contributions of this paper are:

• A novel depth-of-field scheme using line samples that
converges faster than traditional point sampling and lends
well to an efficient data-parallel implementation.

• An efficiently parallelized line sampling algorithm on the
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(a) Comparison between point and line sampling. Middle is ground
truth done with 1600 point samples per pixel

(b) Quality improvement with increasing samples

Figure 1: A quality comparison between depth-of-field effects rendered using conventional point sampling and those rendered
using continuous line samples. Point sampling converges slowly, and is unable to generate noise-free images even at 256
samples per pixel. In contrast, using line samples provides acceptable quality with only 16 samples.

GPU that fits within local memory limitations via heuris-
tics that help keep only the most important information.

• A new level-of-detail (LoD) scheme based on circles of
confusion. Our LoD scheme accelerates our depth-of-field
method during high blur.

2. Previous Work

Line Sampling Jones and Perry [JP00] experimented with
line samples for anti-aliased polygon rendering. They shoot
line samples across a pixel’s spatial extent, analytically com-
pute triangle coverage for each of them, and average them to
obtain pixel colors. Unlike their method, our line samples
lie in (u,v) space, do not span multiple pixels, and are much
more parallel-friendly.

Recent research has also shown promise in rendering
high-quality motion-blur using multi-dimensional samples.
Gribel et al. [GDAM10] present the use of line samples in
the (x,y, t) domain to analytically render motion blur ef-
fects in a scene and in their more recent work, proposed
the use of planar samples in the (x,y, t) domain for motion-
blur [GBAM11]. They also extend their implementation to
render motion-correct ambient occlusion.

Depth of Field Recent work in depth-of-field rendering has
explored efficiency from both sampling and reconstruction
perspectives. Akenine-Möller et al. [AMTMH12] acceler-
ate depth-of-field effects by culling tiles based on their po-
sitions in the lens domain. As opposed to tiles, Munkberg
and Akenine-Möller [MAM11] accelerate motion blur and
depth-of-field by culling backface geometry, resulting in a
5D culling test. On the other hand, Lehtinen at al. [LAC∗11]
optimize the reconstruction to require much fewer samples
for high-quality results.

On the GPU, much sampling work has concentrated on

motion blur with extended implementations to handle depth-
of-field effects. Akenine-Möller et al. [AMMH07] presented
multi-pass stochastic rasterization that uses point samples
to render depth-of-field effects on the GPU. McGuire et
al. [MESL10] construct a rasterizer on the GPU that can han-
dle depth-of-field; Lee et al. [LES10] use depth peeling to
accelerate their GPU ray tracer for lens effects.

The fundamental difference between previous work and
ours is that we explore the use of line samples for depth-
of-field within the constraints of a highly parallel environ-
ment but with limited local resources. Previous work was
CPU-based without aggressive memory constraints, which
eases the difficult task of storing line samples that require
potentially unbounded space. Our problem also spans an ex-
tra dimension than Gribel et al. and thus requires careful
treatment to ensure tractable memory usage. Our solution
approximates the unbounded set of sample-triangle inter-
sections using a static amount of memory per pixel, which
we accomplish via several heuristics to ensure that we store
only the most important intersections. This idea is analogous
to the technique of Salvi et al. [SML11] in the domain of
adaptive order-independent transparency. We also propose a
novel blur-dependent LoD method that recovers some lost
performance for scenes with high blur.

3. Line Sampling

Line samples are linear-domain counterparts of point sam-
ples which, due to their increased dimensionality, are able to
capture more information about the domain per sample. For
the same reason, one line sample is computationally more
expensive than a point sample. This trade-off makes our ex-
ploration exciting, and we wish to find out whether the im-
provement in quality can account for the additional perfor-
mance cost. In other words, we would like to use as few
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Point Samples in 
the lens domain

Line Samples in 
the lens domain

Figure 2: Comparison of line samples against point sam-
ples. For each of the spatial pixel samples (middle), stochas-
tic point sampling (left) considers a single point in the lens
domain. In contrast, our method (right) instantiates several
line samples (four in the picture) in the lens domain for each
spatial sample. Each spatial pixel sample samples the screen
using eight lines. Colors indicate which line samples belong
to which spatial sample. For simplicity we organize line sam-
ples in a wagon-wheel fashion.

line samples as possible to obtain high-quality results with
an efficient implemention on modern parallel hardware. Fig-
ure 1 shows a quality comparison, which demonstrates that
just 16 line samples can be sufficient to minimize any major
artifacts.

