
Eurographics Workshop on Visual Computing for Biology and Medicine (2020)
B. Kozlíková, M. Krone, and N. N. Smit (Editors)

Analyzing Protein Similarity by Clustering Molecular Surface Maps

Karsten Schatz 1,∗ , Florian Frieß1,∗, Marco Schäfer 2 , Thomas Ertl 1 , and Michael Krone 2

1Visualization Research Center, University of Stuttgart, Stuttgart, Germany
2Big Data Visual Analytics in Life Sciences, University of Tübingen, Tübingen, Germany

∗These authors contributed equally

Figure 1: Schematic overview of our hierarchical protein clustering approach (from left to right). The input is an ensemble of proteins. For
each protein, a three-dimensional molecular surface representation is computed, which is subsequently transformed to a two-dimensional
Molecular Surface Map [KSR*17]. From each of these maps, a descriptive feature vector is extracted using either Image Moments, Color
Moments, or a Convolutional Neural Network. Based on the distances between these feature vectors, a hierarchical clustering is computed
using the UPGMA algorithm [SM58]. We verify the clustering results using either the BRENDA data base that provides classes of functionally
similar enzymes, and the TM-score [ZS04], which provides a similarity measure for two proteins.

Abstract
Many biochemical and biomedical applications like protein engineering or drug design are concerned with finding functionally
similar proteins, however, this remains to be a challenging task. We present a new imaged-based approach for identifying and
visually comparing proteins with similar function that builds on the hierarchical clustering of Molecular Surface Maps. Such
maps are two-dimensional representations of complex molecular surfaces and can be used to visualize the topology and different
physico-chemical properties of proteins. Our method is based on the idea that visually similar maps also imply a similarity in
the function of the mapped proteins. To determine map similarity we compute descriptive feature vectors using image moments,
color moments, or a Convolutional Neural Network and use them for a hierarchical clustering of the maps. We show that image
similarity as found by our clustering corresponds to functional similarity of mapped proteins by comparing our results to the
BRENDA database, which provides a hierarchical function-based annotation of enzymes. We also compare our results to the
TM-score, which is a similarity value for pairs of arbitrary proteins. Our visualization prototype supports the entire workflow
from map generation, similarity computing to clustering and can be used to interactively explore and analyze the results.

CCS Concepts
• Human-centered computing → Dendrograms; Scientific visualization; • Applied computing → Bioinformatics;
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1. Introduction

Understanding the relationship between protein structures remains
a challenging yet important task for many application areas, like
drug design or biomedical research. Finding similar proteins manu-
ally is a time-consuming task and it is not always clear how to com-
pare proteins. Therefore, a large number of automatic clustering or
similarity comparison methods have been developed. They either
directly compare the sequence of amino acids forming the protein
to find molecules with similar behavior, or use the spatial arrange-
ment of the atoms to find proteins with similar shape. For sequence
data, popular tools like BLAST [AGM*90], or Clustal [LBB*07]
are available. Spatial comparisons use the atomic coordinates to
find proteins with similar layout and size. An example working on
unaligned proteins is 3D-Surfer 2.0 [XESK14], which computes a
feature vector containing 3D Zernike Descriptors for finding simi-
larities, which are invariant under rotation.

Molecular surfaces are generally considered to be influential
for the function of a protein [KKF*17], however, they are visu-
ally complex and suffer from occlusion, as all three-dimensional
depictions. Krone et al. [KSR*17] presented Molecular Surface
Maps to solve the 3D occlusion problem and to reduce visual com-
plexity. Additionally, they showed in their work that such two-
dimensional representations of protein surfaces can be used for
overview and comparison. The maps can show physico-chemical
properties as well as the topography of the molecular surface in a
two-dimensional representation.

We present a method that is based on the idea that visually sim-
ilar maps also imply a similarity in the function of the underlying
protein [BJ09; TL12]. Therefore, we propose a hierarchical clus-
tering of Molecular Surface Maps using an image-based similarity
score. We evaluate different structural and physico-chemical prop-
erties and analyze the resulting clustering by comparing it against
established methods and databases, namely the TM-score [ZS04]
and the BRENDA enzyme data base (see Figure 1).

We implemented our proposed method in a prototypical visual-
ization application, which allows to compute an image-based clus-
tering of the aforementioned Molecular Surface Maps and to ver-
ify, interactively explore, and analyze the results. The hierarchical
clustering is visualized as a dendrogram, as shown in Figure 1. In
order to create a unique descriptor used for the similarity cluster-
ing of the Molecular Surface Maps, we either compute Image Mo-
ments [Hu62; Flu00], Color Moments [MSM09], or use a Convolu-
tional Neural Network [SHZ*18] to extract features for each map.
This descriptor allows us to identify similar maps even if the con-
tent is translated, rotated, or scaled. The distance between a pair of
descriptors is used as a measure of similarity. Our prototype appli-
cation provides different views that show the hierarchical clustering
tree and can be used to show the three-dimensional molecular sur-
face in order to visually verify the computed results. It is also able
to overlay the classification provided by the BRENDA database or
the TM-score onto our results for verification.

Our contributions can be summarized as follows:

• We compare three different approaches for determining the sim-
ilarity of Molecular Surface Maps (based on Image Moments,
Color Moments, and the MobileNetV2 CNN).

