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Figure 1: Our estimation pipeline tested on a challenging example from the MVOR dataset [SIK∗18]. From left to right: RGBD input, 2D
image (top) and depth map (bottom); point cloud generated from the input and the camera parameters (top) and 3D joints of the estimated
skeleton are depicted as yellow disks on the point cloud (bottom); data-driven pose initialization (top), and estimated segmentation of the
depth map (bottom); model optimized on the input data; and the final model placed in the 3D space. The result is compelling for the quality
of the estimation and the placement of the 3D shape, even in presence of several challenging properties of the input.

Abstract
In the last decades, we have witnessed advances in both hardware and associated algorithms resulting in unprecedented access
to volumes of 2D and, more recently, 3D data capturing human movement. We are no longer satisfied with recovering human
pose as an image-space 2D skeleton, but seek to obtain a full 3D human body representation. The main challenges in acquiring
3D human shape from such raw measurements are identifying which parts of the data relate to body measurements and recov-
ering from partial observations, often arising out of severe occlusion. For example, a person occluded by a piece of furniture,
or being self-occluded in a profile view. In this paper, we propose POP, a novel and efficient paradigm for estimation and com-
pletion of human shape to produce a full parametric 3D model directly from single RGBD images, even under severe occlusion.
At the heart of our method is a novel human body pose retrieval formulation that explicitly models and handles occlusion. The
retrieved result is then refined by a robust optimization to yield a full representation of the human shape. We demonstrate our
method on a range of challenging real world scenarios and produce high-quality results not possible by competing alternatives.
The method opens up exciting AR/VR application possibilities by working on ‘in-the-wild’ measurements of human motion.

CCS Concepts
• Computing methodologies → Shape modeling; Shape analysis;

1. Introduction

Analysis and modeling of human shape from images and video is
an important topic that is widely studied across several research
domains including robotics for human-robot interaction [AC07,
SLAL18], in pattern recognition for video surveillance and action

recognition [KF18], in biometry for person (re-)identification and
gait recognition [ZZS∗17,BC07], and in computer graphics for au-
thoring digital content creation [LMR∗15, TWYF17, VCR∗18].

In early efforts of human motion analysis, the overall aim was to
accurately estimate 2D and, to a limited extent, 3D skeleton joint-
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locations as a proxy for recovering human pose (i.e., human skele-
ton) [SBIK16]. A particularly challenging scenario consists of es-
timating both human pose and shape ‘in-the-wild,’ i.e., when one
or more people move in a very generic environment and are obliv-
ious of the acquisition goals [SBIK16]. In this scenario, since the
subjects move uninhibited, occlusions are commonly arising due to
the presence of other objects or from self-occlusion (see Figure 1).

We investigate the above problem relying on RGBD sensors for
input snapshots. The available depth information, albeit noisy, ef-
fectively avoids the scale-ambiguity problem encountered using
single RGB images instead [ZSG∗18]. Further, depth helps to de-
termine relative position between human body and occluding ob-
jects (e.g., furniture). With this motivation, we investigate the fol-
lowing problem: Given a single RGBD image of human(s) in a nat-
ural environment, obtain a full parametric 3D estimation of human
shape(s), even under occlusion.

The above problem is challenging due to three main reasons:
(i) the raw input does not come with any object/human segmen-
tation; (ii) information about which parts of human subjects are
occluded and what objects cause the occlusion is unknown; and
(iii) the raw RGBD scans are noisy and suffer from heterogeneous
point cloud density based on camera location. We propose POP, a
fully automatic pipeline that produces accurate human pose, shape
and placement in the 3D space from single RGBD images, even in
the presence of very significant occlusion.

Our main contributions are (i) proposing a first method explic-
itly designed for the analysis and modeling of human occlusion
and self occlusion in single RGBD images; (ii) introducing a com-
plete and fully automatic pipeline for 3D human pose and accurate
full shape estimation that can deal with occlusions; (iii) developing
an occlusion-aware shape retrieval strategy that recovers plausible
information on the missing body parts, provides a reliable model
parameter initialization for joints location and shape, and imposes
a new constraint that avoids degenerate shape on the unseen part;
(iv) segmenting the human subject(s) from the rest of the scene
without requiring an explicit learning procedure or involving green
screens; and (v) hallucinating the shape of the occluded part by ex-
ploiting the data-driven prior via a novel idea akin to null-space
that constraints the optimization procedure to reliably estimations.

