
Adaptively Adjusting Marching Cubes Output

to Fit A Trilinear Reconstruction Filter

Fabio Allamandri, Paolo Cignoni, Claudio Montani, and Roberto Scopigno

Istituto di Elaborazione dell'Informazione Consiglio Nazionale delle Ricerche,

Via S. Maria, 46 - 56126 Pisa ITALY

Email: fcignoni,montanig@iei.pi.cnr.it , r.scopigno@cnuce.cnr.it

Abstract. The paper focuses on the improvement of the quality of iso-

surfaces �tted on volume datasets with respect to standard MC solutions.

The new solution presented improves the precision in the reconstruction

process using an approach based on mesh re�nement and driven by the

evaluation of the trilinear reconstruction �lter. The iso-surface recon-

struction process is adaptive, to ensure that the complexity of the �tted

mesh will not become excessive. The proposed approach has been tested

on many datasets; we discuss the precision of the obtained meshs and

report data on �tted meshes complexity and processing times.

1 Introduction

The Marching Cubes (MC) algorithm [11] is nowadays the most di�use technique

for the extraction of iso-surfaces out of volume datasets. The reasons for the MC

success include its simple logical structure, implying a nearly straightforward

implementation, and its computational e�ciency. MC has been incorporated in

many commercial and public domain visualization systems. Many papers ap-

peared on enhancements, optimization, extensions and applications of this tech-

nique [23, 22, 16, 15, 2, 1, 10]. One of the few limitations of MC is the linearity

of the reconstruction kernel used. MC adopts a local approach, i.e. each cell is

tested for a possible iso-surface patch independently from the others. Each patch

is computed by adopting a table-driven approach, and is de�ned by the posi-

tion of vertices located on cell edges. The iso-surface patch returned is therefore

a linear approximation (planar faces), whose vertices are located on cell edges

(this ensures iso-surface C0 continuity between cells) and are computed using

linear interpolation. When a very high resolution dataset is used, the simplicity

of the reconstruction �lter is not easily perceptible, unless we perform substan-

tial zooming into the mesh. But if the latter case holds, or if dataset resolution is

low, the adoption of a more sophisticated interpolation �lter might be required

to improve smoothness of the �tted surface.

In this paper we focus on volume data applications based on the visualization

of iso-surfaces. We look for methods which produce a \surface-based" output (i.e.

ray casting solutions are considered not appropriate), to allow hardware-assisted

interactive visualization and data distribution/rendering in web environments.
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Fig. 1. Enhancing reconstruction precision: di�erent patches are extracted from the

same cell, using increased precision and deeper re�nement.

Therefore, we present a solution which improves the precision in the reconstruc-

tion process, with respect to standard MC solution, using mesh re�nement and

the trilinear reconstruction �lter (see Figure 1). The iso-surface reconstruction

process is adaptive, to ensure that the complexity of the �tted mesh will not

become excessive (thus reducing or preventing interactive visualization).

2 Previous work

The excessive simplicity of the reconstruction �lter used by MC has been pointed

out �rstly by Fruehauf [5]. He compared images rendered using the MC output

meshes to adopting a ray casting approach (which generally uses a tri-linear

reconstruction �lter) and showed how much they di�er. An advantage of ray

casting is to allow the adoption of whichever reconstruction �lter; many dif-

ferent interpolation �lters have been proposed [12{14] to evaluate/interpolate

more precisely both �eld values and gradients. Unfortunately, ray casting pro-

duces images of the isosurface we are interested in (a view-dependent process),

rather than extracting explicitly the iso-surface. For many applications, produc-

ing an image is not enough. The explicit reconstruction of surface geometries

may be needed, for example, in virtual simulation environments. Moreover, a

shortcoming of the ray casting approach is the non-interactive rendering time.

For these reasons, the precision of the �tted iso-surfaces cannot be improved

in many applications by simply adopting a ray casting solution together with a

more sophisticated reconstruction �lter.