• We tested different combinations of molecular surface properties
for the protein similarity measure and evaluate the results using
the enzyme classification provided by the BRENDA data base
and the TM-score.
• We implemented a prototypical application that visualizes the

hierarchical similarity-based clustering as a dendrogram and al-
lows to visually explore the results using multiple linked views.

2. Biological Background

Proteins are macromolecules that consist of a single or multiple
chains of amino acids. A typical chain has 150–500 amino acids,
each one consisting of about 13–27 atoms. All amino acids have a
basic structure in common, the backbone part, which consists of a
central carbon atom called Cα, an amino group (NH2), a carboxyl
group (COOH), and a hydrogen (H). Besides the backbone, each
amino acid has a so-called side chain that determines the individ-
ual chemical properties of this amino acid. In proteins, amino acids
form chains via peptide bonds. These are characteristic covalent
bonds that link the amino group of one amino acid to the carboxyl
group the next one. That is, the chains of a protein have one end
with an amino group (N-terminus) and one end with a carboxyl
group (C-terminus). For more details, please refer to the book of
Berg et al. [BTSC02]. When forming a protein, the chains fold into
the so-called tertiary structure, the energetically most favorable
three-dimensional conformation, which is held together mainly by
hydrogen bonds. Proteins serve many different tasks in the bodies
of all living creatures as well as in a wide variety of industrial and
medical applications, thus their analysis is of great interest.

Starting from the amino acid sequence of a given protein, many
predictions are possible. Using only this sequence, the tertiary
structure and even the function of the complex can be inferred. At
the widely-known CASP (Critical Assessment of protein Structure
Prediction) experiment that takes place biennially a benchmark for
all methods that try to predict the tertiary structure is often pub-
lished [MPJF95]. Proteins with similar sequences often also share
an evolutionary relationship and have similar function. To find pro-
teins with similar sequences in a large data base, search meth-
ods such as BLAST [AGM*90] (Basic Local Alignment Search
Tool) have been developed. To express and to display the afore-
mentioned evolutionary relationship and similarity, biologists typi-
cally use phylogenetic trees [FM67]. These trees are often rendered
as cladograms (to display only relationships) or dendrograms (to
additionally encode distance, see Figure 1). Dendrograms can be
used to quickly find similar organisms in terms of structure, shape,
or function, depending on the chosen comparison operator. How-
ever, proteins with vastly different sequences can have a similar
three-dimensional structure due to the folding process. Therefore,
it is possible that their function is also similar. This fact can be ex-
ploited for drug discovery [KW05], or to reveal distant evolution-
ary relationships between organisms [Koe01]. Conversely, some
proteins can fold into different three-dimensional structures un-
der certain circumstances. These misfolded proteins (called prions)
can be dysfunctional, causing severe diseases like Alzheimer’s or
Creutzfeldt Jakob. That is, only the sequence of a protein is not
always sufficient to faithfully analyze the function of a protein.

Chemically, the function of a protein is defined by its interface
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Figure 2: Schematic overview of the steps involved in the generation of a Molecular Surface Map. From left to right: Solvent Excluded
Surface, Molecular Surface Globe, and Molecular Surface Map. The protein (PDB ID: 1AJN) is colored by temperature factor (or b-factor)
using the Viridis color map ( ) from matplotlib [Hun07]. The b-factor is an indicator of the flexibility of the protein.

with the environment, that is, the shape and the physico-chemical
properties of the parts of the protein that are accessible to poten-
tial reaction partners. To show this functional interface of a protein,
several definitions for molecular surfaces have been developed. The
most simple one is the van-der-Waals surface, where each atom is
represented by a sphere with a radius equal to the van-der-Waals
radius of the respective atom type. This surface mainly shows the
shape and volume of a molecule, not its interface with respect to
a reaction partner. Other surface definitions are the Solvent Ac-
cessible Surface (SAS) [LR71] and the Solvent Excluded Surface
(SES) [Ric77; Con83]. These two methods are closely related, as
they both generate the surface with respect to solvent molecules of
a specific size. This solvent molecule is internally represented by
a sphere of fixed radius (typically a value between 1.5 and 3.0 Å).
The idea of both surface representations is to roll this solvent sphere
over the van-der-Waals surface. The surface defined by the center
of the sphere corresponds to the SAS, while the surfaces that the
sphere is not able to reach because it is being blocked by the atoms
corresponds to the SES. The SES is usually considered as more use-
ful for a detailed analysis, since it intuitively shows the interface of
a protein with respect to a certain smaller molecule like a solvent
or ligand. That is, the SES is the surface that is reachable by this
small molecule. In the past, numerous algorithms to compute the
SES have been developed [KKF*17]. Those algorithms can be split
into ones that calculate an explicit mesh of the SES, such as MSMS
by Sanner et al. [SOS96], or ones that render the SES directly with-
out calculating an explicit representation beforehand (e.g., Krone et
al. [KGE11] or Rau et al. [RZK*19]). For visualization, all of the
aforementioned surfaces can be enriched using color mapping to
depict further functionally relevant properties of the protein. We use
the SES as basis for our work, as it depicts the functionally relevant
information, namely the shape and physico-chemical properties of
the interface of a molecule and its environment.

