
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Local Illumination Environments for Direct Lighting
Acceleration

Sebastian Fernandez Kavita Bala Donald P. Greenberg

Program of Computer Graphics, Cornell University, Ithaca, NY, USA

Abstract

Computing high-quality direct illumination in scenes with many lights is an open area of research. This paper
presents a world-space caching mechanism called local illumination environments that enables interactive direct
illumination in complex scenes on a cluster of off-the-shelf PCs.
A local illumination environment (LIE) caches geometric and radiometric information related to direct illumina-
tion. A LIE is associated with every octree cell constructed over the scene. Each LIE stores a set of visible lights,
with associated occluders (if they exist). LIEs are effective at accelerating direct illumination because they both
eliminate shadow rays for fully visible and fully occluded regions of the scene, and decrease the cost of shadow
rays in other regions. Shadow ray computation for the partially occluded regions is accelerated using the cached
potential occluders. One important implication of storing occluders is that rendering is accelerated while produc-
ing accurate hard and soft shadows. This paper also describes a simple perceptual metric based on Weber’s law
that further improves the effectiveness of LIEs in the fully visible and partially occluded regions.
LIE construction is view-driven, continuously refined, and asynchronous with the shading process. In complex
scenes of hundreds of thousands of polygons with up to a hundred lights, the LIEs improve rendering performance
by 10× to 30× over a traditional ray tracer.

1. Introduction

Computing high-quality direct illumination at interactive
rates in scenes with many lights is a hard problem. Ex-
isting hardware approaches do not scale with many lights.
Software-based approaches, such as ray tracers, are more
promising in their ability to scale with complex scenes and
lighting 16. However, such approaches do not scale well with
the number of light sources.

This paper presents, local illumination environments, a
world-space caching approach that accelerates direct illumi-
nation in scenes with many lights. LIEs are associated with
the octree cells of the scene. Each LIE caches geometric and
radiometric information: for visible lights, the light is stored,
for partially visible lights, the occluders that might occlude
shadow rays for the region are stored, and for fully occluded
lights no information is stored.

LIEs are based on the observation that typically, the di-
rect lighting observed in any particular region of a scene is

not perceptually complex. This allows LIEs to perform the
following optimizations:

• Lights that are not visible at any point on a surface within
a cell are completely ignored.

• Lights that are visible at all points on surfaces within a
cell do not have any shadow rays cast to them.

• Lights that are visible at some points on surfaces within
a cell and not visible at others have shadow rays cast to
them, but these shadow rays do occlusion testing only
against a minimal set of occluders.

Thus, LIEs accelerate rendering by decreasing the number
and cost of the expensive visibility computations for shadow
rays; it is these visibility computations that make direct il-
lumination so expensive in scenes with many lights. Addi-
tionally, a simple perceptual metric based on Weber’s law is
used to eliminate the contribution of fully and partially visi-
ble lights that are perceptually unimportant.

LIEs have three important properties. First, LIEs permit
accurate computation of shadows because they include ge-

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org


Fernandez and Bala and Greenberg / Local Illumination Environments

ometry (the occluders) in the partially occluded regions.
Thus, they accelerate visibility without introducing error.

Second, LIEs can be easily integrated into a ray-tracing
system. Because they only cache the set of potentially visi-
ble lights and the geometry which might occlude them, they
do not hinder the most valuable feature of a ray tracer, its
flexibility. In particular, LIEs allow the use of any type of
geometric primitive and any type of material that can be sup-
ported by a ray tracer. This also means that LIEs can be used
in systems that require a ray tracer to perform direct lighting,
such as global illumination systems.

Third, LIEs are designed to work interactively. They are
constructed lazily in a view-driven manner as the user navi-
gates the scene. Using 24 processors, we render scenes with
hundreds of thousands of polygons with up to 100 lights at 1-
2 frames per second, achieving performance improvements
from 10× to 30× over a traditional ray tracer.

