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Abstract

The increase in graphics card performance and processor core count has allowed significant performance accel-
eration for ray tracing applications. Future graphics architectures are expected to continue increasing the number
of processor cores, further improving performance by exploiting data parallelism. However, current ray tracing
implementations are based on recursive searches which involve multiple memory reads. Consequently, software
implementations are used without any dedicated hardware acceleration. In this paper, we introduce a ray trac-
ing method designed around hierarchical space subdivision schemes that reduces memory operations. In addition,
parts of this traversal method can be performed in fixed hardware running in parallel with programmable graphics
processors.

We used a custom performance simulator that uses our traversal method, based on a kd-tree, to compare against
a conventional kd-tree. The system memory requirements and system memory reads are analyzed in detail for both
acceleration structures. We simulated six benchmark scenes and show a reduction in the number of memory reads
of up to 70 percent compared to current recursive methods for scenes with over 100,000 polygons.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics Processors

1. Introduction

Ray tracing algorithm performance has improved due to
the reduced time spent processing individual rays as well
as the abundant parallelism that modern hardware has en-
abled. One variable that has led to the increased efficiency
of ray computations has been the use of custom data struc-
tures. Data structures define how geometric data are stored
in memory and determine what elements should be tested
for a given ray. A data structure that reduces the number
of computations and memory reads while providing relative
geometry elements for intersection testing will likely result
in an overall performance improvement. Since all ray types
(visible, shadow, reflection, etc) require intersection tests, a
common data structure can be used for all rays. Current data
structures determine geometry elements by traversal, which
is a process of stepping through hierarchical layers. This re-
sults in a recursive search processes and multiple memory
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reads. In this paper, we propose a method for reducing the
number of recursive steps by starting traversal of the tree
data structure farther down the tree rather then starting at the
top.

Today’s graphics hardware supports large numbers of
multiple cores for data parallelism in graphics rendering. To
further increase the amount of computational parallelism,
our approach calls for parts of the traversal to run on ad-
ditional fixed hardware, freeing up processor time for other
computations. User programmability is offered by perform-
ing intersection tests on the graphics processor, enabling
user-defined code to interact with system memory and set-
ting up the format of the data structure in memory.

We use a custom performance simulator for comparing
our data structure implementing a kd-tree and a conventional
kd-tree with a stack [Hav00]. The performance simulator re-
veals the total system memory required for all implemen-
tations and the resulting memory reads. Our experimental
results using this simulator show a significant reduction in
memory reads for scenes with 100,000 or more polygons.
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The remainder of this paper is organized as follows: Sec-
tion 2 discusses previous work in data structures and graph-
ics hardware. Section 3 describes our custom data structure
and traversal operations. Section 4 outlines an architecture
for implementing our data structure and Section 5 shows re-
sults of our simulator using six benchmark scenes. Finally
Section 6 and 7 concludes the paper with a description of
planned future work.

2. Previous Work

To accelerate rendering time, a variety of rendering meth-
ods [Whi80] [DBB02] [GTGB84] use accelerated data struc-
tures and parallelism offered by hardware. In the past, data
structures and the hardware have been developed separately;
however in the near future it is expected that graphics hard-
ware is expected to move away from z-buffer rendering
and directly incorporate scene data structures for ray trac-
ing [MFO5].

2.1. Accelerated Data Structures

Hierarchical Space Subdivision Schemes (HS3) like kd-tree
[Hav00] and Bounding Volume Hierarchies (BVHs) [SMO03]
have been the common data structures used for ray tracing
implementations. There popularity comes from their ability
to adapt to the geometry of a scene allowing for efficient ray
triangle intersection tests. Current-day implementations of
HS3 have focused on reducing the number of memory oper-
ations and maintaining ray coherency for specific hardware
platforms.

Today’s kd-tree data structures for GPUs have improved
the runtime performance for traversing the data structure and
are achieving faster rendering time then CPUs [PGSS07]
[HSHHO7]. The use of HS3 does result in a recursive traver-
sal method requiring frequent memory reads. Ray coherency
[WBWSO01] has been used to group similar rays together to
improve the locality of memory reads for cache optimiza-
tion. Still, a significant time is spent in the recursive search
of these data structures. Quad-BVH [DHKO8] utilizes pro-
cessor vector-width to convert binary trees into quad based
trees, reducing the size of the tree and the number of traver-
sal steps.

