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Abstract
As data sets increase in size beyond the petabyte, it is increasingly important to have automated methods for data analysis and
visualisation. While topological analysis tools such as the contour tree and Morse-Smale complex are now well established,
there is still a shortage of efficient parallel algorithms for their computation, in particular for massively data-parallel compu-
tation on a SIMD model. We report the first data-parallel algorithm for computing the fully augmented contour tree, using a
quantised computation model. We then extend this to provide a hybrid data-parallel / distributed algorithm allowing scaling
beyond a single GPU or CPU, and provide results for its computation. Our implementation uses the portable data-parallel
primitives provided by NVIDIA’s Thrust library, allowing us to compile our same code for both GPUs and multi-core CPUs.

Categories and Subject Descriptors (according to ACM CCS):
Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations Simu-
lation and Modeling [I.6.6]: Simulation Output Analysis—

1. Introduction

Modern computational science and engineering depends heavily on
ever-larger simulations of physical phenomena. Accommodating
the computational demands of these simulations is a major driver
for hardware advances, and has led to clusters with petaflops of
performance over hundreds of thousands of cores, with petabytes
of data storage. For recent hardware, the I/O cost of data storage
and movement dominates, and emphasis is increasingly placed on
in situ analysis and visualisation of the data. Moreover, with clus-
ters built around NVIDIA’s Tesla cards and Intel’s Xeon Phi boards,
we are seeing a return of SIMD (Single Instruction, Multiple Data)
computational models for shared-memory architectures.

In situ analysis and visualisation in turn requires more sophisti-
cated analytic tools, as does the recognition that one component of
the pipeline remains unchanged: the human perceptual system. This
has stimulated research into areas such as computational topology,
which constructs models of the mathematical structure of the data
for the purposes of analysis and visualisation.

One of the principal mathematical tools is the contour tree or
Reeb graph, which summarises the development of contours in the
data set as the isovalue varies. Since contours are a key element of
most visualisations, the contour tree and the related merge tree are
of prime interest in automated analysis of massive data sets.

The value of these computations has been limited by the
algorithms available. While there is a well-established algo-
rithm [CSA03] for computing merge trees and contour trees, the

picture is patchier for distributed and data-parallel algorithms. In
particular, no pure data-parallel algorithm has been described so
far for contour tree computation, and the principal result in this pa-
per is to do so for the first time. However, pure data-parallelism is
supplemented in practice by hybrid data-parallelism, where indi-
vidual nodes in a cluster are data-parallel, but the overall compu-
tation is distributed. We therefore also describe an extension of the
data-parallel algorithm to a hybrid data-parallel algorithm.

We begin with relevant background both in data-parallel compu-
tation and computational topology in Section 2, before introducing
a data-parallel algorithm for contour tree computation in Section 3
and a hybrid distributed algorithm in Section 4. We present some
results on the scaling and performance of these algorithms in Sec-
tion 5, ending by drawing some conclusions in Section 6.

2. Background

Since the goal is to use data-parallel computation to construct an
algorithm for contour tree computation, we divide the relevant prior
work between data-parallel computation on one hand and contour
tree computation on the other. This divide is not strict, since some
work has been published on distributed and parallel contour tree
computation, but is a convenient division for the sake of clarity.

2.1. Data-Parallel Computation

One effective method for taking advantage of the shared-memory
parallelism available on accelerators such as GPUs and multi-core
CPUs is to use data-parallelism. Guy Blelloch [Ble90] defined a
scan vector model, and demonstrated that a wide variety of al-
gorithms in computational geometry, graph theory, and numerical
computation could be implemented using a small set of “primi-
tives”. These primitive operators, such as transform, reduce, and
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scan, can each be implemented in a constant or logarithmic number
of parallel steps. NVIDIA’s open-source Thrust library provides an
STL-like interface for such primitive operators, with backends for
CUDA, OpenMP, Intel TBB, and serial STL. An algorithm writ-
ten using this model can utilise this abstraction to run portably
across all supported multi-core and many-core backends, with the
architecture-specific optimisations isolated to the implementations
of the data-parallel primitives in the backends.