2. Previous Work

Several researchers have attempted to accelerate direct illu-
mination. But most direct lighting algorithms do not scale
well with the number of lights in the scene. The focus of this
paper is on accurate direct illumination at interactive rates
in scenes with many lights. Some researchers have started to
address this problem; we discuss their approaches below.

Ward 17, accelerates the rendering of many lights using
a user-specified threshold to eliminate lights that are less
important. For each pixel in an image, the system sorts the
lights according to their maximum possible contribution (as-
suming no occlusion). Occlusion for each of the largest pos-
sible contributors at the pixel is tested, measuring their actual
contribution to the pixel, and stopping at a predetermined
energy threshold. This approach can reduce the number of
occlusion tests, however it does not reduce the cost of occlu-
sion tests that do have to be performed and does not do very
well when illumination is uniform.

Shirley et al. 15 devote a section to accelerating direct il-
lumination from many lights. Their approach subdivides the
scene into voxels and, for each voxel, partitions the set of
lights into an important set and an unimportant set. Each
light in the important set is sampled explicitly. One light is
picked at random from the unimportant set as a representa-
tive of the set and sampled. The assumption is that the unim-
portant lights all contribute the same amount of energy.

To determine the set of important lights, they construct
an “influence box" around each light. An influence box con-
tains all points on which the light could contribute more than
the threshold amount of energy. This box is intersected with
voxels in the scene to determine which voxels the light is im-
portant for. This is an effective way to deal with many lights.
However, the approach is geared towards producing still im-
ages since many samples per pixel are required to reduce the
noise inherent in sampling the light set.

Paquette et al. 11 present a light hierarchy for rendering
scenes with many lights quickly. This system builds an oc-
tree around the set of lights, subdividing until there are less
than a predetermined number of lights in each cell. Each
octree cell then has a “virtual light" constructed for it that
represents the illumination caused by all the lights within it.
They derive error bounds which can determine when it is
appropriate to shade a point with a particular virtual light
representation and when traversal of the hierarchy to finer
levels is necessary. Their algorithm can deal with thousands
of points lights.

One major limitation of this approach is that it does not
take visibility (i.e., occlusion) into consideration. However,
the approach of Paquette et al. is complementary to our ap-
proach and can be used to cluster the fully visible lights in
our rendering system.

Kok et al. 9 present a method for accelerating the gather-
ing phase of a radiosity algorithm. Their algorithm selects a
set of light sources to explicitly sample and determines how
well each of those light sources should be sampled based
on several criteria. Light sources not chosen to be explicitly
sampled are folded into the radiosity value for the patch and
thus interpolated.

Scheel et al. 13 take a similar approach, expanding the cri-
teria for selecting explicitly sampled light sources to include
perceptual metrics. Their algorithm also allows the decision
of interpolation vs. sampling to be made separately for the
form factor and visibility terms.

While the techniques of both Kok et al. 9 and Scheel et
al. 13 allow certain light sources to be interpolated instead of
sampled, they do not provide an acceleration technique for
the cases in which lights do have to be sampled. Although
Scheel et al. 13 do permit interpolation of some partially oc-
cluded sources, this is possible only for broad penumbras,
and not for sharper shadows. Additionally, having to store
lighting information on every patch can limit the size of
scenes that can be used with these approaches. Scheel et
al. 14 address this latter problem in a paper published con-
temporanously with this one.

Haines et al. 5 substantially accelerated shadow rays by
explicitly keeping track of occluding geometry and storing
it in a cube around the light source. However, their tech-
nique does not work for area lights and also does no specific
acceleration for many lights.

Priol et al. 12 performed a precomputation of the geome-
try that could possibly cast shadows upon a region in space.
This allowed them to relieve network congestion in a par-
allel ray tracing environment. However, this computation is
too conservative, particularly for regions that are completely
occluded with respect to the light.

Wald et al. 16 have recently demonstrated the viability
of interactive ray tracers on clusters of PCs. However, their

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

work focuses on primary visibility and simple lighting and
does not address the complex lighting issue.