3. Related Work

Map-like representations of proteins mostly base upon a spherical
description of the geometry. Rahi and Sharp [RS07] re-parametrize
the surface vertices of a molecule into spherical coordinates. This
allows them to then map the surface onto a sphere in order to com-
pare multiple proteins more easily. The actual comparison, how-
ever, is only a visual one and does not provide any countable dis-
tance measures. Building upon this approach, the Molecular Sur-

face Maps method of Krone et al. [KSR*17] that is also used in this
work further transforms those spherical descriptions by using con-
ventional map projection methods generally used in cartography to
generate two-dimensional maps of protein surfaces. Additionally,
as opposed to other methods, occurring tunnels of the protein are
closed before any projections to achieve an artifact-free final rep-
resentation. Their results sometimes suffer from the drawbacks of
the selected map projection method as there exists no mapping be-
tween a sphere and a map that is able to conserve area as well as
distance perfectly. Hasegawa and Funatsu [HF12] use a spherical
self-organizing map to achieve a projection from the protein sur-
face onto a sphere. Due to their algorithm the results are not nec-
essarily smooth and may contain holes that can get larger when the
size of the projected protein decreases. Hass and Koehl [HK14] on
the other hand use a conformal mapping to measure the roundness
of a given protein. Opposed to our approach they do not incorpo-
rate further properties of the protein surface. In their Structuprint
method, Kontopoulos et al. [KVTK16] project the protein onto a
sphere by casting a straight line from the center point through the
surface points. This approach therefore can lead to undesired over-
laps of projected surface parts. Protein cavities or tunnels are also
subject to mapping methods. Kolesár et al. [KBP*16] unfold occur-
ing tunnels into a map-like representation. They also use the Image
Moments method to compare different tunnels, for which we will
show later that it is not suitable for our needs. To further resem-
ble the shape of the original cavity, Schatz et al. [SKB*19] choose
a hat-like shape as primitive, which then can be further simplified
to a map in the form of a disk. While depicting the original shape
better, this can lead to heavy distortions of the surface.

Apart from map projections, numerous methods have been de-
veloped to compare proteins among each other. La et al. and Xiong
et al. [LEV*09; XESK14] describe their 3D-Surfer software that
uses 3D Zernike descriptors as described by Seal et al. [SLL*08b]
to extract feature vectors for each protein to achieve comparisons of
larger protein numbers. In contrast to our work, they do not incor-
porate further biochemical properties of the surface that may be im-
portant to determine the function of a protein. Bock et al. [BGG07]
describe an approach to compare areas on protein surfaces utilizing
so-called spin images. Their computationally complex approach
also utilizes only geometrical information but they suggest incor-
porating physico-chemical properties like in our approach. As pro-
posed by Anzali et al. [ABK*96], the shape of one molecule can
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Figure 3: Overview of the generated scalar maps for the protein with the ID 6LU7 and their colorized versions. The first map shows the
b-factor coloring, using the Viridis color map ( ), the second shows the hydrophobicity interpolated between yellow (hydrophobe),
white and blue (hydrophil) and the last shows the cartography-inspired coloring by elevation, i. e. the distance in Å between the surface and
the centroid of the protein. The gray value maps below show the scalar values used to generate the colors of the maps above. These values
have been rescaled in order to make them visible.

be stored in a neural network to achieve direct comparison with
others. Such direct comparisons are also possible through the use
of gradient vector flow [SKR*14], or, again by 3D Zernike de-
scriptors [SLL*08a]. All of the abovementioned methods have in
common to be computationally relatively complex. Hofbauer et
al. [HLA04] construct representatives in the form of graphs and
then compare the resulting graphs among each other. They also
compare physico-chemical properties, but their method, again, suf-
fers from computational complexity, as the comparison between
two proteins alone can take up to several minutes.

Besides purely biological application, the hierarchical cluster-
ing of images is also relevant for our work. A review of com-
monly used clustering algorithms has been given by Saxena et
al. [SPG*17]. The K-Means algorithm, probably first described by
Steinhaus [Ste56], is one of the most well-known and widely used
clustering algorithms. As it requires the knowledge of the number
of clusters beforehand, it struggles to solve many real-world appli-
cation cases like ours where this number is unknown. Nonetheless,
it is used by the methods of Cai et al. [CHL*04] and Pandey and
Khanna [PK14]. The first method uses image features alongside
with textual features to cluster images found in the world wide web.
Such methods are not necessarily directly adaptable to biomedical
images as the calculated features might differ heavily. The second
method presents an approach similar to the one presented here. It
agglomeratively clusters images by consecutively calculating rep-
resentative images of the clusters and using them for further cluster-
ing. It is also intended for photographs and not biomedical datasets,
and is thus not able to incorporate images with multiple physico-
chemical properties.

One of the most well-known clustering applications in biology
is the phylogenetic analysis. There, biologists try to understand the
evolutionary relationships between different proteins or genes. The
result of such a clustering are so-called phylogenetic trees [FM67],
often visualized by a dendrogram. Several methods for their con-
struction exist, the currently most widely used is the neighbor-
joining method, first described by Saitou and Nei [SN87]. As op-
posed to the UPGMA method (Unweighted Pair Group with Arith-

metic Mean [SM58]) they do no necessarily produce rooted trees
and do not assume a constant rate of evolution. Like all other meth-
ods constructing phylogenetic trees, the resulting visual layouts of
these methods are often ambiguous, depending on the order of the
input. We decided to use the UPGMA method in our approach, as
it constructs rooted trees and the results can be interpreted more
easily. To examine the differences in phylogenetic trees, Bremm et
al [BvLH*11] present a comparison approach. As the resulting tree
structures become quite large, Huson et al. [HRR*07] describe a
visualization system for their efficient display.