The technique proposed in this paper adopts a regular mesh re�nement ap-

proach. The idea of improving the quality of a mesh by applying [recursively] a



sequence of local re�nements is not new, and it has been proposed: to construct

adaptive piecewise linear representations of implicit surfaces [6, 21]; to recon-

struct adaptively the surface of three-dimensional objects from multiple range

images [17]; to extract a surface out of sampled scalar/vectorial 3D datasets

starting from an initial surface seed and then applying an iterative surface in-


ation process [20]; and to re�ne a surface under a strict surface curvature ap-

proximation constraint [9].

The extraction of smooth iso-surfaces has also been recently performed using

triangular rational quadratic B�ezier patches [7].

3 MC with a trilinear reconstruction �lter

The goal is to support a non-linear reconstruction �lter in a surface �tting con-

text. The proposed solution has been designed as an extension to the classical

MC approach and follows the following list of requirements:

{ surface �tting is performed with a local approach;
{ given a generic reconstruction �lter, the simplicial surface mesh produced

must approximate the ideal iso-surface de�ned by the given reconstruction

kernel at a user-selected approximation;
{ C0 continuity has to be ensured.

The idea is therefore to enhance the MC algorithm by giving the possibility

to re�ne adaptively each surface patch until the requested precision is ful�lled

(Figure 1). The overall pipeline is as follows (with V the volume dataset, q

the iso-surface threshold, K the reconstruction �lter, " the given approximation

precision, andmaxRec the maximum level of recursion which may be produced).

PreciseMC(V; q; K; ";maxRec):

FOR EACH cell ci;j;k 2 V DO

�t an iso-surface patch S on ci;j;k (using standard MC);

FOR EACH face f 2 S DO

TryToRe�ne(f; V; q;K; ";maxRec,1);

TryToRe�ne (f; V; q;K; ";maxRec; lev):

FOR EACH sampling point pi on f DO

evaluate the approximation "i of f in pi with respect to �lter K;

IF "i > " THEN Split points := Split points+ pi;

IF Split points = fg
THEN output(f)

ELSE re�ne f in ffjg (using Split points);

FOR EACH fj DO

IF lev � maxRec

THEN TryToRe�ne(fj ; V; q;K; ";maxRec; lev + 1)

ELSE output(fj);

Mesh re�nement is therefore adaptive, because we subdivide only those faces

which do not approximate su�ciently the ideal iso-surface. The recursive re-

�nement is halted either if a simplicial approximation which satis�es the given
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Fig. 2. Face re�nement based on edge midpoints evaluation (rule A).

precision is found, or a maximum recursive level is reached. The user may there-

fore drive the �tting process by selecting two parameters: the approximation "

and the maximum number of re�nement steps maxRec.

3.1 Evaluation of approximation and re�nement rules

The precision of each face can be evaluated at least in two di�erent manners.

A �rst possibility is to measure a �eld-based di�erence (i.e. given a simplicial

S mesh which approximates the reconstruction �lter K, compute the di�erence

between the given threshold value q and the value of the �eld in the points of

S). A second approach is to measure a geometric di�erence between the current

iso-surface S and the ideal iso-surface SK (e.g. evaluate the Hausdor� distance

between S and SK). Both these evaluations may be performed in a precise or in

an approximate manner.

We evaluate an approximate geometric di�erence by computing the distance

between each face of S and the ideal iso-surface on a discrete number of sampling

points. There are many di�erent criteria to select the set of sampling points. A

possible choice may be to select the midpoints of the edges (quaternary sub-

division). For each of these points pi, we evaluate the distance between pi and

a corresponding point p0

i
on the ideal iso-surface SK . If this distance is greater

than the selected error threshold ", we classify point pi as a splitting point. Then

we re�ne the current face by inserting the splitting points (the new local tri-

angulation is simply determined by an ad hoc table, see Figure 2). We adopt

therefore an heuristic re�nement approach, to allow re�nement of only a subset

of edges. In this case, four di�erent con�gurations are possible (the three ones

represented in Figure 2 plus the one with no splitting vertices). Let us call this

re�nement criterion Rule A.