Recently, there has been much research on shadow map
techniques for interactive direct illumination 1, 4, 10. How-
ever, these approaches do not scale well with large numbers
of light sources in a scene.

The rest of this paper is organized as follows: Section 3
describes the overall system. Section 4 presents local illumi-
nation environments, and Section 5 describes a simple per-
ceptual metric that further improves LIE performance. Sec-
tion 6 presents results, and finally, we conclude with a dis-
cussion of future work in Section 7.

3. System

 

Renderer

Shading

process 1

process 2

process 3

process n

Local
Illumination
Environment 
Construction

synchronous asynchronous

viewing

Local illumination
environments

viewingimage

User

Figure 1: System structure. Left: LIE Shaders compute sub-
sets of the image. Right: LIE constructor generates LIEs to
be used by the shaders.

This section describes the overall structure of the system.
A user sends navigation commands to the rendering system,
which interactively displays images to that user.

The system is split into two modules. As the user navi-
gates the scene, the viewpoint is sent to the LIE constructor.
This module continuously computes new LIEs if needed or
refines existing LIEs. The LIE constructor typically runs on
a single system and communicates changes in the computed
LIEs to the shaders which run on separate systems.

The LIE shaders consist of several parallel renderers that
use LIEs to render the pixels assigned to them. The renderers
are not synchronized with the LIE constructor, so the shaders
do not have to wait on the results of LIE construction. Also,
computing any one pixel does not depend on the computa-
tion of any other pixel, so there is no communication among
the shaders. The computed pixels are sent over a local area
network where they are assembled into an image.

At startup, the model is distributed to the LIE constructor
and the LIE shaders. A regular grid acceleration structure is

constructed and replicated on each system. This regular grid
is used to accelerate both the ray casts needed to construct
LIEs and the primary visibility ray computation used in both
the constructor and the shaders.

4. Local Illumination Environments

A local illumination environment (LIE) consists of a bound-
ing box (cell) along with a set of visible lights, each with
a (possibly empty) accompanying set of blocking geometry.
LIEs are used to faithfully reproduce the incident radiance
upon every surface point within the cell. The set of lights
and the set of occluders are taken directly from the scene
geometry.

In the sections to follow, we will refer to lights as being
unoccluded, partially occluded, or fully occluded. A light is
unoccluded with respect to the cell associated with the LIE
iff every point on a model surface contained within the cell
can see every point on the light. A light is fully occluded with
respect to the cell associated with the LIE iff no point on a
model surface contained within the cell can see any point
on the light. Otherwise, a light is partially occluded with
respect to the cell associated with the LIE.

4.1. LIE Construction

For optimal performance, local illumination environments
should be as simple as possible. Ideally, the local illumina-
tion environment for a cell should include only lights that af-
fect illumination for surfaces within that cell. Similarly, for
each visible light in a local illumination environment, the as-
sociated occluder set should only include the occluders that
actually occlude the light.

Computing this minimal occluder set is potentially expen-
sive. Shaft culling 6 could be used to construct a set of oc-
cluders; however, shaft culling is typically too conservative,
including a lot of occluders that are not actually relevant for
illumination. Therefore, in our LIE construction, we sample
the visibility between a surface and light to determine oc-
cluder lists, as done in 7. This technique is inexpensive and
is guaranteed not to add any lights not seen from the cell
nor any occluders not actually blocking a light from the cell.
Sometimes a lot of samples are required to find all the re-
quired lights and occluders. Because of this, some artifacts
are visible as LIEs are constructed. However, over time the
LIEs converge to an accurate representation of visibility and
the artifacts go away.