3.1. Formulation of Our Method

Mathematically, computing the color of a pixel in the
presence of depth-of-field can be expressed as a four-
dimensional integral over the pixel’s spatial (x,y) and lens’s
aperture (u,v) dimensions (see Figure 2). We construct sev-
eral line samples in the (x,y,u,v) domain (as shown in Fig-
ure 3), and analytically compute and store triangle coverages
along the line samples. Once we have processed all triangles,
we resolve the list of coverages for each line sample to ob-
tain the final sample as well as pixel color. This high-level
description is analogous to Gribel et al. [GDAM10], though
we extend it to a broader four-dimensional problem and also
present a novel parallelization technique.

The following subsections describe the steps of our for-
mulation. The input to our system is a list of triangles.

3.1.1. Triangle Setup

Figure 2 provides a brief overview of our design for line
sampling the four-dimensional (x,y,u,v) domain. In order to
span this domain, we could construct line samples in several
ways. We can support arbitrary lines, but that is a compu-
tationally expensive alternative. Hence, we focus on choos-
ing line samples that are not only efficient to process, but
also lend to simple parallelization and straightforward pa-
rameterization across the lens. With these goals in mind, we
have found that a simple separation of spatial and lens di-
mensions with lines in the latter works best. For each pixel
sample (x,y), we consider several line samples in the lens

(u,v) domain. Intuitively, our strategy uses lines to aggre-
gate the light entering a given screen location from across
the lens surface.

Our choice is driven by the fact that sampling in this fash-
ion has three advantages: (1) it is computationally cheap; (2)
due to symmetry, it has an efficient data-parallel implemen-
tation; and (3) it has minimal undesirable artifacts. Further-
more, our sampling process can be cleanly split into a setup
phase and a coverage evaluation phase, which helps in re-
ducing redundant computation across multiple line samples.
To demonstrate this, we now derive the set of edge equations
for rasterization in the presence of depth-of-field. While the
derivation is more complex than for traditional rasterization,
the resulting equations are similar to classic triangle setup.

For a given triangle, we start by computing a signed radius
of circle-of-confusion (CoC) for each vertex, obtained using
the following expression [Ham07]:

CoC = A
f (z− z f )

z(z f − f )
,

where A and f are the camera aperture and focal length, re-
spectively, and z f and z indicate the respective depths of the
focal plane and the given vertex. Note that z is simply the w
coordinate of the vertex in clip space.

We assume a linear apparent motion of the vertex screen
coordinates on varying u and v. For a given screen-space ver-
tex xi,yi : i ∈ {0,1,2},

xu
i = xi + ciu,

yv
i = yi + civ, (1)

where ci is the vertex’s CoC and u,v ∈ [−0.5,0.5].

Assuming the ith oriented edge connects vertices i and
j of a triangle, we substitute Eq. (1) into the equations for
testing whether a point (x,y) lies in the half-space created
by edge i. Let ESi represent the edge-sum at point (x,y) for
the ith edge:

ESi(x,y,u,v) = (y− yv
i )(x

u
j − xu

i )− (x− xu
i )(y

v
j− yv

i )≥ 0.

Expanding, we get the equivalent equations

⇔ (y− yi− civ)
(
x j− xi +u(c j− ci)

)
− (x− xi− ciu)

(
y j− yi + v(c j− ci)

)
≥ 0

⇔ ESi(x,y,0,0)

+ u
(
c j(y− yi)− ci(y− y j)

)
− v

(
c j(x− xi)− ci(x− x j)

)
≥ 0.

This simplifies to

ESi(x,y,u,v) =Ci(x,y)+uAi(y)− vBi(x)≥ 0, (2)
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(b) Resolving depth for a sam-
ple.