Thrust was used in the PISTON and VTK-m projects to imple-
ment isosurfaces, cut surfaces, thresholds, KD-trees, and halo find-
ers [LSA12, SLA13, HFS∗15]. A new Thrust algorithm for halo
finding [SHL∗15] also introduced a data-parallel version of the
union-find algorithm [Tar75] for computing connected components
of graphs, based on an existing parallel sparse connected compo-
nent algorithm [JaJ92]. Since union-find is crucial in many contour
tree algorithms, we describe the data-parallel version briefly.

The basic strategy is to create a pseudoforest defined by a func-
tion D which maps each vertex to its parent. Initially, each vertex
is its own parent. We then iteratively attempt to graft trees onto
smaller vertices of other trees, then perform one level of pointer
jumping on each vertex. Once all vertices are in rooted stars (i.e.,
trees with depth one or less), the algorithm terminates, with D now
defining a pseudoforest in which each connected component corre-
sponds to an independent tree. Assuming all edges or vertices can
be processed in parallel, each iteration takes constant time.

2.2. Contour Tree Computation

Given a function of the form f : Rd → R, a level set is defined as
an inverse image f−1(h) for an isovalue h, and a contour is a single
connected component of a level set. The Reeb graph is obtained
by contracting each contour to a single point [Ree46], and is well
defined for Euclidean spaces and general manifolds. For simple do-
mains, the graph is a tree called the contour tree.

For data analysis, we normally assume that the domain is a mesh
- i.e. a tessellated subvolume of Rd , such as is used for numerical
simulation. For simplicial meshes in particular, all critical points of
the function are guaranteed to be at vertices of the mesh [Ban67],
massively simplifying topological computations.

For simplicial meshes over simple domains, the standard al-
gorithm [CSA03] for computing contour trees performs a sorted
sweep through the data, incrementally adding all vertices to a
union-find data structure [Tar75]. As components are created or
merged in the union-find, critical points are identified, and a par-
tial contour tree is created, called a merge tree. After performing
both ascending and descending sweeps through the data, the two
resultant merge trees are combined to produce the contour tree.

While this algorithm is simple and efficient, it is based on a
metaphor of a sweep through the contours which is inherently se-
quential, and this has hindered development of parallel algorithms.
Pascucci & Cole-McLaughlin [PCM03] described a distributed
computation in which the data is divided into spatial blocks. The
contour tree was computed separately for each block, then a fan-
in process combined the contour trees of individual blocks until a
single master node computed the entire contour tree.

In practice, contour trees have a large memory footprint, which
can be nearly linear in the input size, which forces the contour tree
for the entire data set to reside on the master node, defeating the
purpose of distributing cost both in computation and in storage.

More recently, Morozov & Weber [MW13] distributed merge
tree computation by observing that each vertex in the mesh belongs
to a unique component based at a single root maximum, and to a
corresponding component at a minimum. Thus, by storing the lo-
cation of each vertex in a merge tree, the merge tree is held im-
plicitly, distributed across the nodes of the computation. They then
generalised this further [MW14] and stored unique maximal and
minimal roots for each vertex. Since this combination is unique for
each edge of the contour tree, this implicitly stores the contour tree
across the nodes of the computation. These algorithms, however,
exploit distributed computing but not data-parallelism, and do not
extract arcs and nodes of the tree explicitly.

Notably, one of the advantages of this work is that instead of re-
lying on transferring all of the topology computed per block during
the fan-in, it only needs to transfer information relating to bound-
aries between blocks - i.e. its communication cost can be bounded
by O(n2/3) for a data set of size n.

Widanagamaachchi et al [WCBP12] also described a data-
parallel model for computing the merge tree, breaking the compu-
tation into a finite number of fan-in stages. This in effect quantised
the merge tree, an effect that was acceptable for the task in hand.

We can also consider the work on Reeb graph and higher-
dimensional topological computation.In particular, Hilaga et
al [HSKK01] quantised the function range, dividing the input mesh
into slabs - i.e. the inverse image of intervals rather than of sin-
gle isovalues, then constructed neighborhood relationships between
these slabs to approximate the Reeb graph of a 2-manifold. More
recently, Carr & Duke [CD14] generalised this with the Joint Con-
tour Net, which approximates the Reeb space [EHP08] for higher
dimensional cases by quantizing all variables in the range.