Uniform grid data structures [WIK*06] are commonly
used because of their ability to quickly step to neighboring
grid points. Grid data structures do not require any recursive
search method, however, they cannot adapt to the scene ge-
ometry and can result in multiple iterations before perform-
ing relative ray triangle intersection tests. Because of its non
recursive traversal, uniform grid data structures outperform
HS3 data structures for scenes that are uniformly distributed.
Because most scenes are not uniformly distributed, uniform
grid data structures are not commonly used.

2.2. Ray Tracing Hardware

Research in graphic architectures has resulted in fixed func-
tion [Han07] [FRO3] and programmable multi-core designs
[SKK*08] for accelerating ray tracing rendering. Fixed
function hardware such as SaarCore [SWS02] [SWW*04]
and RPU [WSSO05] [WBS06] implement a fully defined ren-
dering pipeline for ray tracing. Both designs have been fully
implemented on FPGA and an ASIC model was developed
for RPU. Dedicated hardware for traversing tree data struc-
tures is included in both designs, but recursion and multiple
memory reads are not eliminated. Additionally, legacy ren-
dering methods such as rasterization and others using the
current programmability of modern pipelines are not sup-
ported.

Other architectures for ray tracing introduce a high num-
ber of general multi-core processors and memory sys-
tems designed for graphic computations. Intel’s Larrabee
[SCS*08] is composed of several in-order x86 SIMD cores
that can be programmed to support any graphics pipeline in
software. Acceleration comes from running large amounts
of graphic computations in parallel and running multiple
threads on each processor to reduce the latency for mem-
ory operations. CUDA [NVI07] and Copernicus [GDS*08]
also offer large numbers of cores and can hide memory la-
tency by having large numbers of threads with no switch-
ing penalty. Ray tracing implementations on these architec-
tures is accomplished through software kernels that then run
on the processors. Direct hardware acceleration is supported
for several graphic computations, but none for data structure
traversal.

3. Group Uniform Grid
3.1. Overview

To reduce the number of recursive steps required by HS3
to processes any ray type (visible, shadow, reflection, etc),
we propose implementing an additional data structure called
Group Uniform Grid (GrUG) over the HS3 data structure.
GrUG makes rays bypass parts of the tree structure allowing
for traversal to begin closer to its final leaf node. GrUG is an
axis-aligned subdivision of space consisting of only two hi-
erarchical layers. The top layer is a uniform grid data struc-
ture that divides the scene into grid cells. The lower layer
consists of groups of top layer cells and corresponds to nodes
of the HS3 tree structure. Figure 1 shows a 2-D example of
the two layers and a kd-tree.

To traverse this data structure, only the mapping between
the two layers and mapping between each ray and its grid
need to be addressed. Once this mapping is complete, the
HS3 structure can be traversed starting at the node identified
by GrUG. Mappings between layers and ray is performed
using a hash lookup table. The value of the hash function of
aray origin equals the top layer cell ID corresponding to the
ray. By this method, a collision produced by a hash function
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Figure 1: GrUG data structure composed of a uniform grid
for the top layer and a lower layer that maps to a HS3 tree
structure.

indicates that the rays are in the same cell. The hash value is
then used in a table lookup to determine the memory address
of the HS3 node data structure. Figure 2 shows the entire
hashing process starting with integer X,Y and Z coordinates.

Using GrUG to reduce recursion and memory reads re-
sults in the top data structure resembling a uniform grid.
Rays that require additional traversal outside of its original
group bounding tree cannot continue using HS3 methods,
but require traversing the uniform grid. Stepping to the next
grouping can be done by a 3-D Digital Differential Analyzer
(DDA) [AWS87]. The DDA allows quick stepping between
cells because they are on a uniform grid pattern. Stepping
to neighboring cells does not guarantee that the lower layer
tree node has changed, so this process is repeated until a new
tree node is found. This process can only be performed after
the initial traversal and is not needed for intersection testing,
and therefore can be run in parallel with triangle intersection
tests.

To create a hash function with collisions resulting in rays
being in the same top layer cell requires an integer format
representation for ray origin. A uniform grid data structure
maps nicely to integer values as each cell is assigned to an
index value. With the DDA implemented on top of the uni-
form grid, integer arithmetic can be applied to the DDA.
With proper setup, the use of integer operations inside the
traversal of GrUG still maintains floating point accuracy.