Figure 3: Our technique for computing analytical coverage
using line samples. The (u,v) domain with transformed tri-
angles and line samples is shown in (a). Bright segments
indicate coverage. Depth resolution per sample is shown in
(b). Without line samples, we would have to use many more
point samples within the sampling region to achieve equiva-
lent quality.

where

Ai(y) = c j(y− yi)− ci(y− y j)

Bi(x) = c j(x− xi)− ci(x− x j)

Ci(x,y) = (y− yi)(x j− xi)− (x− xi)(y j− yi).

Here Ci is simply the traditional edge-sum. Ai and Bi can
both be partially computed during triangle setup, and up-
dated using MAD operations for every line sample. Note that
Ai here is distinct from the camera aperture A.

During setup, we transform edges of each screen-space
triangle into lens space, then generate line samples in this
domain, computing coverage as described in the next sub-
section.

3.1.2. Coverage Computation

For each pixel sample, we instantiate several line samples
along the u or v directions. We consider a circular (u,v) do-
main (corresponding to a circular lens shape) and line sam-
ples thrown in a wagon-wheel fashion (see Figure 3).

We chose a wagon-wheel sampling pattern for three ma-
jor reasons. First, a wagon-wheel pattern in a circular do-
main ensures that all line samples have equal contribution
to the final image. Should we have chosen, say, a grid pat-
tern instead, then not all lines would have the same length.
This would cause unnecessary asymmetry and would hinder
a data-parallel implementation. Second, wagon-wheel line
equations can be expressed in simple slope-intercept form
v = mu, which greatly simplifies the math needed for cov-
erage computation. Third, while there is a bias associated
with the wagon-wheel sampling pattern, reweighting during
reconstruction is rather trivial. A wagon-wheel pattern gives
us excellent sampling quality while maintaining simplicity.

Rendering consists of testing each incoming triangle
against potentially covered line samples. For each conser-
vatively covered pixel sample, we use equations from Sec-
tion 3.1.1 to transform triangle edges to the (u,v) domain.
Transformed edge equations in this domain behave similar to
(x,y) edge equations in traditional rasterization, each divid-
ing the (u,v) domain into positive and negative half-spaces.
Our goal is to track the intersection of the positive half-
spaces with each of our line samples. Given the transformed
equations, we compute the coverage against a wagon-wheel
line sample as follows:

1. Compute the point of intersection of the edge (using the
equation from Section 3.1.1) with the line sample while
tracking the part of dart which falls in the positive half-
space. The result is an interval along the line sample,
ranging from one extreme of the lens domain to the point
of intersection.

2. Compute the intersection of intervals from each of the
three edges per triangle to obtain an interval lying entirely
inside the (u,v) domain. This interval represents the part
of a line sample covered by the input triangle, illustrated
by the bright red portions in Figure 3.

We call the above intersection interval as segment. Once
segments for all triangles have been aggregated, we resolve
the final color for each sample. Using an approach similar to
Gribel et al.’s [GDAM10], we sweep across a sorted list of
segments in the sample while aggregating segments closest
in depth, and then use all pixel samples to compute the final
color for the pixel.

Shading Although each segment covers a continuous para-
metric range across the triangle, storage as well as perfor-
mance considerations make it impractical to compute a vary-
ing color across this range. Furthermore, we expect highly
varying colors along a segment to correspond to primitives
with high blur. As a result, we choose to shade each segment
at its mid-point. In our implementation we shade at mesh
vertices and interpolate to the mid-point of each segment, al-
though per-segment shading is a straightforward extension.

In addition to being practical, the idea of shading once per
sample is also inspired from decoupled sampling in modern
graphics pipelines, where the goal is to shade each primitive
at most once per pixel. In future work we wish to explore
a reuse cache that will aid in sharing shading values across
different line samples in a pixel.

We notice that such a decoupled shading scheme intro-
duces some over-smoothing in blurry regions (see Figure 4),
but we feel that this is an acceptable trade-off.