Other rules are also possible. One variation of Rule A is to evaluate four splitting

points, adding the baricenter to the three edge midpoints (see Figure 3). Let us

call it Rule B. Rule B has a disadvantage: because we evaluate all the four split

candidates at once, we may decide to split on the central point also when its

insertion does not really improve mesh approximation. For example, look at the

case when the distance between the central point pc and the ideal iso-surface SK
is greater than ", and thus, according to Rule B, we use pc to split face f . But,

if we consider the re�nement obtained by using only the other three split points,

then in many cases the actual di�erence between the two re�ned meshes could
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Fig. 3. Face re�nement based on edge midpoint and center point evaluation (rule

B); but center point splitting is not always necessary and increases substantially the

resulting mesh size.
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Fig. 4. Two phases evaluation, under Rule A1.

be much smaller than " (see Figure 3). In that case we create three new faces

that are not really needed to obtain the required approximation. To prevent an

excessive increase in the number of faces due to the above reason, we introduce

two alternative criteria based on four sampling points. The �rst one, called Rule

A1, extends criterion A by sampling the central point in a second step, only

when none of the three edge midpoints is classi�ed as a splitting one (see Fig-

ure 4). The second one, Rule A2, always evaluates a fourth sampling point in a

second phase. In this case, the initial location of this candidate point is not on

the plane of the face to be split, but it depends directly on the current splitting

points locations (after relocation on the ideal surface SK , see Figure 5).

The three di�erent criteria result into di�erent meshes; see the evaluation of

the results reported in Section 5.

3.2 Splitting point displacement

In the previous discussion we have not speci�ed how do we �nd the point p0 on

the ideal iso-surface SK which corresponds to the potential splitting point p we

are evaluating. A solution is to start a sampling process on the line which origi-

nates from the current point p and is parallel to the �eld gradient in p itself. As

far as we sample points on this line, we compute the �eld value and the current



Fig. 5. Two phases evaluation, under Rule A2.

gradient using the reconstruction �lter K. Sampling terminates as soon as we

reach the searched value q (i.e. point p0), and we compute the Euclidean distance

between p and p0.

Another manner to �nd point p0 can be to analytically compute the nearest in-

tersection between the gradient half-line and the local section of ideal isosurface

SK . This is surely possible in the case of a tri-linear reconstruction �lter. But

we preferred to adopt the previous solution, based on ray sampling, to be more

general: given a reconstruction �lter K, we only need to know how to compute

K in a generic point p.

The robustness of geometrical computations is obviously a fundamental issue.

All of the splitting points are shared between pairs of incident faces. To prevent

the occurrence of di�erent values in the replicated evaluation of a candidate

splitting point (and potential topological inconsistencies), we must avoid redun-

dant evaluations. All of the evaluated splitting point coordinates (plus accessory

information, such as the local geometrical approximation and the gradients com-

puted on such points) are therefore stored in a hash table, to prevent redundant

evaluations.

4 Management of topologic anomalies

The proposed approach produces an adjustable-precision approximation of the

ideal iso-surface by simply re�ning the standard MC linear patch. This implies

that, given a cell and its con�guration, we need the initial mesh patch to be

topologically correct, otherwise the re�nement process can produce erroneous

results. Potentially ambiguous con�gurations of the MC look up table have been

identi�ed [4]. These are the con�gurations where pairs of vertices on a face which

are connected by the diagonals have the same classi�cation (both ON or OFF).

In general, this problem can be managed with two di�erent approaches. We can

adopt a modi�ed MC lookup table [15], which avoids cracks but does not ensure

that the surface produced is topologically correct. Or we may directly extract

topologically correct geometries, at the expenses of some overhead [18, 16]. The

solution proposed by Natarajan [16] chooses for each cell the correct con�gu-

ration by evaluating the value q0 that correspond to a saddle point of the local

interpolation function.