The use of dedicated hardware for GrUG traversal can-
not stand on its own, but must be able to interface to the
processing cores for intersection testing and traversal of the
HS3 tree. While a complete interface is not presented for this
implementation, a high level architecture model is shown for
performing data structure traversal. This model relies on the
software processor to run HS3 traversal, triangle intersec-
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Figure 2: Hash function starting with X,Y,Z coordinates in
integer format and producing the data structure that con-
tains geometry information for intersection testing.

tion tests and shading while the GrUG hardware performs
data structure traversal.

3.2. Hash Table Function

There are two parts to a hash table function: the hash func-
tion itself and the table memory. For our approach, the table
memory is used to take a grid cell and map it to the tree node
of the HS3 structure. HS3 nodes are stored in system mem-
ory, so a pointer to system memory is stored inside the hash
table. Our table size is then equal to the total number of cells
created by the uniform grid. For simplification, only powers
of 2 are allowed for grid spacing. The number of bits needed
to address the table memory is then Logy (number of cells).

The hash function result is used as the address in the
table memory and must produce a value between O and
the (total number of cells — 1). Furthermore, a hash function
collision indicates that the two ray origins that produced the
collision are in the same uniform grid cell. If the ray origins
are represented in integer format, this is a simple operation
of concatenating the most significant bits of each axis. The
number of significant bits is determined by the grid spacing.
The conversion from floating point notation to integer nota-
tion is described in Section 3.5

3.3. Creation

Creating a GrUG data structure requires setting up two mem-
ory spaces, the hash table and the HS3 tree. Since the hash
table memory contains pointers to the HS3 tree, we setup
the HS3 tree structure first and then populate the hash ta-
ble memory with pointers to the appropriate HS3 tree node.
GrUG requires only one constraint on building the HS3 cre-
ation algorithm. GrUG operates on a uniform grid structure,
so splitting locations of the HS3 structure must align with
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these bounds until a mapping between GrUG and the node
is defined. By forcing the HS3 tree structure to align with
GrUG, leaf nodes generated with aligned splitting locations
are identified as thresholds. Thresholds have spatial bounds
corresponding to cells in the uniform grid and are the nodes
that get mapped to GrUG. Threshold nodes can then con-
tinue being subdivided without any restraints on the splitting
locations. The mapping of threshold nodes to GrUG requires
that every uniform cell defined in the threshold bounding
area gets populated with a pointer to that node. Once this
is complete, every node above the threshold node can be re-
moved from memory, resulting in several smaller trees. Each
tree is mapped to the GrUG structure.

In addition to storing the resulting trees, bounding values
must also be stored with the threshold node. The specific
format for storing bounding values and HS3 forests are user-
defined and requires the ray intersection code to interpret
pointers to system memory generated by GrUG. This allows
for grouping of geometric data with rendering parameters
such as color and texture coordinates in the same memory lo-
cation. While the specific implementation is left to the user,
two requirements must be met:

e Tree nodes and geometry data inside the scene must be
present and accessible by only providing the memory ad-
dress to the data structure. This allows traversal of GrUG
to produce a single memory address and have the tree
traversal and ray polygon intersection code be able to test
all relative polygons in the cell area.

e Six bounding values of the grouped grid must be con-
tained in the data structure. These values are used for com-
puting the next grouping of ray intersects if no intersec-
tion is found in the current grouping. These values must
also be accessible by providing the same pointer to system
memory.

3.4. Stepping Between Neighbors

To step between uniform grid cells, a DDA method is used.
While this method allows stepping between cells, this pro-
cess repeats until reaching the boundary of the starting
group. DDA steps one cell at a time and is a function of both
the current cell and the direction of the ray. The absolute po-
sition of the ray inside the cell is only needed once for the
entire traversal of the ray. Three parameters are needed per
axis for stepping: tmax, delta and step (Figure 3). The tmax
value is the independent variable in the 3-D parametric line
equation and is incremented when traversed along that axis.
The delta value defines how much tmax gets incremented
by and is the value needed to cross an entire cell. The final
value is the step value that specifies what direction to step
and is discussed in more detail in the next section. Stepping
is then done along the axis that has the lowest tmax value
since it is the closest to the edge of the cell. The tmax value
is then incremented by the delta parameter to represent the
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Figure 3: Variables needed for DDA traversal.

new distance from the edge of the cell. This process is re-
peated until the cell index value is outside of the group. The
boundaries of groups must be provided to the hardware be-
fore this process can begin and is stored in the data structure
for the current group.