For interactive walkthroughs LIEs are computed lazily us-
ing a view-driven approach. The LIE constructor picks a
point randomly on the image plane and traces a ray from
the eye to the closest visible point on a surface. The LIE
constructor then constructs an LIE or improves an existing
LIE for the smallest enclosing octree cell for that point. A
ray is cast from the point to random points on all the lights

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

cell

shadow area

occluder

(a)

(b)

cell

light 1
light 2

light 1
light 2

Figure 2: LIE Construction. (a) Detection of occluders and
lights, (b) the LIE for the cell.

in the scene. If the ray is unobstructed for a particular light
and the LIE does not contain that light, that light is added
to the LIE (unoccluded case). If the ray is obstructed and
the LIE does not contain that particular light, the LIE is not
modified (occluded case). If the ray is obstructed but the LIE
does contain that light, the obstructing geometry is added to
the set of occluders for that light (partially occluded case).
Figure 2 illustrates this process.

Different parts of the scene will have different illumina-
tion complexities. If it is determined that the LIE for a certain
octree cell has become too complex, the cell is subdivided.
We currently measure complexity as the sum of all the oc-
cluders in the LIE. The LIEs for the child cells are then gen-
erated from scratch. This allows us to maintain the invariant
that only lights that can actually be seen from a cell are in an
LIE and only occluders that occlude a cell’s view of a light
are in its occluder list. Currently we use a fixed maximum
depth for the octree subdivision. We have found that the op-
timal maximum depth in terms of the LIE performance/LIE
generation tradeoff varies as a function of the scene. While
a maximum depth of 6 is appropriate for the Science Center

scene, a value of 10 works better for the Mosque de Cordoba
scene.

cell

image

occluder

cell

light

(a)

(b)

shadow rays

eye rays

light

Figure 3: LIE Shading. (a) Shaders using the LIEs, (b) Ren-
dered image.

4.2. Shading Using LIEs

When rendering a frame, the ray tracer is used to determine
the closest visible object for each pixel. The appropriate LIE
used for shading this point is found by descending the oc-
tree hierarchy. For each partially occluded light in the LIE
a ray is cast from the point to be shaded to a sample point
on the light, as shown in Figure 3. This ray is tested for in-
tersection with the list of occluders for that light. If the ray
is not blocked, the incident radiance from the light source is
multiplied by the BRDF and added to the exitant radiance.
Monte Carlo sampling is used to integrate the contribution
from area light sources. For fully visible lights in the LIE no
visibility computation is done.

LIEs tend to be small resulting in fewer intersection tests
than with a traditional ray-tracing acceleration approaches.
The simple structure of the occluder lists also incurs little
overhead.

5. Masking

In scenes with large lighting complexity, parts of the scene
could be illuminated with several lights that do not make
important contributions to the perception of illumination. Ig-
noring these unimportant lights lets us further decrease the

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

computational cost of rendering direct illumination. These
lights must be picked carefully so as to avoid introduc-
ing noticeable artifacts. We use a simple perceptual metric
based on Weber’s law 8 that identifies lights (fully visible,
or partially occluded) that are masked; i.e., these are lights
that could be eliminated to accelerate rendering. Thus, these
lights are effectively treated as being fully occluded.

Weber’s law specifies that variations in brightness cannot
be perceived if those variations are below a certain fraction
of the average brightness. This fraction varies with intensity
and spatial frequency, but has a minimum value of 2%.

To use Weber’s law we have to obtain some estimate of the
overall energy over an octree cell. As LIEs are constructed
our system keeps track of the minimum and maximum ex-
itant radiance over a region due to each light and sorts the
lights based on their maximum exitant radiance. We then re-
move lights from the LIE starting with the light whose max-
imum contribution is smallest. We accumulate the error in-
troduced, and stop removing lights when this error exceeds
2% of the minimum radiance for all the lights combined. A
similar approach is used by Ward 17, on a per-pixel basis.

Figure 4: Top: Image of Mosque de Cordoba scene. Bot-
tom left: Cost to render each pixel without masking (whiter
is more expensive). Bottom right: Cost to render each pixel
with masking.

Figure 4 shows an image of a particular section of the
Mosque de Cordoba test scene. The scene happens to have
a large number of relatively dim lights with a row of bright

lights running down the main corridor seen in the picture.
The columns surrounding the corridor cast shadows on the
floor due to all the surrounding lights. However, the brighter
lights above the corridor completely mask these shadows so
that they are not visible in the image.