4. Algorithm

Our algorithm consists of four steps. First, the proteins are aligned
according to their principle components. In the second step, three
Molecular Surface Maps are created for all proteins in our input
data set, each contains the scalar values of the associated surface
property, see bottom row in Figure 3. The three properties are the
topological structure of the surface encoded into a heightmap (as
proposed by Krone et al. [KSR*17]), the hydrophobicity, which
describes how energetically (un-)favorable a direct interaction with
water molecules would be, and the temperature factor (or b-factor),
which is an indicator for the flexibility of the protein. In the third
step, a feature vector for each generated map is computed, result-
ing in three feature vectors for each protein. They can be concate-
nated to a vector containing two or three of the original vectors.
We tested three different methods to compute these features: Image
Moments [Hu62; Flu00], Color Moments [MSM09], and a Con-
volutional Neural Network (CNN) [SHZ*18]. For the Color Mo-
ments, we use a color mapping from the scalar values to RGB val-
ues (see Figure 3). The other two methods work directly on the
scalar maps. In the fourth step, the distances between the feature
vectors are used to cluster the proteins hierarchically.

4.1. Protein Alignment

The visual appearance of the Molecular Surface Maps highly de-
pends on the orientation of the protein. Even for very similar pro-
teins, however, the orientation can differ widely in the Protein
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Data Bank [BWF*00]. Therefore, it is advisable to align the pro-
teins as good as possible prior to the mapping. For similar pro-
teins, minimizing the Root Mean Square Deviation (RMSD) be-
tween corresponding atoms is the most commonly used alignment
method [KS83]. However, since our input data can be highly het-
erogeneous, this is approach is not feasible, as it is not possible to
establish the necessary per-atom correspondence for highly differ-
ent proteins. Thus, we use a more general approach based on Prin-
ciple Component Analysis of the atom positions: we rotate each
protein so that the first principle component is aligned to the x-
axis and the second principle component is aligned to the y-axis.
Thus, proteins with similar shape will be oriented similarly in a
fast and convenient way, regardless of the underlying chemical se-
quence. This works well for elongated as well as globular proteins
as possible flipping in either x- or y-direction is later handled by
the rotationally invariant feature extraction methods.

4.2. Molecular Surface Map Creation

The next step after the alignment is to create the three maps for each
protein using the Molecular Surface Map algorithm proposed by
Krone et al. [KSR*17], which is shown schematically in Figure 2.
Their algorithm computes the SES for a given probe radius and en-
sures that the SES is of genus zero by detecting and closing tunnels
through the protein. The next step is the computation of a transfor-
mation from the SES to a sphere. Finally, the two-dimensional map
is created by using a suitable map projection, e.g., Lambert equal
area projection, which minimizes the area distortion at the poles.
We changed their algorithm so that the generated map contains the
scalar values of the property directly. Additionally, we replaced the
costly tunnel detection and closing part of the original algorithm
with our own variant, which is fast and, thus, results in lower com-
putation times for large protein ensembles. Our approach iteratively
increases the probe radius, used to compute the SES mesh, from
2.4 Å, which was proposed by domain experts in biochemistry, to
4.0 Å or until the mesh is of genus zero, in steps of 0.2 Å. For
cases where our faster approach fails, the original, slower variant
by Krone et al. has to be used. However, in our tests, this happened
only for less than 10% of the proteins. Our approach can lead to
the comparison of surfaces generated for different probe radii. As
a change of the probe radius only affects small local concave parts
of the surface the effect on the resulting surface are minimal.

4.3. Feature Computation

In order to cluster the Molecular Surface Map images generated in
the previous step, we assign a descriptive value to each of them.
We tested three approaches: Image Moments, Color Moments, and
a feature computation based on a Convolutional Neural Network
(CNN). Each method calculates a feature vector—with seven, nine,
and 1792 elements respectively—in order to uniquely represent the
image. In Section 6, we present an evaluation of the different fea-
ture vector calculations. For Image Moments and the CNN features,
we directly employ the calculated maps as input. To be able to prop-
erly use Color Moments, a color map has to be applied to the scalar
maps first. We are aware that the quality of the result heavily de-
pends on the quality of the used color map, but otherwise, the fea-
ture vector would not be long enough to accurately represent the

image. Using either of these approaches, each Molecular Surface
Map computed in the first step is assigned a feature vector. To create
a more unique and meaningful feature vector, multiple Molecular
Surface Maps representing different quantities of the same protein
can be combined by simply concatenating the feature vectors. Con-
catenating the feature vectors can for example take mutations of
the proteins into account that only change certain quantities. In the
following, we will briefly describe the three methods to calculate
the feature vectors.

Image Moments Image Moments are derived from the intensity
value of a pixel I(x,y). Therefore, we are able to use our previ-
ously calculated Molecular Surface Maps directly. In order to get
invariance under translation, rotation and scaling we computed the
Hu moments invariants [Hu62]. We left out I3 since it is depen-
dent on the other moments and computed I8 instead, as proposed
by Flusser [Flu00]. This results in a feature vector Fim for each
Molecular Surface Map containing seven moments:

Fim = (I1, I2, I4, I5, I6, I7, I8) (1)

Color Moments We compute the Color Moments as proposed in
the work of Maheshwari et al. [MSM09] using the color-coded, and
not the scalar value, map as input (see Figure 3 top row). The first
three elements in the resulting feature vector are the mean values
of each RGB color channel. The next three components of the fea-
ture vector are the standard deviation, again for each color channel.
The final three components represents the skewness for each color
channel separately. This can be understood as a measure of the de-
gree of asymmetry in the distribution. The combined feature vector
Fcm for the Color Moments contains nine elements and uniquely
describes the associated map.