2. State of the Art

Human body modeling is a widely studied issue over the last two
decades [SBIK16,IPOS14,CI11]. In the most of the proposed meth-
ods, the main objective is 3D pose estimation, i.e., location of 3D
joints of the body according to a given skeleton [SBIK16]. Usually
a two-steps procedure is employed: first, joints locations are esti-
mated on the 2D image domain, and then, 3D joints are computed
using a regression approach or a model-based re-projection strat-
egy [BKL∗16, LRK∗17]. Recently, instead to rely over 2D joints
estimation, direct methods have been proposed to esteem 3D pose
directly from the entire image by exploiting additional information
enclosed in the pixels [KBJM18].

An emerging trend is to estimate the 3D pose and the full
body shape within the same framework, namely, end-to-end mod-
eling methods [KBJM18,MCG∗18,TWYF17]. The main idea con-

sists of adopting a template-based approach estimating the shape
and pose parameters of a given morphable models properly de-
signed for human-shapes [LMR∗15, JSS18]. Methods differ be-
tween those that use only 2D image and those that employ RGBD
data [ZSG∗18, BBLR15, IPOS14, CI11]. In the RGBD domain the
main effort is devoted to 3D pose estimation in real-time [ZSG∗18],
by heavily harness the temporal constraint that can be introduced
for video sequences [BBLR15, BRPMB17]. Other methods use
multiple devices to enlarge the acquisition view and reduce the ef-
fect of occlusions (see survey [ZSG∗18]). In contrast, we focus on
the case of recovering full human body shape from a single RGBD
scan with background clutter (i.e., without human body being pre-
segmented) and in presence of medium-strong occlusion.

Methodologically, the estimation of shape and pose is usually
obtained by formulating an optimization model [BKL∗16, Lop14].
Recently, deep neural network methods is the widest used tech-
nique [KBJM18, TWYF17, VCR∗18, DSO∗17, SBIK16]. This has
led to very impressive results even from single 2D image at the
cost of a very accurate manual annotation of 2D and 3D joint posi-
tions, foreground-background segmentation, 2D silhouettes and so
on [TWYF17, IPOS14, VRM∗17]. However, modeling occlusion
directly from RGBD inputs still remains a significant open chal-
lenge in this domain.

Dealing with occlusions. Although widely appreciated that hu-
man modeling can be drastically affected in the presence of oc-
clusions and missing parts, very few works have treated this topic
[SLAL18]. Some methods address implicitly this issue by imposing
a pose-prior [AB15], by allowing only plausible poses. Similarly,
learning-based approaches regularize the pose and shapes accord-
ing to the examples observed during the training phase [HMH10,
GYRF14]. These strategies can reduce the conditioning of occlu-
sions, but they are not designed for this purpose. In [RGL15], a
method for explicitly estimating the 3D pose of occluded parts from
RGBD data was introduced. The position of the invisible joint is
predicted through a classification of the semantic label of the oc-
cluded object. An alternative for human pose estimation from par-
tially occluded RGBD data was proposed in [AD15], that relies
on a probabilistic occupancy grid that is exploited to identify hid-
den body parts. Recently, the first systematic study [SLAL18] of
various types of occlusions in 3D human pose estimation have also
shown that employing data augmentation with new occluded scenes
improves the overall pose estimation.

Our method. To the best of our knowledge, POP is the first
method that proposes an explicit strategy to estimate the full body-
shape, 3D pose and the 3D placement of the human body in the
presence of strong occlusions and missing parts. These three esti-
mations are provided consistently and at the same time. These are
complete novels in literature.