The bottom visualizations show the cost of rendering each
pixel: on the left, masking is not used, on the right masking
is enabled. The generated images are perceptually identical;
in fact, the difference image (not shown here) appears black
for this view. However, the cost to render the pixels in the
corridor is significantly reduced when using masking as is
particularly noticeable on the floor. The performance differ-
ence is shown in Table 1. Note that the difference image and
results are for a converged set of LIEs. Non-converged LIEs
would show visibility artifacts unrelated to masking.

6. Results

We tested our algorithm on several scenes. We present re-
sults for the following three scenes that differ in their light-
ing, materials, and complexity. The Science Center is a sim-
ple scene with 7 thousand polygons and one large area light
source, with completely diffuse materials. Bar Carta Blanca
is a scene with 240 thousand polygons and 70 spotlights with
mostly diffuse materials and a glossy floor. Mosque de Cor-
doba is a scene with 980 thousand polygons, 100 omnidirec-
tional point light sources, and glossy columns.

LIE construction was done on a single dual-processor
Pentium-4 PC running at 1.7 Ghz. LIE shading was done
on 10 dual-processor Pentium-4 PCs running at 1.7 Ghz. A
100 Mbit Ethernet network connects the machines. The LIE
constructor communicates with the shaders on this network.
Rendered pixels are also transmitted on this network. Both
the standard ray tracer and the LIE system were written in
Java and ran on the Sun Java Virtual Machine version 1.3.1.

Before obtaining timing results, the LIE data was pre-
computed by walking around the scenes until the LIEs were
mostly converged. The Science Center required only sec-
onds of precomputation, while Bar Carta Blanca required a
couple of minutes and Mosque de Cordoba required about
an hour. Timings are for particular views within the scenes
and are representative of timings obtained for other views.
Timings are in seconds per frame for a 512x512 image.

For comparison, Table 1 shows the performance of a stan-
dard ray tracer, the same ray tracer modified to use Ward’s
algorithm for many lights, and our LIE based ray tracer.
Note that all these ray tracers have been parallelized. The
timings shown are for representative viewpoints within each
scene. The algorithm shows consistent speedups over tradi-
tional ray tracing. The standard ray tracer uses a two-level
hierarchical regular grid acceleration structure whose reso-
lution adapts to the size of the model. As model complexity
increases and shadow-ray costs for the standard ray tracer go

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

Model Science Center Bar Carta Blanca Mosque de Cordoba
Time Speedup Time Speedup Time Speedup

Standard 15.0s 1.0x 10.1s 1.0x 35.0s 1.0x

Ward 15.0s 1.0x 10.1s 1.0x 11.5s 3.0x

LIE (no masking) 1.30s 11.5x 0.69s 14.6x 1.45s 24.1x
LIE (masking) 1.30s 11.5x 0.69s 14.6x 1.20s 29.2x

Table 1: Performance comparison.

up, our speedup increases, going from 11× for the Science
Center to 29× for the more complex Mosque de Cordoba.

The Science Center scene (Figure 5) shows that we can
achieve substantial speedups even in small environments
where the cost of traditional shadow rays is not large. In
this scene the performance improvement is mainly due to
not having to cast shadow rays for fully occluded or fully
visible lights. This cost savings can be substantial for scenes
with large area lights because of the large number of shadow
rays required.

The Bar Carta Blanca scene (Figure 6) demonstrates
the algorithm’s performance on complex scenes with many
point lights. In this scene, accelerating shadow computation
for the partially occluded regions is more important than in
the previous scene due to the high cost of shadow rays. LIEs
are effective at accelerating these rays. Although this scene
contains many lights, masking is not very effective. In this
environment, far away lights tend to be fully occluded and
thus incur zero cost in rendering.