Fcm = (ER, EG, EB, SDR, SDG, SDB, SR, SG, SB) (2)

Convolutional Neural Network The third feature computation
method we apply is a CNN called MobileNetV2, which was de-
veloped by Sandler et al. [SHZ*18] and is provided as a Tensor-
Flow [AAB*15] module. We do not apply the whole network to
our images, since the final output is not a feature vector. Due to its
modular structure, the authors provide a smaller version of the net-
work that only calculates image feature vectors, which we can use
as input features for our subsequent calculations. Compared to the
other two feature extraction methods, the feature vectors retrieved
from MobileNetV2 are significantly longer. For each map, we ob-
tain a feature vector Fnn with 1792 elements, which is invariant
under translation, rotation and scaling:

Fnn = (F0,F1, . . . ,F1791) (3)

4.4. Hierarchical Clustering

In this step of our algorithmic pipeline, a hierarchical clustering
of the n input proteins based on the feature vectors described in
Subsection 4.3 is computed. We calculate the Euclidean distance
di j between each pair of feature vectors in order to get the n× n
distance matrix. The resulting distance matrix is then used in the
iterative process to compute a binary tree containing all maps or
proteins respectively. For each of the proteins, a leaf node is cre-
ated containing the feature vector and the corresponding Molecular

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

107



K. Schatz, F. Frieß, M. Schäfer, T. Ertl, and M. Krone / Analyzing Protein Similarity by Clustering Molecular Surface Maps

A AA B C D E
0.0

5.0
6.7
8.2

10.6
Height

Y
X

Z
R

D(Z,Y) = 21.2

D(D,E) = 16.4

D(X,C) = 13.4

D(A,B) = 10.0

Figure 4: UPGMA algorithm [SM58] for five nodes, A to E. The
complete distance matrices of each iteration are not shown, but the
shortest distances of each iteration are shown on the right side of
the tree. The height of the connection is computed as h0 = D0/2 for
the first level and hi = Di/2−Di−1 for the other levels.

Surface Map. Initially, each leaf node is regarded as a one-element
cluster. The further construction of the tree follows the Unweighted
Pair Group with Arithmetic Mean (UPGMA) algorithm developed
by Sokal and Michener [SM58]. In bioinformatics, UPGMA is
widely used to construct phylogenetic trees. Their algorithm fol-
lows a bottom-up approach by subsequently merging the clusters
with the shortest pair-wise distance. After each merge, the distance
matrix is updated by removing the two merged clusters and adding
the newly created cluster instead. New distance values from the
new cluster CN to all existing ones Ci are calculated as follows:

d(CN ,Ci) =
1

|CN | · |Ci| ∑
x∈CN

∑
y∈Ci

d(x,y) (4)

Therefore, the new distance value d(CN ,Ci) is equal to the arith-
metic mean of all pairwise node distances. The new cluster is as-
signed a descriptive feature vector as well, which is the centroid
computed from the feature vectors of all leaf nodes contained in
the two merged subtrees. Based on this centroid, we search for the
leaf node in the subtree of CN with the most similar feature vector
and use its map as the representative map of the cluster. After the
iterations finishes we have a binary tree containing all maps that
provides a preliminary hierarchical clustering. The UPGMA algo-
rithm is able to generate trees where the distance in the tree follow-
ing the edges corresponds the actual distance in the distance matrix
(see Figure 4). This is achieved by assigning a height value that
is equal to half the distance of the sub-trees to each newly created
cluster node. Constructing the tree in this way allows for an intu-
itive visual analysis, as the distance values can be estimated directly
from the visualization. Using a user-defined similarity threshold
Tc we determine the final clusters based on the UPGMA tree. All
nodes that belong to a subtree of less than height Tc belong to the
same cluster (dashed orange line in Figure 1).

4.5. Visualization Application

In order to visualize and analyze the aforementioned clustering, we
provide the user with three linked views that can be used to inter-
actively explore and analyze the generated hierarchical clustering
(see Figure 5). It is possible to adjust the size of all views by moving
the gray lines separating them. In the top view, the computed hier-
archical tree is shown using color coding to highlight which subtree

Figure 5: Overview over the interface used to display the result
of the clustering. The top view shows the hierarchical binary tree,
each node colored according to the cluster it belongs. In the two
bottom views the SES of selected maps can be shown for further
analysis. Here, 102L (left) and 107l (right) are selected. The clus-
tering was performed on the heightmap coloring as this produces
results that can be easily confirmed visually by the user.

corresponds to which cluster. The leaf nodes of the tree are the pro-
teins used in the clustering. Hovering over a node in the tree shows
the map of the protein associated with that node. For nodes further
up in the tree, the most representative map of the subtree is shown.
The two remaining views, bottom left and bottom right, are used
to show the three-dimensional surface representation of two pro-
teins that were selected in the tree for further analysis. Zooming is
possible inside all views, while only the bottom two views support
3D interactions like translations and rotations. The 3D views can
be coordinated views, that is, the aligned proteins will rotate and
translate simultaneously. The initial state, after the data is loaded,
is to show the root node of the hierarchical tree and the bottom
views are empty.