3. Pure Data-Parallel Algorithm

We see therefore that, while a data-parallel contour tree algorithm
has not previously been described, many of the pieces required for
such an algorithm are now in place, such as hybrid distributed/data-
parallel structures and a reliable union-find algorithm.

Rather than assume that a good data-parallel algorithm is based
on the existing serial algorithm [CSA03], we instead ask where the
inherent parallelism in the problem is. Clearly, this is not in the idea
of an incremental sweep through the data, or in a serialised queue
for combining two merge trees.

Ideally, we would apply the mathematical definition of contract-
ing contours to single points [Ree46]. Suppose we have computed
a single level set with multiple contours for a given isovalue h in a
triangulation in 2D. To contract these contours, we note that each is
made up of a finite number of linear segments which we can repre-
sent as nodes in a graph. Moreover, since we are guaranteed a con-
tinuous sequence of fragments, we can represent the connectivity
between them as edges in the same graph. This transforms the ques-
tion of contour contraction to a simple application of the union-find
algorithm [Tar75], which now exists in data-parallel form.
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Figure 1: Pure Data-Parallel Example. In this figure, the interval contours and edge fragments are color-coded by slab index (i.e. by
quantisation interval). In the first stage of the algorithm, one vertex for each colored block is chosen as a union-find representative (in red).
In the second stage, vertical edges are computed. See text for details of worked computation.

In practice, however, we cannot do this for every contour, as this
would require uncountably infinite parallelism, which even Blel-
loch’s scan-vector model cannot accommodate. Instead, as with al-
gorithms for quantised Reeb graphs [HSKK01] and Joint Contour
Nets [CD14], we quantise the range into intervals to approximate
the result with any degree of fidelity desired, while keeping the
computation bounded in practice.

Moreover, this connectivity computation is independent for any
two contours or for the interval contours of any two interval re-
gions. We can therefore compute not just one set of interval con-
tours in parallel, but of all interval contours simultaneously.

This results in a set of points representing individual interval
contours, without representing the vertical adjacenciess between
them. These adjacencies are however the summation of local ad-
jacencies between individual fragments. Thus, if we take the set of
all local adjacencies between fragments and convert them to edges
between their corresponding union-find components, we can then
suppress duplicate edges to extract the contour tree desired.

Our algorithm thus consists of five stages:

I Fragment Construction
II Horizontal Edge Construction

III Horizontal Collapse with Union Find
IV Vertical Edge Construction
V Vertical Collapse with Union Find

Figure 1 shows this process following the pseudo-parallel code
in Algorithm 1, where for loops are data-parallel transformations.

Stage I (lines 1-4) creates fragments of each edge, divided at
integer multiples of a basic slab quantisation parameter q. Here,
the name fragment is deliberately chosen to evoke rasterisation, as
we are in fact performing 1-D rasterisation of the intervals spanned
by each edge. These fragments are shown in darker colors in Figure
1 along the boundaries of the triangles. These fragments will form
the vertices for our union-find computation.

Stage II (lines 5-15) connects fragments at a given slab value i
on one edge of a triangle with all fragments at the same slab value
on the other edges of the triangle. We can represent this by pairing
the longest (by value) edge with both other edges: in Figure 1, we
pair edge e1 with edges e0 and e5. Since e0,e5 are shorter than e14,
we end up with a total of 3 pairs - 2 for e0 and 1 for e5. this gives an
array H of horizontal edges connecting fragments. For the triangle
with edges e0,e1,e5, these pairs are: ( f 0, f 2),( f 1, f 3),( f 11, f 3),
representing the connectivity across the middle of the cell by the
contour interval as edges for union-find.

Stage III (lines 16-21) takes the graph formed from these ver-
tices and edges and performs the Union-Find reduction: each com-
ponent in the Union-Find array UF represents one interval contour
- i.e. one colored band in Figure 1, with one of the fragments being
used as the union-find representative, as shown in red in the figure.

Stage IV (lines 23-28) then copies the representatives to a new
array and suppresses duplicates to get a single unique node for each
entire interval contour - i.e. representing nodes in the contour tree.