The Mosque de Cordoba scene (Figure 7) demonstrates
the additional performance improvements that can be ob-
tained by taking advantage of light masking. The mosque
is lit by a row of 10 bright lights in the central aisle, and 90
dimmer lights to the sides. Light masking is particularly ef-
fective in reducing the cost of direct illumination in such a
scene in the regions near the bright lights.

Table 2 breaks down the performance into three compo-
nents. The visibility component is the cost of casting a ray
from the eye to the first surface using a conventional ray
tracer. This component is not accelerated by our algorithm.
However, we present it as a point of comparison since the
visibility computation is a lower bound on the time required
to render a frame. The next component is the time spent ren-
dering unoccluded lights. This involves a BRDF evaluation,
a light emission evaluation and a few dot products for each
light. The final component is time spent rendering partially
occluded lights. This involves intersection testing with the
set of occluders in the LIE for each partially occluded light
as well as the emission and BRDF evaluation if the light is
determined to be visible. For area lights, these computations
have to be done once for each sample point on the light.

The table shows the performance breakdown for LIEs
without masking enabled. A significant effect from masking
can be seen in the Mosque de Cordoba scene where enabling
masking further decreases the time for rendering partially
occluded lights by about 0.25 seconds.

The breakdown shows that in several cases the cost of
performing the direct lighting computations is on the same
order as the cost of performing the visibility computation.
Thus, the LIE is effective at accelerating direct illumination.
The table also shows that neither fully visible nor partially
occluded lights are bottlenecks in the performance. Instead,
both have to be further optimized for better performance.

Memory usage for the LIE data structure is not very high.
Although it does have to store a collection of lights and oc-
cluders for each octree cell, these are merely references to
scene geometry and thus take up little space. For the 980
thousand triangle Mosque de Cordoba model, 50 megabytes
of data were used by the LIE data structure. This is less than
the memory used for the model.

7. Conclusions

We have introduced an approach for accelerating direct illu-
mination calculations using local illumination environments.
LIEs spatially cache visibility and radiometric information
in a scene. This caching allows fast rendering by reducing
the number of shadow rays cast and by decreasing the cost
of the shadow rays that must be cast. LIEs are flexible and
can be easily introduced into a ray-tracing system. We have
also shown how perceptual masking can be used in conjunc-
tion with LIEs to reduce the number of shadow ray casts in
regions where shadows are hard to perceive.

We have implemented a system that renders direct illumi-
nation at 1-2 fps using LIEs on a cluster of PCs. Our system
demonstrates performance improvements over conventional
ray tracing of 10× to 30×. We believe LIEs can be easily
integrated in other systems to accelerate shadow ray compu-
tations for interactive walkthroughs.

In the future, we would like to improve the heuristics
to guide sampling and octree subdivision during LIE con-
struction. Additional perceptual metrics that capture texture

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

Model Science Center Bar Carta Blanca Mosque de Cordoba

Visibility 0.35s 0.48s 0.59s

Unoccluded lights 0.05s 0.14s 0.34s

Partially occluded lights 0.90s 0.07s 0.52s

Total 1.30s 0.69s 1.45s

Table 2: Computation breakdown.

masking effects could also be included. A clustering ap-
proach for fully visible lights (similar to Paquette et al. 11)
would be useful to improve the performance of LIE con-
struction and shading. Integrating LIEs with an interpolation
technique 13 could further accelerate rendering. Addition-
ally, a technique such as that described by Bala et al. 2 could
be used to dynamically update generated LIEs for dynamic
scenes. A preliminary implementation 3 on patch-based LIEs
appears promising.

Acknowledgements

We would like to thank Guillermo M. Leal LLaguno for the use
of his Bar Carta Blanca model. We would also like to thank Ivan
Rossello and Yasemin Kologlu for building the Mosque de Cordoba
model. Finally, we would like to thank Moreno Piccolotto for his
assistance and unending supply of quality caffeine.

This work was supported by the NSF Science and Technology
Center for Computer Graphics and Scientific Visualization (ASC-
8920219) and by the MRA parallel global illumination project
(ASC-9523483), and performed using equipment generously do-
nated by the Intel Corporation and the DeKorte family.