Our method is focused on RGBD data trying to achieve the
best results from both appearance (2D) and geometric (3D) data.
We propose a two-steps procedure where 2D pose is estimated
from RGB image while 3D pose and the full body-shape is es-
timated from the depth map. Our 2D pose estimation is used for
the initialization procedure, and in the following optimization the
estimated model is free to move avoiding the conditioning of a
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SMPL shared joints OpenPose
Figure 2: On the left the SMPL skeleton, in the middle the shared
joints and the OpenPose skeleton on the right.

bad starting pose. Moreover, since we evaluate the confidence of
the 2D estimate, only the most reliable joints are considered. Our
method fosters an optimization approach with the use of a Con-
volutional Neural Network for only the 2D pose phase. We adopt
a model based approach using the very popular SMPL morphable
model [LMR∗15]. Our strategy is data-driven since we rely on the
assumption that alike occluded shape has been already observed
on a dataset that is recovered through a 3D shape retrieval proce-
dure. Similar idea was exploited in [BMB∗11, MDO∗15, IDY∗18]
for pose estimation only.

3. Overview

In our pipeline, we have carefully integrated some public available
datasets and tools. A complete review is out of the scope of this
paper and we refer to their references for details.

OpenPose is a fully automatic method for detecting the 2D pose of
multiple people in an RGB image [WRKS16, SJMS17, CSWS17]
wherein a non parametric pose representation, referred as Part
Affinity Fields [CSWS17], has been proposed. This representation
consists in a set of 2D vector fields, each of which encodes the ori-
entation and the location of a limb in the image. A learning strategy
is adopted on the whole image with high accuracy and real-time
performance. For each of these joints, a confidence value is also
provided. The final full body pose corresponds to a set of labelled
2D key points as ordered joints of a human skeleton.

The SMPL model [LMR∗15] is a skinned vertex-based paramet-
ric model for the full human body. SMPL has few parameters but
sufficient to generate a wide set of human bodies with different
pose and shape. Pose and shape are controlled by two different sets
of parameters: θθθ ∈ R72 are the pose ones defined as the relative ro-
tation of each of 24 joints with respect to its parent in a hierarchical
kinematic tree; βββ ∈ R10 are the shape parameters. SMPL provides
a skeleton composed by the 24 joints. Of these, 15 joints can be
matched with 15 joints in the OpenPose skeleton. Figure 2 shows
the 24 joints from SMPL, the 25 joints from OpenPose, and the
shared 15 joints directly used in in our optimization.

The SURREAL dataset [VRM∗17] is a large-scale synthetically-
generated dataset of more than 6 million frames. This dataset con-
tains realistic scenes of people that are rendered using the SMPL
model with real motion capture information. For each frame, a
ground truth pose, a depth map, and a segmentation mask are pro-
vided.

OpenDR [LB14] is an approximate and differentiable renderer

(DR) that explicitly connects the relationship between the SMPL
parameters and the projection of the corresponding 3D shape to a
2D image. OpenDR is publicly-available and well suited to work
with SMPL model and SURREAL dataset. Starting from a shape
generated by SMPL in the 3D space, with OpenDR, we associate
to this shape a 2D image and a 2D depth map representation of
the scene. As already highlighted, the relation between the SMPL
shape (i.e. its parameters) and this 2D representation is differen-
tiable, and so can be used in an optimization pipeline.

4. Method

4.1. Pipeline in brief

The entire pipeline, depicted in Figure 3, can be outlined as follows:

INPUT: Single RGBD image with internal camera parameters.
STEP 1: From the input depth map Din and camera parameters,

we estimate the point cloud PC of the scene.
STEP 2: JJJ2D a standard skeleton on the 2D image is obtained us-

ing OpenPose [CSWS17].
STEP 3: A subset of the 2D OpenPose joints are then lifted on the

3D space obtaining JJJ3D.
STEP 4: We retrieve the most similar 3D skeleton with respect to

JJJ3D in a subset of the SURREAL dataset and select the corre-
spondent SMPL pose parameters θ̃θθ.

STEP 5: The joints of SMPL are aligned to the JJJ3D optimizing for
the scale of SMPL.

STEP 6: Based on the retrieval, we segment the human body input
depth D̃in and the human body point cloud H ⊂ PC.

STEP 7: We iteratively optimize the SMPL parameters in order
to fit the J3D and the nearest neighbor energy ENN between the
points in H and the SMPL surface.

STEP 8: We deform the SMPL minimizing the Edepth.
OUTPUT: The optimized 3D model placed in the 3D scene.

We now describe each step of our method. For each choice, we
explicitly clarify the respective strategy for handling occlusions.