5. Description of Methods used for Verification

As mentioned above, there is a wide variety of methods to compare
and cluster proteins (see Section 2 and Section 3). In order to verify
that the results of our proposed hierarchical clustering method are
valid, we compare them with two other resources: the BRENDA
data base that provides information about the function of enzymes
(Enzyme Classification, EC), and the tool MM-align that uses the
TM-score to rate the similarity of two proteins. In this section, we
briefly describe these two methods. The results of the verification
are discussed in Section 6.

Enzyme Classification To test whether our approach is able to
find clusters of proteins with similar function, real-world pre-
clustered results are necessary. Therefore, we used the enzyme
database BRENDA (BRaunschweig ENzyme DAtabase [SCS02])
to retrieve such information. The BRENDA database groups the
entries based on their function, following the Enzyme Classifica-
tion (EC), a naming and numbering convention [Web92]. Each
stored protein is assigned a hierarchical EC code number consisting
of four digits. For example, the hydroxynitrile lyase from almond
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Table 1: Assigned distance values when comparing two enzyme
classifications of the form EC 1.2.3.4. The column headers rep-
resent their position in the hierarchical order. The table lists a X
when the class on that position matches and a × otherwise.

1 2 3 4 assigned distance

× ×| X ×|X ×|X 4
X × × ×|X 3
X X × ×|X 2
X × X ×|X 2
X X X × 1
X X X X 0

(PDB ID: 1JU2) belongs to the group EC 4.1.2.10. The first
number indicates the general role of the enzyme, such as the type
of reaction that it is able to accelerate. The meaning of the second
two numbers depends on the first one. One number, for example,
could indicate the donor of the reaction, another the acceptor. A
general description of the last number is not available, as it just
allows to further subdivide the pre-defined classes. Therefore, this
classification does not represent a true hierarchical clustering, as
the order of the inner values is just defined as-is, and could be in-
terchangeable. To turn a comparison between two enzyme classes
into a number indicating the quality of the comparison, we assign
distance values to specific configurations, which are shown in Ta-
ble 1. Please note that the exact scalar distance values are arbitrary
as we try to convert a nominal categorization into a linear one.

MM-align & TM-score Another widely used (e.g., [FT20;
GKJ19]) protein similarity measurement score is the TM-score
(Template Modeling score) [ZS04]. It compares the amino acid se-
quence and 3D structural information of two proteins and returns a
single similarity value, which can be seen as a global fold similarity
score. Using MM-align (MultiMer-Align) [MZ09] this score, for
pairs of single protein chains, can be computed. In general, MM-
align reorders the chains of one of the proteins in order to find an
optimal alignment between corresponding amino acids in the two
protein complexes. Based on this sequence alignment, a heuristic,
iterative algorithm is used to superimposes the structures.

For the reordering, MM-align first permutes all chains of the pro-
tein with more or equal chains (n ≥ m). For each permutation, the
sequences of the chains are joined to a new contiguous sequence
(see Figure 6). Then, five different sequence alignments are per-
formed on these contiguous sequences (for details about the align-
ment algorithm, please refer to the original publications). For each
of these alignments, an inter-complex distance matrix is computed
and used to guide a heuristic, iterative superposition algorithm,
which tries to optimize the TM-score (see Figure 7). The iteration
stops when the alignments and, consequently, the TM-score con-
verges to a stable number. The TM-score is computed as follows:

TM-score = max

 1
L

Lalign

∑
i=1

1

1+
(

d2
i j

d2
0

)


where L denotes the length of all chains of the target complex

Figure 6: Example of chain matching and joining procedure and
the alignment principle of MM-Align. Two chains (thick and thin)
of two different dimeric protein complexes (red, blue) are joined
to a contiguous artificial chain (a complex) for each protein. Then
these complexes are aligned. MM-align allows only the alignment
of amino acids between one chain of the complex to another chain
of the other complex (bottom left). Aligning amino acids of one
chain of a complex to more than one chain in the other complex is
forbidden (bottom right). (Figure modified from [MZ09])

Figure 7: Schematic of a superposition between two short parts of
aligned amino acid chains (blue and olive circles; Ala = Alanin,
Glu = Glutamin, His = Histidin, Leu = Leucin). di j denotes the
distance between the α-carbon atoms of two aligned amino acids i
and j.

and Lalign is the number of aligned protein pairs. di j is the Eu-
clidean distance between the Cα atoms of the aligned amino acids
i and j (cf. Figure 6) and d0 is a scale to normalize the match dif-
ference [ZS04; MZ09]: d0 = 1.24 3

√
L−15− 1.8. Thus, the final

TM-score combines the similarity of aligned regions and the align-
ment coverage as one similarity value. Its value range is [0 . . .1],
where higher values denote higher similarity. Additionally, a TM-
score above 0.5 indicates similar topology, chain orientation, and
the same fold based on SCOP/CATH [MBHC95; OMJ*97], which
makes it useful for protein classification problems [XZ10].