Stage V (lines 29-36) then computes the arcs of the contour tree.
Since all fragments are indexed, with each edge in ascending order,
any pair fi, fi+1 of fragments are adjacent vertically iff they belong
to the same edge. We take all such pairs and find their union-find
representatives to obtain arcs in the contour tree, with lines 35-36
suppressing duplicates to get unique representation.

To illustrate this, we show each stage in a data-parallel form in
Figure 2, using the data in Figure 1 as our running example.

Stage I computes the fragments along each edge by finding the
minimum and maximum vertex values, then dividing the minimum
value by the quantisation q to obtain the offset - i.e. the slab index
of the lowest fragment. This allows us to find fragments on the
edge efficiently later on. We then perform modular arithmetic to
determine how many fragments per edge in nEdgeFrags, and use a
prefix-sum to find the base index for fragments on each edge.
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Algorithm 1 Pure Data Parallel Algorithm. All for statements are
executed data-parallel.
Require: Triangulation T , vertex values, slab quantisation q

1: for all Edges e in I do
2: Divide e at isovalues nq for integer n
3: Store fragments in fragment array F
4: end for
5: for all Triangles t in I do
6: Find the longest edge e1 in t by value
7: Pair the longest edge with both other edges e2,e3
8: Store pairs (e1,e2),(e1,e3) in pair array P
9: end for

10: for all Pairs p = (e1,e2) in P do
11: for all Integer n such that nq is a value on e2 do
12: Divide (e1,e2) at nq
13: end for
14: Store all fragment pairs ( f1, f2) in horizontal array H
15: end for
16: for all Fragments f in F do
17: Initialise Union-Find array UF( f ) = f
18: end for
19: for all Pairs h = ( f1, f2) in H do
20: Add edge f1, f2 to Union-Find array UF
21: end for
22: Perform data-parallel Union-Find on UF
23: for all Fragments f in UF do
24: Find UF representative u =UF( f )
25: Store u in node array N
26: end for
27: Parallel Sort N
28: Remove duplicates in N
29: for all Fragments f in F do
30: if Fragment f on same edge e as next fragment g then
31: Find UF representatives u =UF( f ),g =UF(g)
32: Store arc a = (u,v) in arc array A
33: end if
34: end for
35: Parallel Sort A lexicographically on (u,v)
36: Remove duplicates in A
37: N,A now contain nodes & arcs of contour tree

Our edge IDs are not contiguous, because we will later need to
do reverse lookup from the edge ID, and this is trivial if we have a
systematic numbering system. Here, edge 0 mod 3 is always hori-
zontal, edge 1 mod 3 is diagonal, and edge 2 mod 3 is vertical. This
means that the details of this stage will vary depending on the type
of input data, which we comment on later.

Stage II again computes the number of pairs first, then generates
pairs for use as arcs in the Union-Find computation. For example,
the first pair (0,2) indicates that fragments 0 and 2 are connected
in the interval contour, and so on. We have omitted the detailed
calculations for clarity, and shown only the result.

Stage III applies Union-Find to the fragments from Stage I as
nodes and the pairs from Stage II as edges. We will see later that
which fragment we choose as Union-Find Representative can be

significant in a hybrid algorithm, but for now we can choose any
fragment, as we do here. At the end of this stage, there is exactly
one unique UF representative for each interval contour in Figure 1.

Finally, in Stage IV, we use the Union-Find representatives again
to compute which interval contours are connected to each other by
finding vertical pairs along edges, converting these to Union-Find
representatives, sorting and suppressing duplicates to get the list of
arcs between nodes in the contour tree. As seen in the last two lines
of Figure 2, these are the same arcs as in Figure 1.

3.1. Algorithmic Complexity

As always with algorithmic development, it is necessary to analyze
the performance of the new algorithm. For data-parallel algorithms,
this is measured by considering the number of data parallel steps
required under infinite parallelism [Ble90]. In general, if an opera-
tion needs neither expansion nor reduction, it takes O(1) steps, but
if expansion or reduction is needed, it takes O(logn) steps.