4.2. Input.

Our input is a single RGBD image with the internal camera parame-
ters of the acquisition sensor. We use both the image representation
and the 3D information in term of 3D cloud of points. We refer to
Din for the input depth map and PC for the point cloud. Although
we now describe handling of a single human, the method can be
easily iterated to deal with multi-person scenarios (see Section 5).

4.3. Coarse joints location and occlusion detection

2D skeleton. We apply the OpenPose framework to the input RGB
image to obtain the 2D joints of the skeleton of a human body.
We use the version 1.4 relying over BODY_25 skeleton model. An
example of the skeleton provided by OpenPose is shown in Fig-
ure 2. OpenPose returns only visible joints, that in our case are at
most 25. After a re-targeting procedure between the OpenPose and
the SMPL skeletons we define JJJ2D as the subset of the 15 joints
of SMPL that are shared with OpenPose and visible (see Figure 2
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Figure 3: POP pipeline. From left to right: Input (red), 3D point cloud construction (dark red), Coarse joints location and occlusion
detection 4.3 (light blue), Retrieval-based model initialization 4.4 (purple), Model optimization 4.5 (yellow) and the Output (green).

where overlapping joints are marked in red). The remaining joints
are classified as occluded.

3D skeleton. Using the camera parameters we can project JJJ2D to
the 3D space on the point cloud PC. However, these 3D points can
be wrongly estimated due to noise and located in some inconsis-
tent region far in the background. We compute a basic statistics to
automatically detect and remove such unreliable points as outliers.
Indeed we obtain the set of 3D joints JJJ3D after a position refinement
to accomodate a consistent skeleton.

4.4. Retrieval-based model initialization.

From the SURREAL dataset, we select 1.6 milions frames from
all the run1 training set folder. For each of such frames, we apply
the same steps explained above on the input RGBD data, providing
a coherent representation for the input data and the frames from
SURREAL. We explore all these frames to find the best match for
which exist a transformation in the 3D space that minimize the av-
erage of the distance between all the joints JJJ3D of the input and
the 3D joints estimated on the SURREAL frame. We consider only
frames that have the same visible part and therefore the same oc-
clusion.

For each considered instance i in the retrieval dataset we look
for a global homogeneous transformation TTT composed by scale,
rotation, reflection and translation given by the solution of:

argmin
i

(
argmin

TTT
(‖TTT (JJJi)− JJJ3D‖F )

)
, (1)

where ‖ · ‖F is the Frobenius norm and JJJi is the set of joints of the
frame i. Note that restricting this search to the frames that share
the same visible part JJJi) and JJJ3D are composed by the same joints
thus Equation 1 is well defined. The solution is the index i of frame
that best matches the JJJ3D skeleton. Every frame in the SURREAL
dataset is associated with a SMPL set of parameter to generate the
related body instance. We take those related to the solution frame
retrieved by Equation 1 and use them to set SMPL pose parameters
θ̃θθ.

Initialization of the SMPL parameters. From the Equation 1 we
obtain the transformation TTT . Applying the translation and scale
components to the SMPL model, we have a good initialization in
the 3D space placement. Note that the initialization J̃JJ obtained from
the retrieval step also provides a good initialization for the occluded
part. Thanks to this data-driven prior we both avoid an implausible
initialization of SMPL (that direct parameters optimization can pro-
vide) and we improve efficiency starting closer to the correct pose.

4.5. Model Optimization.

We optimize the SMPL model in order to fit the input data. We
refer to SMPL shape asM and to its vertices VVVM ∈ R6890×3 rep-
resented as the collection of the 3D coordinates of its embedding.

Joints and scale optimization. Our SMPL model is initialized
with the retrieved pose θθθ and is placed coherently in the 3D space
with respect to the JJJ3D. The JJJ3D can also be involved in the op-
timization as a stability penalty; we force the joints of the SMPL
that correspond to the joints in JJJ3D (denoted as ˜JJJSMPL ⊆ JJJSMPL) to
remain near to JJJ3D. This is expressed by the penalty term:

EJJJ3D = ‖JJJ3D− ˜JJJSMPL‖F . (2)

A first optimization is thus performed on the SMPL joints place-
ment and on the scale of SMPL with respect to the energy EJJJ3D .