6. Results

The goal of our presented clustering pipeline is to find proteins
that not only have similar structure but also similar function. We
tested our approach using three protein ensembles obtained from
the Protein Data Bank [BWF*00]. The first ensemble consists of
ten selected proteins with previously known properties. The second
one consist of 50 proteins, the third one of 1000. We verify the
results using the EC code provided by BRENDA and the TM-score
as mentioned in Section 5.
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Table 2: Colour coded results of the clustering for the small dataset
using each of the three feature extraction methods: Image Moments
(IM), Color Moments (CM) and MobileNetV2 (MN) and differ-
ent maps: Heightmap (H), Hydrophobicity (Y), B-factor (B)and the
combinations H-Y and H-Y-B. The expected result is two clusters,
C1 and C2, as well as one outlier O. Configurations marked blue
resulted in a proper clustering, red configurations were not suc-
cessful. Yellow values mark borderline cases, where a wrong pro-
tein was added to a cluster at a late point in time, indicating large
distance to the rest of the cluster. For H-Y and H-Y-B we combine
the feature vectors of the maps above either without or with the
B-factor features, respectively.

IM CM MN

Map C1 C2 O C1 C2 O C1 C2 O

H
Y
B
H-Y
H-Y-B

We constructed the first and smallest data set of ten proteins, so
that it would contain two clusters and one outlier. This was achieved
by selecting three sufficiently different proteins. After that, a se-
quence similarity search was performed on two of the three pro-
teins. Out of these search results we picked the most similar pro-
teins to be included into the cluster. The results are shown in Fig-
ure 8. We tested all three feature extraction methods using different
Molecular Surface Maps and combinations, as shown in Table 2.
The correct result for this data set, considering the EC code pro-
vided by BRENDA as ground truth, is a clustering where the four
enzymes form one cluster, and five of the six remaining proteins
are also clustered together, since they are nearly identical. Using
MobileNetV2, the two clusters and the outlier are generally well
preserved (Figure 8a and Figure 8b). The only exception is the b-
factor map in Figure 8c, where only one cluster is preserved prop-
erly. This is also true for the other feature extraction methods, Im-
age and Color Moments. When comparing the resulting clustering
trees of the different methods shown in Figure 8, one can notice that
Image Moments and Color Moments tend to have a more diverse
distance value distribution than the CNN features. That means that
the distance between the closest proteins is far smaller compared
to the distance between the farthest ones. Therefore, many merges
happen at the very bottom of the clustering tree as opposed to the
MobileNetV2 results. We attribute this to the length of the feature
vectors. As the feature vector given by MobileNetV2 has 1792 en-
tries, even small distances for single vector elements add up to
larger numbers. Although the base difference values are typically
high, the quality of the results is superior to the other two methods.

We originally chose the three presented map types to represent
different properties of the proteins: the heightmap represents the
geometry of the surface, the hydrophobicity can affect binding be-
havior, and the b-factor is an indicator for flexibility. Initially we
considered the b-factor as an interesting feature for the function of
a protein, as it can influence the catalytic rate. However, as it is
not decisive for the function and it can change under different envi-

ronmental conditions, we decided to omit it for the larger data sets
due to the poor results for the small ensemble. We discussed this
choice with a biochemist, who confirmed our assessment that the
b-factor (or other flexibility measures) are not decisive for a large-
scale comparison of different proteins. Only in specific cases, such
as when analyzing an ensemble of similar proteins (e.g., different
mutants of an enzyme), a clustering based on flexibility could be
interesting. This is, however, not the focus of our current work.
For the other two map types, the clustering quality depends on the
used feature extraction method. Image Moments were successfully
used by Kolesár et al. [KBP*16] to calculate similarities for maps
of protein cavities. In our use case, however, they performed worse
than Color Moments and MobileNetV2. They even considered one
of the enzymes as a clear outlier while merging the actual outlier
early. We assume that Kolesár et al. obtained good results since
their maps consisted of large distinct patches that differed only
slightly between the maps. Although Color Moments strongly de-
pend on the chosen color map, they performed considerably better
than Image Moments. However, they exhibit weaknesses in the de-
tection of outliers (cf. Table 2). MobileNetV2 produced the overall
best results, especially when considering that the results of using
Color Moments features might get worse when chosing a different
color map. Additionally, it was the only method that got the correct
result for the combined feature vectors.

As mentioned in Section 4, our algorithm can also use a com-
bination of multiple maps for each protein for the clustering. This
can be useful since surface properties like the hydrophobicity as
well as the shape of the surface influence the function of a protein.
As shown in Table 2 and Figure 8f the MobileNetV2-based clus-
tering produces very good results. Since MobileNetV2 performed
best on our small verification data set, we only used this method
and the combination of heightmap and hydrophobicity map for the
two larger data sets. By default, the heightmaps are displayed in
our prototype, as they are more easily distinguishable for a human
viewer, but users can also choose to see the hydrophobicity map.

Figure 9 shows results for the ensemble of 50 proteins. When
investigating the clustered proteins, it can be observed that visu-
ally as well as functionally similar enzymes are linked together
early, e.g., as seen in the purple boxes. These proteins which were
identified as being similar by our method are also classified as be-
ing functionally similar according to the EC classification stored in
BRENDA. Note that we only color the branches of direct merges
of leaf nodes, as those are most easily interpretable and it is not
directly clear which value to assume as basis for coloring for the
other cases. Overall, the majority of our clustering results for en-
zymes are consistent with the EC classification. That is, proteins of
the same class, and therefore, same function are in the same clus-
ter. Two outlier pairs are visible, 1AGX and 1AKL, and 1AF0 and
1AI2. The first pair actually belongs to the same main class and
their shape is at least roughly similar, which explains the cluster-
ing by our method. That is, the remaining pair the only real outlier,
where their heightmap are different and they are not in the same
EC class. The clusters in the blue and red boxes are especially
interesting when we compare these against the TM-score values.
Here, the TM-score indicates a high dissimilarity between these
proteins although they are functionally very similar according to
their EC classification. With our method, these cases are clustered
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(a) Heightmap, MobileNetV2 (b) Hydrophobicity, MobileNetV2 (c) B-factor, MobileNetV2