Thus, for Stage I (lines 1-4) is essentially a sequence of algebraic
computations followed by constructing fragment array F . Figure 2
shows some more details, and we can see that the algebraic com-
putation takes O(1) steps, but construction of the array F to store
the fragments requires a prefix-sum followed by an expansion, and
takes O(logn f ) steps, where there are n f fragments overall.

Stage II (lines 5-15) follows a similar pattern, except for lines
11-13. Naïve implementation of this would use a nested loop: in-
stead we reuse the set of fragment slab values for the short edge to
generate fragment pairs, for an overall O(logn f ) cost. Note that we
use n f as the parameter here, since each fragment can only occur
in at most 2 pairs - one for each incident triangle.

Stage III (lines 16-28) performs Union-Find in O(logn f ) steps,
then parallel sort & duplicate suppression in O(logn f ) steps.

Stage IV (lines 29-36) extracts arcss in O(logn f ) steps, leading
to an overall cost of (O(logn f )) parallel steps. Provided the number
of fragments per edge is small, this is about as efficient as we are
likely to achieve. Further studies on this parameter could be per-
formed, but previous work [CD14] indicates that the number will
be related to the gradient of the field, and will (on average) be sub-
linear. In the worst case, n f = O(N2), where N is the number of
input variables, but still gives O(log(N2)) parallel steps overall.

4. Hybrid Data-Parallel Algorithm

Once we have computed a data-parallel contour tree, the next task
is to build a hybrid distributed version for larger data sets. For this,
we observe that the two principal stages of the pure data-parallel
algorithm can be parallelised by fanning in computations to pro-
gressively larger blocks. For this to work, however, we need to limit
data communication to a size proportional to the boundaries of the
data as with previous computations [MW13, MW14].

We start with the interval contour contraction, and observe that
each interval contour is either contained entirely within the block or
intersects the boundary. If it is contained entirely within the block,
it cannot merge with interval contours in any other block, and there-
fore does not need to passed between blocks.
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Stage Ia: Fragment Counting

edgeID 0 1 2 3 4 5 6 7 8 9 10 11 12
offset 0 0 0 1 0 1 . . 0 1 . . 0
nEdgeFrags 2 2 3 2 2 1 . . 3 2 . . 2
bEdgeFrags 0 2 4 7 9 11 12 12 12 15 17 17 17

Stage Ib: Fragment Generation

fragID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
fragEdge 0 0 1 1 2 2 2 3 3 4 4 5 8 8 8 9 9 12 12
fragSlab 0 1 0 1 0 1 2 1 2 0 1 1 0 1 2 1 2 0 1

Stage IIa: Edge Pair Counting

pairID 0 1 2 3 4 5 6 7
pairEdgeLong 0 0 2 2 8 8 4 4
pairEdgeShort 1 5 1 9 4 3 12 5
nPairFrags 2 1 2 2 2 2 2 1
bPairFrags 0 2 3 5 7 9 11 13

Stage IIb: Fragment Pair (Horizontal Edge) Generation

horizID 0 1 2 3 4 5 6 7 8 9 10 11 12 13
horizFrom 0 1 1 4 5 5 6 12 13 13 14 9 10 10
horizTo 2 3 11 2 3 15 16 9 10 7 8 17 18 11

Stage III: Union-Find Computation

fragID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
UF (initial) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
UF (final) 2 11 2 11 2 11 6 11 8 12 11 11 12 11 8 11 6 12 11
UF (sorted) 2 2 2 6 6 8 8 11 11 11 11 11 11 11 11 11 12 12 12
UF (unique) 2 6 8 11 12

Stage IV: Arc Computation

vertID 0 1 2 3 4 5 6 7 8 9
loFragment 0 2 4 5 7 9 12 13 15 17
hiFragment 1 3 5 6 8 10 13 14 16 18
loUFRep 2 2 2 11 11 12 12 11 11 12
hiUFRep 11 11 11 6 8 11 11 8 16 11
loUF (sorted) 2 2 2 11 11 11 11 12 12 12
hiUF (sorted) 11 11 11 6 6 8 8 11 11 11
loUF (unique) 2 11 11 12
hiUF (unique) 11 6 8 11

Figure 2: Worked Example of Data-Parallel Contour Tree Computation For Example in Figure 1. At the end of computation, loUF and hiUF
hold the arcs of the contour tree shown in Figure 1. See text for discussion.