3.5. Integer Operations

The GrUG hash function uses integer values to represent the
entire grid spacing. Conversion of ray origin to integer val-
ues should utilize the entire integer range. A fixed size of
N bits is used for representing the integer value and the grid
resolution is specified during initialization, the number of in-
tegers that are inside of a cell is then equal to WM
The index of each cell is then equal to the hash function for
any points inside that cell. Pre-computed integer scaling val-
ues are computed from the maximum and minimum limits of
the scene. Linear interpolation can determine the location in-
side the uniform grid. Once the integer value has been found,
it is used throughout the rest of the traversal.

Since the location is now stored as an integer format, inte-
ger arithmetic is used for the DDA traversal. Both rmax and
delta are calculated in a similar fashion but the step parame-
ter is then assigned a constant value of im. This
value is the number of integers in a cell. When traversing
to a neighbor cell the integer location value must change by
that amount to leave the current cell. The + determines the
direction of the step and has the same sign as the ray direc-
tion.

4. Hardware Implementation

An architecture for the GrUG traversal process is presented
in Figure 4. Because a fully defined pipeline is beyond the
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Figure 4: Architecture of Grouped Uniform Grid

scope of this paper, only the hardware for GrUG traver-
sal, along with its required interactions with the processor,
are shown. For a multi-core implementation, each processor
would require its own hardware implementation. The only
exception is the table memory that would be shared among
all the processors. This purposed architecture breaks down
into two main areas, hash table lookup and traversal. Hash
table lookup takes two inputs, one for new rays and the sec-
ond for performing another traversal of the data structure.
Since new rays only need to be initialized, returning rays
can be sent directly to the hash function. The output of the
hash table can then be passed directly to the processor for
triangle intersections. The traversal hardware also requires
two inputs for initializing new rays and performing further
traversal operations. The output of traversal is then sent to a
buffer that waits for the processor to indicate if the ray has
finished or needs to continue traversing.

The architecture presented is a pipelined implementation
and operation is performed in the following order for new
rays corresponding to the numbers presented in Figure 4:

1. New rays are passed into the architecture from the proces-
sor and are initialized in parallel for both the hash table
function and the traversal using DDA.

2. The output of the hash initialization is then inputted into
the hash function where the hash value of the ray is com-
puted. The computation results in the ID for the cell that
the ray belongs to. The traversal initialization results are
also passed into the DDA traversal where it waits for fur-
ther inputs.

3. The resulting hash value is then used as the address in the
table memory. The resulting memory value is then the
pointer address for a node/leaf in the HS3 tree.

4. The processor then begins executing the HS3 traversal
and intersection kernel and performs a memory read to
get the bounding values of the tree node/leaf.

5. The processor outputs the bounding values to the DDA
traversal to determine the next grouping the ray inter-
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Benchmarks polygons kd-tree GruG Memory (MB)
Mem. (MB) [ Tree | Boundary | Hash-table | Total
Ulm Box 492 0.01 0.01 0.01 512.00 |512.02
Stanford Bunny | 69451 1.34 0.87 1.41 512.00 |514.28
Fairy Forest 172561 2.66 2.32 1.02 512.00 |515.34
Cabin 217903 3.12 2.88 0.70 512.00 |515.58
Atrium 559992 9.30 8.77 1.61 512.00 |522.38
Conference 987522 8.54 8.23 0.93 512.00 |521.17

Figure 5: Benchmark data for each scene and the total mem-
ory required by the data structure.

sects. The processor then begins traversal of the HS3
and computing the intersection results in parallel with the
DDA.

6. The DDA traversal finishes and outputs the results to the
done buffer.

7. The processor finishes intersection tests and tells the done
buffer of any intersection results.

8. The done buffer checks the intersection results and the
DDA result to determine if the ray requires additional
traversing. If the ray must continue traversal the new ray
location is passed into the hash function and begins step 3
again. If the ray intersects a valid polygone, it is removed
from the pipeline.

While a software implementation of GrUG is feasible, A
hardware implementation of our GrUG approach will have
greater performance improvement by allowing additional
operations to perform in parallel that would not be possible
with a software implementation. In the hardware method the
DDA traversal is able to run in parallel with triangle inter-
section, allowing for its computational cost to be hidden. In
addition to operating in parallel, specific computations can
be accelerated including the hash function and the opera-
tions performed for each axis. The hash function and axis
operations require multiple instructions in software that can
be performed by a single functional unit in hardware. This
acceleration allows for a hardware implementation of GrUG
to have a greater performance over an equivalent software
implementation.