References

1. M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Ef-
ficient image-based methods for rendering soft shadows. In
Kurt Akeley, editor, Siggraph 2000, Computer Graphics Pro-
ceedings, pages 375–384. ACM SIGGRAPH, 2000. 3

2. K. Bala, J. Dorsey, and S. Teller. Interactive ray-traced scene
editing using ray segment trees. In Tenth Eurographics Work-
shop on Rendering, pages 39–52, June 1999. 7

3. S. Fernandez, K. Bala, M. Piccolotto, and D. Greenberg. In-
teractive direct lighting in dynamic scenes. Technical Report
PCG-00-2, Program of Computer Graphics, Cornell Univer-
sity, Ithaca, NY, January 2000. 7

4. R. Fernando, S. Fernandez, K. Bala, and Donald P. Greenberg.
Adaptive shadow maps. In Proceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series,
pages 387–390, August 2001. E. Fiume, editor. 3

5. E. Haines and D. Greenberg. The light buffer: A shadow-
testing accelerator. IEEE Computer Graphics & Applications,
6(9):6–16, September 1986. 2

6. E. Haines and J. Wallace. Shaft culling for efficient ray-traced
radiosity. In P. Brunet and F. W. Jansen, editors, Photorealistic
Rendering in Computer Graphics (Proceedings of the Second
Eurographics Workshop on Rendering), New York, NY, 1994.
Springer-Verlag. 3

7. D. Hart, P. Dutré, and D. Greenberg. Direct illumination with
lazy visibility evaluation. In Computer Graphics (SIGGRAPH
’99 Proceedings), Annual Conference Series, pages 147–154,
August 1999. 3

8. D. C. Hood and Finkelstein. Volume 1: Sensory processes
and perception. In Handbook of perception and human per-
formance, New York, NY, 1986. John Wiley & Sons. 5

9. A. J. F. Kok and F. W. Jansen. Source selection for the direct
lighting computation in global illumination. In P. Brunet and
F. W. Jansen, editors, Photorealistic Rendering in Computer
Graphics, pages 75–82, 1994. 2

10. T. Lokovic and E. Veach. Deep shadow maps. In Proceedings
of SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 385–392, July 2000. K. Akeley, ed-
itor. 3

11. E. Paquette, P. Poulin, and G. Drettakis. A light hierarchy for
fast rendering of scenes with many lights. Eurographics ’98,
17(3), September 1998. 2, 7

12. T. Priol and K. Bouatouch. Static load balancing for a paral-
lel ray tracing on a mimd hypercube. The Visual Computer,
12(5):109–119, 1989. 2

13. A. Scheel, M. Stamminger, and H.-P. Seidel. Thrifty final
gather for radiosity. In 12th Eurographics Workshop on Ren-
dering, pages 1–12, June 2001. 2, 7

14. A. Scheel, M. Stamminger, and H.-P. Seidel. Grid based final
gather for radiosity on complex clustered scenes. In Euro-
graphics ’02, 2002. To be Published. 2

15. P. Shirley, C. Wang, and K. Zimmermann. Monte carlo tech-
niques for direct lighting calculations. ACM Transactions on
Graphics, 15(1), January 1996. 2

16. I. Wald and P. Slusallek. State of the art in interactive ray
tracing. In State of the Art Reports, Eurographics 2001, pages
21–42. Eurographics, Manchester, United Kingdom, 2001. 1,
2

17. G. Ward. Adaptive shadow testing for ray tracing. In Photo-
realistic Rendering in Computer Graphics (Proceedings of the

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

Second Eurographics Workshop on Rendering), pages 11–20,
New York, 1994. Springer-Verlag. 2, 5

c© The Eurographics Association 2002.



Fernandez and Bala and Greenberg / Local Illumination Environments

Figure 5: Science Center.

Figure 6: Bar Carta Blanca.

Figure 7: Mosque de Cordoba.

c© The Eurographics Association 2002.