Bias Note that the wagon-wheel pattern will tend to bias re-
construction towards the center of the lens. Fortunately, we
can eliminate this bias by non-linearly rescaling u and v such
that the density of line samples (line samples per unit area)
is constant across the lens surface direction. Because the
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(a) No rescaling (b) Our rescaling (c) Ground truth

Figure 4: Fixing bias due to our wagon-wheel sampling
pattern. (a) shows undesirably sharp rendering due to bias
towards the center of the lens. (b) shows the resulting image
after using our non-linear weights to scale intervals. (b) is
closer to our ground truth image (c), which was generated
using 1600 stratified point samples per pixel.

density of wagon-wheel samples reduces radially as |1/r|,
we transform any point (r,θ) to (2r|r|,θ) before consider-
ing its contribution (2 is the normalizing factor). In practice,
we compute the contribution κ of an interval (p1, p2) along
any line sample (p1, p2 ∈ [−0.5,0.5]), instead of its length
(p2− p1), as the following:

κ(p1, p2) = 2× (p2|p2|− p1|p1|).

Figure 4 shows the impact of this modification.

4. Parallel Line Sampling

Since each pixel is independent, it is straightforward and
natural to parallelize line samples along a per-pixel or per-
sample basis. To correctly resolve depth, we must divide our
rendering stage into a sample phase and a composite phase.
This separation introduces the possibility of having a poten-
tially very large number of triangle-sample interactions or
segments per sample. In spirit, this is analogous to the prob-
lem faced in implementing other multi-fragment rendering
effects like order-independent transparency [SML11].

Consider a straightforward implementation of the algo-
rithm. We create separate GPU kernels for sample and com-
posite. The sample kernel would test n line samples per pixel
and write out the intersected segments into off-chip memory.
The composite kernel would read in these segments then fil-
ter them into a color per pixel. However, implementing our
rendering stage in this manner is quite inefficient for these
reasons:

Producer-Consumer Locality Once a pixel has generated
all necessary segments, we can move onto the compos-
ite stage. The above naive approach would not take ad-
vantage of the implicit producer-consumer locality in this
sequence—this also avoids unnecessary copies to off-chip
memory, since the resident segment values can be used di-
rectly in the composite stage.

Unbounded Segment Storage Storing all possible seg-
ments can lead to unbounded storage requirements. This
storage is often wasted in segments that will make no

Vertex Shading
CoC Evaluation

Binning

1 Tile / 
Core

1 Pixel / 
16 Lanes

1 Sample / 
Lane

Sample Composite

1 Tri /
Lane

1 Vertex /
Lane

...

... ...

...

...

... ...

...

...

... ...

...

Figure 5: Organization of our parallel renderer. Our GPU
execution is divided into three phases, working in parallel
on vertices, triangles, and line samples respectively. Sepa-
rate gray squares indicate separate kernels. In the binning
phase (middle kernel) the lighter color boundary around the
triangles represent the triangle’s CoC. Text at the top de-
scribes the action of the kernel while the bottom text has the
granularity of the kernel. Here a lane is defined to be a SIMD
lane. See section 4 for details.

meaningful contribution to the image. Modern GPUs have
a fixed and limited amount of local storage, which further
exacerbates the problem.

Excessive Work on Blurry Triangles Detail is less notice-
able in triangles that are blurred. For high resolution
meshes with large blur, we perform more work than
needed in producing a faithful image. There should be a
quality adjustment to the mesh to account for the loss of
performance.

Based on the above observations, we have instead designed
a tiled GPU renderer with fixed on-chip segment buffers and
a blur-dependent level-of-detail scheme.

Main Kernel If we are to take advantage of producer-
consumer locality, then the first step towards a better imple-
mentation is to merge the sampling and composite kernels
together. We can merge the two kernels into one since their
parallel granularity is now the same as both kernels process
one sample per SIMD lane (see Figure 5).

Now, it is possible to store the generated segments from
the sample stage and feed them to the composite stage with-
out passing through global memory, saving useful band-
width. We accomplish this by utilizing shared memory as
a segment queue for a set of pixels.