5. Performance Analysis

A total of six different scenes, each with different polygon
counts, were tested using our custom CUDA-based perfor-
mance simulator. Figures 5 and 6 list the benchmarks with
scene data and overall results.

Our performance simulator implements only the traversal
of primary visible rays and does not perform any render-
ing. The HS3 data structure implemented is a kd-tree used
in RADIUS-CUDA [Ben08]. To measure performance of
GrUG, only system memory requirements and the number
of memory reads are reported. All benchmark scenes were
simulated at a resolution of 1920x1080, resulting in a total
of 2,073,600 rays, and a GrUG grid size of 512x512x512.
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Figure 6: Benchmark scenes from left to right, top to bottom: UlmBox, Stanford Bunny, Fairy Forest, Cabin, Atrium and
Conference. Images rendered at a resolution of 1920x1080 using RADIUS-CUDA.

5.1. Memory Utilization

Figure 5 shows the total system memory needed for storing
the different data structures used by GrUG. The use of a hash
table in GrUG results in a significant overhead in memory
requirements to store the entire hash table in memory. The
required memory is based on the GrUG grid size, 4 bytes per
grid cell. A fixed grid size of 512x512x512 will use 512MB
for storing the hash table.

In addition to the hash-table, the kd-tree structure and
bounding dimensions of all threshold nodes must be stored
in system memory. Figure 7 shows the memory requirements
for both kd-tree and GrUG. GrUG uses less memory for stor-
ing the tree structure and bounding dimensions of threshold
nodes since it does not need to store the entire tree structure,
but only the tree nodes that are at and below the threshold
node. The additional 24 bytes needed for storing the bound-
ing dimensions, equivalent of 3 nodes, is smaller than the
tree structure above threshold nodes.

Figure 7 also shows that the memory space required for
storing GrUG tree data sets are not linear with respect to
the number of polygons in the scene. Kd-tree memory usage
scales linearly with polygon count because the number of
nodes created is a function of the tree depth, which is deter-
mined by the number of polygons in the model. Memory re-
quirements for GrUG are influenced by the density of poly-
gons in a scene. Polygon density is a function of the number
of polygons in a scene and how evenly distributed they are
in the entire scene. Scenes with higher polygon density will
result in more threshold nodes, resulting in deeper trees and
additional bounding dimensions being stored.
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Figure 7: The memory requirements of GrUG compared to
kd-tree.

5.2. Memory Operations

The resulting memory reads for both GrUG and kd-tree are
shown in Figure 8. The number of memory reads are for
traversal of GrUG and kd-tree data structure and do not in-
clude the memory operations needed for triangle intersection
testing. Memory reads from triangle intersection testing are
not reported because both implementations resulted in nearly
identical intersection tests.

All but one benchmark scene required fewer memory
reads using GrUG. UlmBox resulted in higher memory reads
due to having a small kd-tree size. While GrUG allowed
for traversal to begin farther down the kd-tree, the resulting
memory read operations for getting boundary data was larger
than the savings of starting lower on the kd-tree. The re-
maining five benchmarks resulted in varying reduced mem-
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Figure 8: Number of memory reads required for traversing
GrUG and kd-tree.

ory reads. The number of reduced memory reads needed by
GrUG is greatly dependent on the polygon density.

6. Future Work

To further analyze GrUG, a hardware implementation with
processor interaction is required. Because the processor ar-
chitecture will have a large influence on the run time, we
plan on evaluating architectures similar to both NVIDIA
GPUs [NVI06] and Intel’s Larrabee [SCS*08]. Both pro-
cessor architectures are designed for graphics processing us-
ing a large number of multi-core processors and both seem
well-suited for GrUG. Once a hardware implementation is
accomplished, real-time performance can be measured and
memory bandwidth optimization can be investigated.

7. Conclusions

Data structures have had a dramatic impact on the perfor-
mance for ray-based rendering methods. To further increase
performance of data structures, this paper proposed a method
for reducing the number of recursive steps while still imple-
menting common HS3 data structures. Our method of re-
ducing the number of recursions in the data structure allows
for an accelerated hardware implementation, further reduc-
ing the workload of the processor. We used an existing per-
formance simulator for comparing our GrUG implemented
kd-tree against a modern day kd-tree implementation. Our
experimental results show a significant reduction in system
memory reads for large polygon count scenes.
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