Constraints on the parameters. We start the optimization with
strong constraints over θθθ parameters because we would avoid ex-
tremely unreliable rotations. Subsequently we weaken them, in-
creasing adherence with the seen joints.

Scene segmentation. Applying the OpenDR we obtain a synthetic
depth map Dβββ,θθθ, which directly depends on the SMPL parameters.
Dβββ,θθθ and Din differ for the presence in the Din of all object outside
our target; while in Dβββ,θθθ all the points that do not belong to SMPL
are on the far plane, in Din other objects participate. Dβββ,θθθ can be
considered as a mask of the subject, and we can apply it to Din,
cutting out an approximated segment for the human. To improve
the approximation of this segment we analyze the neighbor of the
points that belong to the human segment. Let p be one such point.
We consider a 2D neighbor defined on the 2D image Bp. For all
points q ∈ Bp we have two possibilities: q belongs to the human
body segments or q belongs to the background. In the first case,
we assign to q its value in Din. In the second case, we classify
q with respect to the inequality |Din(p)−Din(q)| < γ for a fixed
threshold γ > 0. If this inequality holds we assign to q the value
Din(q), otherwise we set its value to the background. Through this
procedure, we define a clean input depth map D̃in that contains
the values of the original Din for all the points that are expected
to belong to the human body, and the background value for the
others. D̃in is comparable to the artificial depth map Dβββ,θθθ as they
only describe the depth of the human body points in the scene. We
refer to the human body segment in the point cloud as H ⊂ PC.

Fitting to the visible part. We compute πNN(VM), the list of the
vertices VM obtained as the ordered euclidean nearest neighbor
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with respect to the points in H. Relying on πNN(VM), we optimize
first for the pose parameters θθθ, and then jointly for the pose and the
shape (θθθ and βββ) minimizing ENN = ‖H−πNN(VM(θθθ,βββ))‖F .

Consistency with the depth map. To optimize directly the oc-
cluded body part in the closest plausible place, we define a null-
space, where human body parts are not allowed. To do this we rely
over the information from the depth map of Din that is not repre-
sented in D̃in. It includes all objects in the environment that are
possible causes of occlusions, thus it specifies all the places where
the human body should not appear. We want to exploit these ele-
ments to hide unseen parts if this is a reliable solution. We gener-
ate the depth map D̂in as: D̂in = far, if Din(u,v) ∈ D̃in otherwise
D̂in = Din(u,v), where u and v are the image plane coordinates
and far is the value assigned to the far plane. Then, we minimize
Edepth = ‖min(Dβββ,θθθ, D̂in)−Din‖F to have Dβββ,θθθ approximating Din
by hiding part behind objects present in the scene that are nearer
to the camera or exploiting the body itself. Figure 10 shows an ex-
ample where the left arm is moved to be self-occluded by the body,
and the right one is hidden behind the other person in foreground.

5. Experiments and Results

We provide evaluations on different datasets and challenging cases
highlighting the robustness to the occlusions. We omit comparison
with other methods; it would be ambiguous because POP is the first
method that provides at the same time an estimation of the shape,
the pose and the 3D placement of the human body shape, it relies
over depth information and also aim to solve occlusions.

Datasets. We evaluate our method on different datasets, that differ
for conditions and challenges. F-BODY [SPT15], designed for hu-
man body occlusion (self-imposed or generated by people interac-
tions). BIWI RGB-ID dataset [MBF∗14] offers a variety of human
shapes in similar pose and camera view. MVOR [SIK∗18], a recent
dataset with RGBD images in operating room. These scenes are
heavily occluded and human elements are hidden from a variety of
exacting factors. We select frames from other datasets to analyze
different challenges: far views [CMA∗17], different occlusions and
poses [AD15] and body shapes [SX13]. Finally, we test our method
on frames from SURREAL providing quantitative measures that
permit future comparisons. We remark the huge variety of scenario
from disparate environment and settings considered.

Quantitative evaluation on SURREAL. To provide a quantitative
evaluation of our method we perform an extensive experiment on
the SURREAL dataset. We select 18 frames with self occlusions
from 18 different videos not used in the retrieval. For each frame,
we evaluate the shape and pose parameters, and surface difference
between the ground truth provided by SURREAL and the estimated
one. The errors are computed as follows.