The main drawback to using shared memory is that there
is little of it. Thus, we tile the screen so that segments gen-
erated in a tile fit into shared memory. To avoid each tile
rendering every primitive in the scene, we employ a prepro-
cess stage that bins the primitives for each tile [LK11]. We
are now able to describe the complete algorithm in detail.
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Figure 6: Example of the segment heuristics. Left: Segments
A,B,C are incoming segments and D is a segment in the seg-
ment buffer. Segments A and B are rejected by our heuris-
tic. A is rejected since it is occluded completely by D. B is
rejected because it is too small to make any visible contri-
bution. Right: C is similar enough in depth, color, and close
enough in distance to D that it is merged together with D to
produce a new segment CD. If C had a completely different
color than D, then it would have been kept separate from D
and C would be added to the segment buffer separately. Our
heuristics aggressively winnow incoming segments to help
minimize shared memory usage.

Algorithm Our final algorithm consists of two preprocess-
ing kernels and a main kernel. Figure 5 presents an overview.

Our first kernel transforms vertices into screen space,
shades them, and then calculates their CoCs. A second ker-
nel assembles triangles from these vertices and intersects
them with tiles. A triangle that intersects a tile is placed in
that tile’s primitive bin and passed to the main kernel.

The main kernel then generates line samples per pixel.
Each line sample tests the primitives in its bin, and gen-
erates line segments with the samples that intersect primi-
tives. Each line sample has a segment buffer in local (shared)
memory which it uses to store line segments. Once all the
primitives have been sampled and their respective segments
generated, the composite phase of the main kernel begins.
During this phase, each sample walks along its paramet-
ric dimension and iteratively yet analytically aggregates the
contribution of the closest segment on every step as illus-
trated in Figure 3.

We have described our algorithm on the GPU, but as it
stands we have not handled what happens when a line sam-
ple generates too many segments for its segment buffer. In
these cases we wish to evict segments with little or no con-
tribution, and keep segments that may make the largest con-
tributions to the final color of the pixel.

4.1. Segment Heuristics

We define several strict heuristics that determine whether or
not an incoming segment is qualified to occupy the limited
segment buffer.

However, before we consider choosing the more valuable

segments, we compress each segment to 16 bits of storage to
save space. Then we perform three tests:

Occlusion Given our current segment buffer. If we are to
add a new segment, we check if this segment is already
covered by any other segment. If so we disregard it.
Alternatively, if the incoming segment completely covers
an existing segment, we replace the latter’s contents with
the incoming segment (evicting the previous segment).

Merge If an incoming segment is sufficiently close to an
existing segment within our segment buffer, we would
like to try to merge the two in order to save space. Gribel
et al. [GDAM10] utilized a similar technique to save
space in their analytic motion blur renderer.
In order to merge two segments, we require three condi-
tions must be met:
(1) The Euclidean distance between the two colors is less
than a certain threshold.
(2) The difference in depth between these two segments
is below a certain threshold.
(3) The orientation and slope of both segments are similar
enough to merge.

Length If the incoming segment is too short to have a sig-
nificant contribution to the final color, it is discarded.

Figure 6 shows an example of the heuristics on incoming
segments. If a segment passes all tests then it is placed in
the segment buffer. Should the buffer be full, then we evict
one segment from the buffer. Eviction is based on the con-
tribution of the segment based on its length. The segment
with the minimum length is evicted to make room for the in-
coming segment. If the incoming segment has the smallest
contribution of all segments, then it is discarded.

Our current set of heuristics does not account for inter-
secting segments. Our implementation simply ignores this
corner case. We have found that implementing a sensible
heuristic for this corner case is inefficient and inconsequen-
tial. Further, in our renderings even at very high depth com-
plexities we have observed no visual artifacts from this.

4.2. Level of Detail

While designing our renderer, we noticed that scenes with a
high degree of depth-of-field blur tended to put an enormous
pressure on the number of triangles in each rendering bin.
This is due to triangles over-intersecting with tiles due to a
large CoC of the triangle.

This hurt our performance and also created problems for
managing tile storage. To alleviate these issues plaguing tri-
angles with a high degree of blur, we added multi-resolution
meshes in a level of detail (LoD) scheme. However, unlike a
traditional rasterizer that determines an object’s LoD by its
screen size, we determine it by using its blurriness or a mea-
sure of minimum CoC. The intuition behind our scheme is
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that meshes whose vertices have a high CoC are going to be
severely blurred, and so a coarser mesh will suffice.

