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Abstract
In this course, we will introduce the basic concepts of tensor approximation (TA) – a higher-order generalization
of the SVD and PCA methods – as well as its applications to visual data representation, analysis and visualization,
and bring the TA framework closer to visualization and computer graphics researchers and practitioners. The
course will cover the theoretical background of TA methods, their properties and how to compute them, as well
as practical applications of TA methods in visualization and computer graphics contexts. In a first theoretical
part, the attendees will be instructed on the necessary mathematical background of TA methods to learn the
basics skills of using and applying these new tools in the context of the representation of large multidimensional
visual data. Specific and very noteworthy features of the TA framework are highlighted which can effectively be
exploited for spatio-temporal multidimensional data representation and visualization purposes. In two application
oriented sessions, compact TA data representation in scientific visualization and computer graphics as well as
decomposition and reconstruction algorithms will be demonstrated. At the end of the course, the participants will
have a good basic knowledge of TA methods along with a practical understanding of its potential application in
visualization and graphics related projects.

Keywords: Tensor decompositions, tensor approximations, Tucker model, CANDECOMP/PARAFAC model, com-
pact visual data representation, higher-order SVD methods, data reduction, interactive volume visualization, mul-
tiresolution and multiscale modeling, clustered tensor decomposition, bidirectional reflectance distribution func-
tions, bidirectional texture functions, precomputed radiance transfer.
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As outlined in the abstract and further elaborated on be-
low, this tutorial will bring the concepts of tensor approxima-
tion (TA) closer to the computer graphics and visualization
communities. TA methods have already shown to be quite
useful in visualization and graphics in a number of specific
papers. This tutorial will review both, the underlying theory
as well as some of the recent applications in this context.

We strongly believe that the TA framework is a powerful
toolbox that in fact has a large potential for a strong and last-
ing impact on large data representation, analysis and visual-
ization solutions. This topic, tensor approximations and its

applications in visual computing, has not received a signifi-
cant and broad treatment in the past and it is the right time to
give a first and practice oriented introduction into this topic
to the graphics and visualization community.

As applicable, we aim to provide practical insight, e.g.,
using MATLAB, CUDA or C++ code examples.

2. Description

2.1. Overview

The SVD and PCA approaches, which work great for matrix-
based data (2nd-order tensors) cannot directly be extended in
a straight-forward way to higher-dimensional data (higher-
order tensors) and loose some of their unique properties.
Nevertheless, a number of common visual datasets naturally
lend themselves to a representation as higher-order tensors:
volume data (3rd-order), spatio-temporal volume and FMRI
data (4th-order), image stacks and video (3rd-order), BRD-
F/BTF illumination data (mostly 3rd-order or 4-th order),
as well as general image and sample collections (k-th or-
der). In this tutorial, we briefly introduce the tensor approx-
imation (TA) framework as an extension of the SVD and
PCA approaches to higher-order tensor dimensionality, and
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describe TA with its special properties as a linear algebra
tool to process, analyze and represent complex visual data in
novel ways.

The targeted audience consists of graphics and visualiza-
tion researchers and practitioners with a solid background
in linear numerical algebra, graphics techniques and/or vi-
sualization methods. The presented methods and techniques
exhibit a high applicability to represent and manage large
multidimensional visual datasets. Previous and recent re-
search work has already demonstrated the high potential of
TA methods, and corresponding examples in graphics and
visualization will be reviewed as part of this tutorial.

At the end of the course, participants should understand
the main concepts, properties and features of the TA frame-
work and in particular the key differences between a Tucker
model and a CP tensor model. Furthermore, he or she should
be able to apply a TA and its reconstruction to simple data
models, and be in a strong position to thoroughly understand
the specific and advanced approaches presented from the re-
cent research literature. In particular, the course will be aug-
mented with practical examples.

2.2. Syllabus
This tutorial addresses the application of advanced numeri-
cal linear algebra tools to compact data representations and
interactive visualization of large multidimensional dataset.
These datasets arise in many applications in scientific vi-
sualization and computer graphics, such as visualization of
volumetric datasets, storage of reflectance data, motion syn-
thesis or precomputed radiance transfer. Tensor approxima-
tion (TA) methods have recently attracted increasing inter-
est from the visual computing community, and a number of
authors have shown that the TA framework is a viable tool
for the compact representation of these multidimensional
dataset. The idea of this tutorial is to give a introduction of
TA methods and how they can be applied in visualization
and graphics. Notably, we aim at making the successful TA
application strategies available to the scientific audience.