Fig. 6. Two meshes extracted from the \tube" dataset, using standard MC on the left

and the enhanced precision method on the right (max recursion level = 3).

To ensure topological correctness of the initial patches we used the Natarajan's

solution , and the overhead introduced resulted small if compared to the pro-

cessing time spent for the evaluation of the splitting point approximation. But

this solution has been de�ned for the tri-linear reconstruction �lter, and how to

extend it to the case of a generic �lter is not straightforward.

5 Experimental results

The current prototypal implementation of the approach presented, PreciseMC,

has been coded in C++. Its GUI has been designed to be used in a distributed

client/server environment, using the Java language.

In the current implementation we only provide a trilinear reconstruction �lter.

All the times reported have been obtained on a PentiumPro 200Mhz (64 MB

RAM). The adoption of an hash table to store splitting points and vertices data

(coordinates, approximation error, interpolated normals) has proved highly ef-

fective both to improve robustness and to reduce computation times by avoiding

redundant computations (in average, times are halved).

PreciseMC has been evaluated on many datasets. We report here results on

some iso-surfaces �tted on an 11x14x14 section of the SOD dataset1, and on two

synthetic datasets: \tube" (resolution 9x9x9)2, and \F" (resolution 30x30x4).

Two isosurfaces �tted on the \tube" dataset are shown in Figure 6 (MC on the

left, PreciseMC on the right). Figure 7 shows two meshes extracted from the SOD

dataset with threshold 50. The one on the left was �tted using standard MC,

and is composed of 654 faces. The mesh on the right was �tted with PreciseMC,

using at most �ve levels of recursion. It is composed of 14,244 faces. Note the

di�erence in the section where the iso-surface bifurcates: the mesh �tted with

PreciseMC is much more smoother and thinner.

1 SOD is a regular rectilinear dataset (electron density map of an enzyme), produced

by D. McRee, Scripps Clinic, La Jolla (CA).
2 A sample dataset de�ned and used in [7].



Table 1. Time and complexity of the iso-surfaces �tted on the the \tube" and \F"

datasets using the three di�erent splitting points evaluation rules (with 10 the max.

number of recursive subdivisions).

\Tube" Dataset (9x9x9, threshold=130.5, MC times = 0.01 sec.)

precision Rule A Rule A1 Rule A2

(") #faces maxL meanL time #faces maxL meanL time #faces maxL . meanL time

1/1000 732 1 0.322 0.050 732 1 0.322 0.070 784 1 0.322 0.081
1/2000 1,256 2 0.782 0.090 1,256 2 0.782 0.130 1,486 2 0.782 0.171

1/4000 1,932 3 1.056 0.160 1,996 5 1.185 0.220 2,732 5 1.084 0.341
1/5000 2,308 4 1.258 0.190 2,420 7 1.484 0.270 3,380 7 1.250 0.420
1/10000 4,412 9 1.968 0.410 4,460 10 2.064 0.551 7,204 9 1.669 0.992

\F" Dataset (30x30x4, threshold=73.5 MC times = 0.01 sec.)

precision Rule A Rule A1 Rule A2

(") #faces maxL meanL time #faces maxL meanL time #faces maxL meanL time

1/100 2,708 7 0.801 0.210 2,726 7 0.805 0.300 3,914 4 0.784 0.471
1/200 4,556 9 1.188 0.411 4,638 10 1.201 0.570 7,726 10 1.205 1.041

1/400 8,350 9 1.558 0.881 8,814 9 1.579 1.142 16,742 10 1.548 2.864
1/800 14,238 10 2.035 1.803 14,450 10 2.040 2.273 32,350 10 2.016 6.830

1/1000 18,058 10 2.186 2.573 18,350 10 2.194 3.095 43,488 10 2.155 10.265

Table 2. Time and complexity of the iso-surfaces �tted on the \SOD" dataset with

di�erent settings for the approximation precision and the maximum number of recursive

decompositions.