LoD Determination To determine the LoD for a scene ob-
ject, we maintain two parameters: minimum CoC (cmin) of
the object bounding box, and the screen-space length of an
average edge (davg). We compute cmin using the equations
presented in Section 3.

To efficiently compute davg, we take the center of the ob-
ject bounding box p and create two points p1 and p2 such
that p1 p2 is parallel to the camera plane and is in object
space the same length as the average base object edge. Then,
davg is simply the distance between p1 and p2 after transfor-
mation to screen-space.

We compute the LoD score for an object as the ratio
slod = (cmin/davg) and this is our metric for selecting the
appropriate LoD mesh. slod gives us an idea of the blurri-
ness of the average triangle in the object as compared to its
average edge length. A large slod indicates that the object is
either too blurry, too small, or both. In all these cases, we are
better off selecting a lower resolution mesh instead, saving
precious cycles and tile storage. On the other hand, low slod
indicates an object that is either sharply focused, too big, or
both. In these cases, we should try to select a higher resolu-
tion mesh to maintain visual fidelity.

Our simple LoD scheme allows us to render tiles more
efficiently and at the same time reduces the loss in perfor-
mance due to excessive blur. Furthermore, we are confident
that it will robustly extend to tessellated primitives, where
we can adjust the tessellation factors based on slod . We plan
to experiment with this idea in the near future.

5. Results

To test our formulation, we designed two GPU-based ren-
derers. One is our line sampler implementation as described
in Section 4, and the second is a stochastic sampler based on
point samples. Both renderers are set up as tiled renderers,
only differing in their sampling and compositing procedures,
thus allowing us to directly compare point- and line-sampled
approaches. We wish to investigate the number of samples
that both renderers need to return a high-quality image and
the time it takes for them to render such a scene. We ran our
experiments on an NVIDIA GTX 580 running CUDA 4.1,
with two main tests: line-sampling vs. point-sampling ras-
terizers in terms of speed and quality, and the LoD vs. the
non-LoD line-sampling rasterizer.

Figure 9 shows the resulting image quality and their re-
spective performance is given in Table 1. All of our images
are rendered at 800×800 resolution and they are embedded
into the electronic version of this paper. Interested readers
are encouraged to zoom in and observe the noise differences
between the line and point samplers.

Our line sample renderer is consistently 4–5 times faster

Mesh Point (fps) Line (fps)

Dragon 0.64 2.86
Cessna 2.12 9.01
Hand 1.12 4.47
Geocheck 11.54 49.31
SDCC 0.49 2.04
Teapot 1.93 5.11

Table 1: Performance of our point sampler against our line
sampler. Numbers are given in frames per second. The point
sampler uses 256 point samples per pixel while the line sam-
pler uses 16 lines per pixel. Images of these test scenes are
shown in Figure 9. Line sampling is consistently 4–5 times
faster than point sampling.
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Figure 7: Performance behavior of our renderer. Top: Nor-
malized performance and FPS with varying number of line
samples. Bottom: Normalized performance and FPS with
varying aperture size for 16 line samples per pixel.
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(a) No LoD (b) Our LoD Scheme (c) Ground Truth

Figure 8: We demonstrate the impact our blur-dependent
LoD scheme by showing 5 teapots rendered under high blur.
Due to the level of blur we automatically select lower res-
olution meshes for the teapots. While excessive blur makes
visual impact negligible (in fact, without LoD we often ex-
perience more artifacts due to tile overflow), our scheme in-
creased the performance for this scene by 2×. We used 1600
point samples per pixel for ground truth.

than its point-sampling counterpart. Although each line sam-
ple is more expensive than a single point sample, line sam-
ples use dramatically fewer samples to converge faster. Even
at 256 point samples per pixel, the noise is reduced but still
evident and computing such a large amount of samples re-
quire a significant amount of time.

Figure 8 shows our rendering of the same mesh with vary-
ing LoDs. Figure 7 shows two plots on how our LoD scheme
affects rendering. We vary the number of line samples used
per pixel, and also adjust the aperture of the camera. The
scene used is the teapot scene shown in the far right of Fig-
ure 9. We used three levels of detail and they had 100%,
75%, and 50% of the original mesh vertices, respectively.