Shape error (w.r.t. βββ ) = errβββ =
‖βββgt −βββ‖F

‖βββgt‖F
. (3)

errJJJSMPL =
23

∑
j=1

‖JJJSMPL
gt ( j)− JJJSMPL

βββ,θθθ ( j)‖F

23
. (4)

Eucldean error (meter)

%
go

od
m

at
hc

es

Figure 4: Quantitative evaluation; mean and standard deviations
on the left, and cumulative frequencies on the right

errpppooossseee =
14

∑
j=1

‖JJJ3D
gt ( j)− JJJ3D

βββ,θθθ( j)‖F

14
. (5)

errvisible
pppooossseee = ∑

j∈visible

‖JJJvisible
gt ( j)− JJJvisible

βββ,θθθ ( j)‖F

](visible)
. (6)

erroccluded
pppooossseee = ∑

j∈occluded

‖JJJoccluded
gt ( j)− JJJoccluded

βββ,θθθ ( j)‖F

](occluded)
. (7)

errJJJSMPL evaluates the difference between the 24 ground truth
SMPL joints and the one obtained from our optimization. errpppooossseee
is the same restricted to the 15 joints shared by SMPL and Open-
Pose. errvisible

pppooossseee is limited to the joints (≤ 15) that are considered as
visible by our pipeline. erroccluded

pppooossseee consider the joints (≤ 15) that
were not found by our pipeline. All these errors are computes ex-
cluding the root joint that only represents the placement in the 3D
space. Together with these shape and pose measures we compute
the normalized registration error:

errppp222ppp = ∑
p∈H

‖H(p)−πNN(VM(θθθ,βββ))(p)‖F

](H)
. (8)

defined through the point-to-point distances between H and regis-
tered SMPL surface. The mean and the standard deviation of these
errors are reported in the Table in Figure 4. Except for the errβββ all
the others errors are reported in meters. On the right of Figure 4,
a quantitative evaluation of the point-to-point distance between our
output and H is depicted. These curves represent cumulative fre-
quencies of the above error for each of the considered frames. For
the majority of subjects, our method stays for 90% under the thresh-
old of 6cm of error. Although a fair comparison with other methods
is not possible we can note that our error is coherent with the de-
clared surface error for the state-of-the art method in [VCR∗18] on
the entire T1 Surreal middle frame, i.e., a less challenging scenario.
In Figure 5, we visualize the error encoded by the heatmap; white
is 0 while black represents large error saturated to 3cm.

Qualitative pose estimation on the other Datasets. The retrieval
step already provides good approximations of the 3D human pose,
as shown in Figure 6, highlight the power of the proposed retrieval
and the data driven approach. For all the examples in Figure 6 we
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Figure 5: The fitting error between H and our output, encoded by
the heatmap, white is 0 error while black is 3cm or larger error.

Figure 6: Some 3D pose approximations obtained from the only
retrieval step. These are the SMPL initializations in our pipeline.

provide the final registration in Figures 7,8,9, showing how much
the rest of the pipeline improves the quality of the results. Figure
10 shows the contribution of the consistency in the depth map.

Full pipeline results We show results in a large variety of clut-
tering, occlusions and noisy conditions. Results in Figure 8 are ob-
tained on dataset [SPT15]. We would like to underline that the child
in Figure 9 is an extreme case for the shape estimation. Finally, in
Figure 7 we show that our method is robust also to the presence
of many people and on the right of Figure 9 a case of a far and
occluded subject.

Implemetation and Timing Both the SMPL model and the
OpenDR tool are built upon a Python based autodifferentiation
framework. For OpenPose, we use the free online version with the
suggested parameter setting. The solution of 1 is solved using the
procustes MATLAB function. Our pipeline needs around 5 minutes
to produces the final 3D pose and shape estimation for a human
body. We perform our experiments on an Intel 3.6 GHz Core i7-
7700 cpu with 16GB RAM. To make our work fully reproducible
we will release i) our code, ii) the identification of the tested scenes,
and iii) the 2D joints estimated with Open Pose.