Interval contours crossing the boundary will merge with interval
contours in other blocks, so we prepare for the fan-in by selecting
fragments that intersect the boundaries. Unfortunately, this means
that our array of fragments becomes non-contiguous, which means
we will have to renumber the fragments in each parent block. To do
so, we establish a unique identifier for each fragment, composed of
the global ID number of the edge to which it belongs, combined
with the index of the interval to which it belongs. As with the serial
version, our first step in the fan-in will be to construct a single con-
tiguous thrust-vector that lists all of these fragments for union-find.

This means that the representatives of each union-find compo-
nent must be in the set passed to the parent. We therefore perform
the union-find so that boundary fragments are used as the repre-

sentative if possible, tie-breaking with the global edge ID. This is
applied separately at each level of the fan-in, since a boundary frag-
ment at a lower level of the fan-in will normally become an interior
element of a higher block in the hierarchy.

We are now incrementally gluing together contours in larger and
larger blocks, at each stage discarding all interior contours, and
limiting data communication to the size of the boundary between
blocks. At each level of the hierarchy, the principal work is convert-
ing fragment and edge IDs from global to local IDs, performing the
union-find contraction, then converting back to global IDs.

Once the process reaches the root of the hierarchy, the root node
will have the correct union-find representatives for all contours that
cross boundaries of its immediate child nodes. To ensure that all
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blocks have the correct union-find representatives, we fan this in-
formation back out, ensuring that each child node has the correct
global representative for each of its local representatives.

Once this fan-out is complete, the nodes have been correctly
identified, and we proceed to the vertical arcs between nodes.
Again, we perform this at the child blocks first, then fan-in to get
global information.

Here, we observe that these arcs can be of three types: interior-
interior, interior-boundary, or boundary-boundary. In the first case,
interior-interior, the arc connects two interval contours interior to
the block, and does not need to be passed to the parent. This is also
true in the second case: since one of the interval contours is interior,
it has no impact on connectivity in other blocks. This leaves only
the arcs connecting pairs of nodes on the block boundaries, which
we transmit to the parent. At each level, we suppress duplicates
and pass only boundary pairs to the parent, until the computation is
complete, at which point all children and parent blocks have iden-
tified all arc pairs in their interior and their boundaries.

5. Results

An initial implementation of the algorithm described above has
been written for regular DEM (Digital Elevation Model) data (i.e.
for two-dimensional data).

For the on-node data-parallel algorithm described in Section 3,
we use NVIDIA’s Thrust library. The transform, for_each, reduce,
scan, sort, scatter, gather, and unique operators are used throughout
the algorithm, along with our custom functors. Union-find repre-
sentatives are found as described in Section 2.1, followed by an
additional step in which the requirement that the chosen represen-
tative be a fragment on the boundary if possible (with ties broken
by global edge ID) is satisfied by sorting the edge slabs by their
initial union-find representative, and then using a segmented scan
(inclusive_scan_by_key) with a customised functor to find the cor-
rect representative for each group, followed by a segmented reverse
max-scan to propagate that representative ID back to all members
of the group, and finally a scatter to restore the array to its original
ordering. Figure 3 shows how Thrust operators are used to gener-
ate a vector of fragments in Stage I of Figure 2. One significant
advantage of using a data-parallel algorithm implemented using a
portable library such as Thrust is that the same code can run on all
supported architectures, including GPUs (with the CUDA backend)
and multi-core CPUs (with the OpenMP and TBB backends), while
the serial backend can help make debugging easier.

The hybrid algorithm described in Section 4 is implemented us-
ing MPI. Data that must be transferred during the fan-in and fan-out
stages is copied from Thrust device vectors (which may reside in
the memory of accelerators such as GPUs) to Thrust host vectors
on the CPU, which can then be passed to MPI using raw point-
ers. The input data is partitioned among the ranks according to a
domain decomposition with a specified block size, with the data
along boundaries shared between each pair of adjacent blocks.