As the number of samples varies, the LoD renderer per-
forms only marginally faster. This is mainly due to render-
ing fewer primitives. However, when the aperture is high (i.e.
when there is heavy blur), then the LoD scheme is about 50%
faster than without. Higher aperture implies larger CoCs for
each primitive, and thus each tile has more primitives to pro-
cess. As our LoD score is based on a combination of the
mesh’s CoC and the distance from camera, it is able to select
the appropriate meshes based on blur. The result is a signifi-
cant speedup in overall rendering time of our system with a
minimal effect on quality.

Our implementation of LoD uses only three levels of res-
olution as a proof-of-concept. Though our results from these
tests are promising, we are sure that there is room for more
aggressive LoD schemes to improve performance. Further,
our LoD scheme can translate naturally to other adaptive
mesh schemes (such as tessellation). Our LoD scoring sys-
tem can also be used to determine the tessellation level for a
tessellation-based depth-of-field pipeline.

Limitations The main limitation of our technique is the
severely limited amount of available shared memory. Given
the heuristics that bound our line segment buffers, the qual-
ity and number of samples is currently bound by the amount
of shared memory available. With a larger shared memory
pool, we could implement larger tiles for better performance,
or larger buffers for more complex scenes. This would allow
fewer bins with a smaller number of overlapping triangles
and thus fewer accesses from global memory overall.

Shading each segment at mid-point is another limitation
of our renderer since it is vulnerable to losing detail in ex-
treme cases (e.g. high-frequency textures). We believe it is
an important piece of future work to further investigate com-
plex shading effects for line samples.

Finally, we feel the need for further investigation of strob-
ing artifacts in some of our images. While we know the cause
of these to be the use of the same (x,y) position across pix-
els, our experiments at randomizing this position adversely
affect the results by adding noise.

Artifacts Our GPU renderer performs aggressive approxi-
mations to achieve high performance. This may sometimes
involve discarding segments that have a nontrivial contribu-
tion to the final image. Our heuristics help minimize such
cases by carefully discarding segments with least expected
contribution to the final color, and thus we are able to
maintain reasonable quality against a point sampling based
method.

Further, since our tile bins have a fixed size, having too
many triangles in a tile can cause bin thrashing. Thus, too
much geometry in a tile will result in potential artifacts in our
renderer. An example of artifacts in our rendering system is
shown in Figure 8. In the leftmost figure, tiles overflow and
result in errors due missing triangles.

Fortunately, most such artifacts are associated with blur
and tend to be less noisy than a point-sampled renderer. We
have designed our heuristics and LoD scheme to help miti-
gate most rendering errors, but in some complicated scenes
they may still be noticeable.

6. Conclusion

High-quality depth-of-field rendering is a continuing chal-
lenge, especially under the constraints of interactive perfor-
mance. Since it requires a prohibitively large number of sam-
ples to be noise-free, point sampling is simply not practical
in such a scenario.

In this paper we proposed an alternative in the form of line
samples. We have shown that we can greatly reduce sam-
pling noise with fewer line samples than point samples, and
achieve interactive performance on a modern GPU despite
severely limited local storage.

There are many avenues of future work from our algo-
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(a) Example 800 × 800 scenes rendered using 256 point samples.

(b) Example 800 × 800 scenes rendered using 16 line samples.

Figure 9: Examples of both renderers. Top row is point samples and bottom row is line samples. From left to right, the scenes
are Dragon, Cessna, Hand, Geocheck, San Diego Convention Center (SDCC) and Teapot.

rithm. Extensions to and combinations with other dimen-
sions in rendering, for instance soft shadows and global il-
lumination, should serve as intriguing explorations. We also
plan to extend our LoD scheme to dynamically-tessellated
primitives.

We hope that our work sparks readers’ interest in the
area of analytical line sampling and that design choices in
our work will provide key guidelines for continuous-domain
sampling research on parallel hardware. We also hope that
our blur-dependent-LoD scheme will prove useful in other
avenues of real-time rendering.
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