6. Conclusion and future work

We presented POP, a fully automatic pipeline for end-to-end mod-
eling of human shape where RGBD data are exploited to estimate
the pose and the accurate shape of a real person observed on a very
generic scenarios (i.e., in the wild). We propose for the first time
a modeling from reality method that is properly designed for han-
dling occlusions. We have shown that ingredients and suggestions
for modeling occlusions can be effectively employed in the pro-
posed pipeline, from 2D joint estimation to model initialization and
missing parts completion. Although the proposed method is based
on the SMPL template our approach can be naturally extended on
other parametric models.

References
[AB15] AKHTER I., BLACK M. J.: Pose-conditioned joint angle limits

for 3D human pose reconstruction. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR) 2015 (2015). 2

[AC07] A. G. M., C. S. A.: Human-robot interaction: A survey. Found.
Trends Hum.-Comput. Interact. 1, 3 (2007), 203–275. 1

[AD15] ABDALLAH DIB F. C.: Pose estimation for a partially observ-
able human body from rgb-d cameras. 2, 5, 8

[BBLR15] BOGO F., BLACK M. J., LOPER M., ROMERO J.: Detailed
full-body reconstructions of moving people from monocular rgb-d se-
quences. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV) (2015), pp. 2300–2308. 2

[BC07] BOULGOURIS N. V., CHI Z. X.: Human gait recognition based
on matching of body components. Pattern Recognition 40 (2007). 1

[BKL∗16] BOGO F., KANAZAWA A., LASSNER C., GEHLER P.,
ROMERO J., BLACK M. J.: Keep it SMPL: Automatic estimation of
3D human pose and shape from a single image. In Computer Vision –
ECCV 2016 (2016). 2

[BMB∗11] BAAK A., MÜLLER M., BHARAJ G., SEIDEL H.-P.,
THEOBALT C.: A data-driven approach for real-time full body pose
reconstruction from a depth camera. In IEEE 13th International Con-
ference on Computer Vision (ICCV), (IEEE 2011) (11 2011), pp. 1092–
1099. 3

[BRPMB17] BOGO F., ROMERO J., PONS-MOLL G., BLACK M. J.:
Dynamic FAUST: Registering human bodies in motion. In Proceedings
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2017 (2017). 2

[CI11] CATALIN IONESCU FUXIN LI C. S.: Latent structured models
for human pose estimation. In International Conference on Computer
Vision (2011). 2

[CMA∗17] CAMPLANI M., MADDALENA L., ALCOVER G. M., PET-
ROSINO A., SALGADO L.: A benchmarking framework for background
subtraction in rgbd videos. In International Conference on Image Anal-
ysis and Processing (2017), Springer, pp. 219–229. 5, 7

[CSWS17] CAO Z., SIMON T., WEI S.-E., SHEIKH Y.: Realtime multi-
person 2d pose estimation using part affinity fields. In CVPR (2017).
3

[DSO∗17] DUSHYANT M., SRINATH S., OLEKSANDR S., HELGE R.,
MOHAMMAD S., HANS-PETER S., WEIPENG X., DAN C., CHRIS-
TIAN T.: Vnect: Real-time 3d human pose estimation with a single rgb
camera. ACM Transactions on Graphics 36, 4 (2017). 2

[GYRF14] GHIASI G., YANG Y., RAMANAN D., FOWLKES C. C.: Pars-
ing occluded people. In IEEE Conference on Computer Vision and Pat-
tern Recognition (2014), pp. 2401–2408. 2

[HMH10] HUANG J.-B. Y., MING-HSUAN: Estimating human pose
from occluded images. In Asian Conference on Computer Vision – ACCV
(2010), pp. 48–60. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

6



Riccardo Marin , Simone Melzi , Niloy J. Mitra , Umberto Castellani / POP: Full Parametric model Estimation for Occluded People

Figure 7: An example from SBM dataset [CMA∗17]. Our method offers a good solution for reconstruct group of people without ambiguity.
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Figure 9: Two results from [SX13] and [AD15] respectively. Child is an extreme case of human body shape due to his proportions. In spite
this, we have a good approximation. On the right, a challenging case of a man sat far from cam and partially occluded by a table.
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