SOD dataset (11x14x14, threshold=50.5, MC times = 0.01 sec.)

precision = 1/100 precision = 1/500 precision = 1/1000

maxL 1 2 3 4 1 2 3 4 5 1 2 3 4 5

meanL 0.492 0.674 0.748 0.772 0.843 1.516 1.948 2.138 2.212 0.902 1.689 2.292 2.552 2.843

no. faces 1,141 1,449 1,581 1,603 1,856 3,953 5,925 6,855 7,125 2,074 5,364 9,800 13,080 14,244

time 0.050 0.090 0.110 0.121 0.100 0.240 0.451 0.631 0.701 0.130 0.381 0.841 1.372 1.703

To evaluate the di�erent results produced with the three re�nement rules

introduced in Section 3.1, we show in Table 1 the size (number of faces, #faces)

of the meshes produced by PreciseMC, under the same approximation precision

". The table reports also the maximum (maxL) and mean (meanL) recursive

depth required to reach the user-selected approximation ". Precision is given

using cell edge size units (e.g. "=1/100 means precision not less than 1/100 of

the cell edge). From the analysis of these results, we can say that Rule A1 has

to be preferred, because it is fast, it is more precise than Rule A and it does

not increase too much the size of the mesh. In particular, Rule A2 shows an

excessive increase in the size of the mesh produced (nearly the double than the

meshes produced with Rules A and A1).

In Table 2 the running times for the SOD dataset with di�erent settings for

the approximation precision and the maximum number of recursive decomposi-

tion are given.

We measured the actual di�erence between meshes extracted with MC and

PreciseMC using the Metro tool [3]. Metro numerically compares two triangle

meshes S1 and S2. It performs a surface sampling process on the �rst mesh,

and for each elementary surface parcel it computes a point{to{surface distance

with the other mesh. At the end of the sampling process, Metro switches the

meshes and execute sampling again, to get a symmetric evaluation of the error.



Metro returns both numerical and visual evaluations of surface meshes \likeness".

We have compared two meshes extracted from the SOD dataset (using the same

threshold of Figure 7); the MC mesh is composed of 654 faces, and the PreciseMC

one of 14,244. The Metro test gave a maximal distance between the two meshes

of 0.39 units (i.e. cell edge length), and a mean distance of 0.12 units. A snapshot

of the Metro output is shown in Figure 8; it is zoomed to view in detail the mesh

section which describes the thin bifurcation.

6 Conclusions

A new iso-surface �tting solution has been presented, PreciseMC. Given a trilin-

ear reconstruction �lter, it improves the precision of the reconstruction process,

with respect to standard MC solutions, using an approach based on mesh re-

�nement. The iso-surface reconstruction process is adaptive, to ensure that the

complexity of the �tted mesh will not become excessive. Three di�erent re�ne-

ment rules have been evaluated. Surprisingly, Rule A1 gave the best results; it

required low processing times and a reduced increase in the size of the extracted

meshes. From a qualitative point of view, the results obtained with PreciseMC

are much smoother, more regular and, in some cases, also thinner than those pro-

duced with standard MC. PreciseMC shows therefore great potential in medical

applications, where it may be selectively adopted to improve the quality of those

surfaces which correspond to very thin specimens, such as blood vessels or other

internal small cavities. This may improve either the measures taken on the ex-

tracted mesh (e.g. to evaluate the occurrence of stenosis or aneurysms in the

vessel [19]) or the quality of virtual navigation [8]. Further research is needed to

try to extend this approach to other reconstruction �lters.
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Fig. 7. Two meshes extracted from a section of the SOD dataset, using standard MC

on the left and the enhanced precision method on the right (max recursion level = 4);

above are two top views and a side view is used for the images below.

Fig. 8. Comparing iso-surfaces extracted (SOD dataset) with the Metro tool; a section

of the MC mesh (left image) is colored according to the distance from the corresponding

mesh section extracted with PreciseMC (right image).