Results of the data-parallel and hybrid algorithms were veri-
fied against a quantised version of the standard serial algorithm
[CSA03]. Here, the serial algorithm was used to extract the con-
tour tree, of which the arcs were quantised with respect to the same

slab size. Any edge with exactly one fragment was discarded, as all
of the corresponding contours belonged to the same interval con-
tour, and would therefore be collapsed into a node rather than an
arc. Any edge with at least two fragments then generated one arc
for each interval boundary crossed. Although this does the quanti-
sation after the contour tree computation, not before, it is not hard
to show that the result is the same as the algorithm described above.

Since slab, edge, and fragment ids are specific to individual im-
plementations and domain decompositions, results were compared
based on the number of edges in the contour tree proceeding out of
each slab. Results were verified in this way for a simple 3x3 test
case using 4 ranks (2x2 blocks, each of size 2x2), and for an 18x21
elevation data set for Vancouver, Canada, at quantisation 5m (for
data in the range of 0 to 91m), using 1 rank, 9 ranks (3x3 blocks
of size 8x8), and 16 ranks (4x4 blocks of size 6x6). In cases where
the data size is not evenly divisible by the block size, the right-most
and/or bottom-most blocks were left undersized as needed.

For larger data sets, verification could be achieved by taking
the known contour tree [CSA03] and converting it to a quantised
contour tree. We have not done so to date, as we have subse-
quently [CWSA16] developed an unquantised algorithm that works
correctly, and have transferred our efforts to that work. We note,
however, that Munch & Wang [MW15] have demonstrated that the
Joint Contour Net is guaranteed to converge to the Reeb Space:
since the Reeb graph is a special case of the Reeb space, this proof
carries over to the present work.

We also ran scaling studies using a 4800x4800 chunk of data
from the GTOPO30 database, which contains elevation maps for
the Earth at a horizontal grid spacing of 30 arc seconds (roughly
one-half to one kilometer). The chunk we used spans a topolog-
ically interesting region covering India and the Himalayas. Tests
were run on the Moonlight supercomputer at Los Alamos National
Laboratory. Each node has a 16-core 2.6 GHz Intel Xeon E5-2670
CPU, 64 GB of RAM, and two NVIDIA Tesla M2090 GPUs (al-
though we only used one per node in our tests). A large quantisation
level (1000 m) was used to meet the memory constraints for tests
run on a single node, and the contour trees produced for this data set
have not yet been independently vetted. Our code is currently lim-
ited to on the order of 100,000,000 edge fragments in the 64 GB of
memory available per node, although significant opportunities for
optimisations in memory usage exist (see Section 7). Scaling with
the number of OpenMP threads, using Thrust’s OpenMP backend
(along with our custom OpenMP parallel backend for the scan op-
erator, since Thrust provides only a serial scan for OpenMP), is
shown in Figure 4. Figure 5 shows the scaling with the number of
MPI ranks, with one rank per node, up to 16 nodes. The same test
was also run on the GPUs of 16 nodes, using the same code, by
compiling to Thrust’s CUDA backend, with performance compara-
ble in this case to the 16-node, 16-thread OpenMP test (1.87 and
1.69 seconds, respectively). While the OpenMP scaling tails off af-
ter around 4 threads on these 16-core machines, the scaling with the
number of nodes does well up to at least 16 nodes, as the amount
of communication necessary in the hybrid algorithm is relatively
small (only data at the boundaries between blocks).

We were able to compute the contour tree for this data set at a
quantisation of just 10m by running it across 64 nodes on Moon-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

// The number of fragments to be generated for each edge, taken as input for this example
nEdgeFrags 2 2 3 2 2 1 0 0 3 2 0 0 2

// Use a prefix sum to get the starting index for each edgeID in the new fragment vector
thrust::exclusive_scan(nEdgeFrags.begin(), nEdgeFrags.end(), bEdgeFrags.begin(), 0, thrust::plus<signed long>());
bEdgeFrags 0 2 4 7 9 11 12 12 12 15 17 17 17

// The total number of fragments is the starting index for the last edgeID, plus the number of fragments for that last edge
signed long numFrags = bEdgeFrags.back() + nEdgeFrags.back(); 
thrust::device_vector<signed long> fragEdge(numFrags, 0);
numFrags 19
fragEdge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