(d) Heightmap, Image Moments (e) Hydrophobicity, Color Moments (f) Heightmap & Hydrophobicity, MobileNetV2

Figure 8: Comparison of several similarity trees of our given ten protein data set. The subcaptions list the coloring mode alongside with
the used feature extraction method. All subfigures display, from top to bottom, the generated tree, the maps belonging to each node, their
respective PDB identifier, and, if available, their enzyme classification. Proteins with a displayed enzyme classification should form one
cluster, the remaining proteins another one. 4I38 is considered an outlier. Using MobileNetV2 features our method generates the expected
result fully ((a) and (b)) or at least partially (c). In contrast, Image Moments shown in (d) completely fails to categorize the proteins similarity
properly. Color Moments (e) leads to similarly good results. Finally, (f) shows the combination of two map types that mutually alleviate the
shortcomings of each single map type.

early, but typically later than cases where all four enzyme classes
match. Additionally, the TM-score was not able to catch the sim-
ilarity of 1A7T and 1A8T completely, although they fall into the
same class (right half of red box). Although the heightmaps do not
look very similar, our method was able to correctly cluster them.
Failed similarity detections by the TM-score can happen were the
interior of two proteins is different but the surfaces are similar. Our
method will then detect a high similarity while the TM-score indi-
cates a high difference. As mentioned in Section 2, the surface of a
protein is generally more important to its function, that is, match-
ing proteins with similar surface but dissimilar interior is desirable.
Thus, we rate the results of our method as highly suitable overall.

The largest ensemble we tested consists of 1000 proteins, which
are all listed in the BRENDA database. The resulting graph is far
too large to show every detail without being able to interact with
the visualization (panning and zooming). The trends already de-
tected in the 50 protein ensemble can also be found here: a major-
ity of the clusters are of good quality, while the results that contra-
dict the enzyme classification usually happen higher up. Legibility
is a general issue of the explicit visualization of larger hierarchi-
cal data sets [SHS11], and could be resolved by exploiting implicit
methods like tree maps. However, using these methods would im-
ply to give up the explicit representation that domain scientists are

already used to. Using a high resolution display—e.g., a power-
wall [MRE13]—could improve the readability of the graph.

We have shown that the results of our method are overall in good
agreement with the enzyme classification and the TM-score. That
is, our method can be applied for clustering functionally similar
proteins. It produces only few outliers compared to the EC clas-
sification obtained from BRENDA that we use as a ground truth.
However, other methods for predicting protein-protein similarity
like MM-align are also not flawless when it comes to the detection
of functional similarity. Our prototypical visualization tool can be
used to interactively explore and analyze the hierarchical cluster-
ing. This allows expert users to investigate the results in the dendro-
gram and interactively set the threshold determining the clusters. A
detailed analysis of individual pairs of proteins is possible in the
3D views (see Figure 5), which helps to assess the quality of our
map-based similarity score. Consequently, our application can be
used to cluster and visually analyze previously unknown proteins
and hypothesize about the function of the protein.

7. Summary and Future Work

We presented an approach to hierarchically cluster and analyze pro-
tein ensembles based on surface similarity. To this end, we adapted
the Molecular Surface Map method [KSR*17] and used the result-
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(a) Direct merges colored by enzyme classification

(b) Direct merges colored by TM-score

Figure 9: Clustering of 50 different proteins using MobileNetV2 feature vectors for heightmap and hydrophobicity. Visually similar maps are
clustered together. Merges of two leaf nodes are colored by the quality of the merge based on two different external scores or classifications.
Direct matches are colored using the Viridis color map ( ), where yellow corresponds to a good match and purple to a poor one.
(a) uses a given enzyme classification as ground truth, (b) the TM-score. The purple box contains five enzymes belonging to the same class,
where the TM-score as well as our method detect a high similarity. The red and blue boxes are cases where our method gives a more suitable
similarity score than the TM-score.

ing maps that represent different properties of the protein surface
to extract feature vectors, using a Convolutional Neural Network.
They are used to construct a dendrogram representing the clustering
hierarchy. To test the quality and validity of our results, we investi-
gated whether proteins that were classified as similar by out method
also exhibit a functional similarity. Additionally, we compared our
results to another similarity scoring method, the TM-Score [ZS04].
As we are intentionally only comparing the surface properties of
the proteins while the TM-Score also incorporates the interior, our
method results in better classifications in some cases.

In the future, we plan to evaluate the performance of a neural
network that is trained specifically for the feature extraction. This
could improve the quality of the clustering further since the CNN
we used was originally trained for different data but performs very
well. Additionally, we plan the exploration of additional distance
measures apart from the Euclidean distance, as well as an evalu-
ation on how well a adapted TM-score that weighs surface-facing
proteins higher compares with our method. Alternatively, we plan
to evaluate statistical methods to compare images have been de-

veloped. For example, the Earth Mover’s Distance [RTG00] or the
Bhattacharyya distance [CA79] can be exploited for such compar-
isons. Furthermore, we want to adapt our visualization prototype
so that it runs on large high-resolution displays. The larger screen
space could help with the visual analysis of the results, since ex-
ploring the dendrogram for larger ensembles of proteins is a tedious
task on regular displays.
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