// For edges with at least one fragment, scatter the edge indices (from a counting iterator) to the indices in fragEdge specified by bEdgeFrags
thrust::scatter_if(thrust::make_counting_iterator(0), // Beginning of input indices (counting iterator not actually stored in memory)
                                thrust::make_counting_iterator(0)+nEdgeFrags.size(), // End of input indices
                                bEdgeFrags.begin(), // Indices to which to scatter the input
                                nEdgeFrags.begin(), // Only scatter input for which this stencil evaluates to true
                                fragEdge.begin(), // Beginning of output vector
                                threshold(0)); // Predicate applied to stencil vector 
counting_iterator 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
fragEdge 0 0 1 0 2 0 0 3 0 4 0 5 8 0 0 9 0 12 0

// Use a max-scan to propagate the edge id to the other fragments corresponding to each edge
thrust::inclusive_scan(fragEdge.begin(), fragEdge.end(), fragEdge.begin(), thrust::maximum<signed long>());
fragEdge 0 0 1 1 2 2 2 3 3 4 4 5 8 8 8 9 9 12 12

Figure 3: Code used to generate fragments from a vector containing the number of fragments to generate for each edge. This example
illustrates how parts of Stage I from Figure 2 are implemented using Thrust.
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Figure 4: Data-parallel scaling on a single node (log-log plot), for
a 4800x4800 chunk of elevation data in India and the Himalayas
from GTOPO30 at quantisation 1000m.

light with OpenMP, with one rank per node and block sizes of
601x601, in 29.2 seconds. A different 6000x4800 chunk of data
(about three-quarters of which is ocean) from GTOPO30 was run
across 56 nodes on Moonlight, with one rank per node and block
sizes of 751x751. With OpenMP on the CPUs, we were able to
compute the contour tree for this data set at a quantisation level of
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Figure 5: Hybrid scaling across nodes (log-log plot), for a
4800x4800 chunk of elevation data in India and the Himalayas
from GTOPO30 at quantisation 1000m.

10m in about 12.5 seconds. Using the GPUs, in about 12.2 seconds,
we were able to compute the contour tree at a quantisation level of
as small as 25m before hitting the memory constraints of the GPUs.
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6. Conclusions

We have presented the first algorithm for computing contour trees
using a quantised approach that exploits both shared-memory data-
parallelism and distributed-memory domain decomposition paral-
lelism. Our initial implementation of this method, using NVIDIA’s
Thrust library and MPI, has been used to verify the correctness
of the algorithm for small data sets, and to demonstrate its paral-
lel scaling with larger data sets. This work lays the foundation for
using contour trees as a tool for automatically finding contours of
interest in massive data sets.

7. Future Work

The current initial implementation of the algorithm uses many in-
termediate vectors for the sake of simplicity and clarity, but the
memory footprint could likely be significantly decreased by opti-
mally reusing allocated vectors. More work is also needed to verify
the results for large data sets, such as those from GTOPO30. We be-
lieve that it is possible to extend the post facto quantisation of the
serially computed contour tree to obtain the same fragment repre-
sentatives as the present work so that validation of the computation
may be performed automatically.

Thereafter, the secondary computations such as geometric sim-
plification of the contour tree, bounding hierarchy extraction, sin-
gle contour extraction, and so forth, still need to be implemented.
These steps are of particular interest within in-situ frameworks such
as the Cinema image database [AJO∗14], as they are necessary for
automated feature selection.

Moreover, while the current version is written on the assump-
tion of a 2D DEM (the easiest case to implement), other meshes
could also be handled, in particular tetrahedral meshes in 3D. For
these meshes, barycentric linear interpolation means that only one
fragment may exist for each interval (as with triangles in 2D), so
the principal changes will be to fragment indexing and de-indexing.
Further development for non-simplicial meshes should also be pos-
sible.

We also note that, unlike the original contour tree algorithm, this
version naturally handles Reeb graph computation as well, and we
would like to implement and test this for 2−mani f old surfaces and
non-simple meshes as well. Variations on the approach described
may also allow Morse-Smale Complex extraction as well, but this
is purely speculative at present.
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