The overall tutorial is structured into three main parts con-
sisting of the general background and properties of TA meth-
ods, followed by practical applications of TA methods in sci-
entific visualization and computer graphics:
Part 1 Introduction of the TA framework

• Tucker and CANDECOMP/PARAFAC (CP) tensor
decompositions

• Rank-reduced tensor approximations, ALS methods
• Useful TA properties and features for data visualiza-

tion
• Frequency analysis and DCT equivalence

Part 2 Applications of TA in scientific visualization

• Implementation details of tensor decomposition and
tensor reconstruction algorithms

• Practical examples (MATLAB, vmmlib)
• TA-based volume visualization

Part 3 Applications of TA in rendering and graphics

• Examples for multidimensional datasets in rendering
and graphics applications

• Influence of data organization, parametrization and er-
ror metric

• Clustering and sparsity
• Processing irregular and sparse input samples

The sessions are designed as follows:

Introduction (Pajarola, 10min)
Presentation of the structure of this tutorial course and
schedule of topics, introduction of speakers.

Tensor Decomposition Models (Pajarola, 25min)
In this first session, we introduce the basic definition of a
tensor approximation model, which is the decomposition of
a higher-order tensor into a multilinear combination of bases
and weighting coefficients. The two models introduced are
the CANDECOMP/PARAFAC (CP) model and the Tucker
tensor model. In particular, we elaborate on the tensor de-
composition being the generalization of the SVD approach
to higher order tensor data, and how a rank-reduced tensor
decomposition defines an approximation of the original data.

Properties and Features (Pajarola, 25min)
In this segment, the tensor models are reviewed and analyzed
as being a data point in a high-dimensional approximation
space. Consequently, some specific properties and features
of these approximation spaces, e.g., such as uniqueness, fac-
tor matrix orthonormality, all-orthogonality of core tensors
or space-rank selectivity, are discussed as well as their ef-
fects on rank-reduced tensor reconstructions. Variations to
the standard methods, such as incremental construction of
tensor decompositions, are described. Finally, the difference
of pre-defined and learned bases is discussed and the equiv-
alence to frequency domain transformations is reviewed.

Scientific Visualization Applications (Suter, 30min)
The goal of this segment is to show various TA applica-
tions in the domain of scientific visualization. We start by
comparing compact data representation approaches (TA and
wavelets [WXC∗08,SZP10a]) while showing tensor approx-
imation applications for interactive multiscale scientific vol-
ume visualization [SIGM∗11]. The examples include hier-
archical tensor approximation approaches, which are often
used for multiresolution visual data representations.

Coffee Break
Implementation Examples in Scientific Visualization
(Suter, 25min)
In scientific visualization, the tensor decomposition is usu-
ally carried out as a preprocessing routine, while the recon-
struction process has to be performed in real-time. In this
tutorial, the basic tensor data structures and tensor decompo-
sition algorithms are explained by the example of two avail-
able tensor libraries: The MATLAB Tensor Toolbox [BK06]
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and the vmmlib (vector and matrix math library) [vmm]. For
the tensor reconstruction, we show a GPGPU tensor recon-
struction which enables for interactive large data visualiza-
tion. Within the tutorial, we show performance timings for
the decomposition step and the real-time reconstruction for
datasets of different sizes such that a potential user gets an
impression about the offline/run-time performance of differ-
ent dataset sizes. During the tutorial and its documentation
test datasets and example routines are provided.

Graphics Applications (Ruiters, 30min)
In this segment, we will present applications of tensor ap-
proximations for datasets that commonly arise in graph-
ics and rendering. The main focus will be on representa-
tions for reflectance data, such as bidirectional reflectance
distribution functions (BRDFs) [SZC∗07, SKB10, BÖK11]
and bidirectional texture functions (BTFs) [FKIS02, VT04,
WWS∗05, WXC∗08], but we will also shortly present some
other applications such as precomputed radiance transfer
(PRT) [TS06], view-dependent occlusion texture functions
(VOTFs) [TS12] or storage and synthesis of motions [Vas02,
VBPP05, KTMW08, MLC10]. We will discuss graphics re-
lated aspects such as the arrangement of the data in a ten-
sor and the influence of the utilized parametrization. Fur-
thermore, we will show how to modify the the error met-
ric during the tensor approximation via the use of per entry
weights. This can be used to cope with the high dynamic
range that reflectance data exhibit.

Clustering and Sparsity (Ruiters, 25min)
In this part, approaches combining tensor approximations
with clustering [TS06,TS12] and approaches utilizing sparse
tensor decompositions [RK09] are discussed. These repre-
sentations are useful for rendering applications, since they
offer both, good compression ratios and fast random data
access. Additionally, we will discuss an approach [RSK12]
to directly fit a tensor representation to sparse and irregular
measurements without first computing a dense representa-
tion of the tensor. This way, it is possible to process larger
tensors without having to store them explicitly. Furthermore,
this approach allows to integrate additional regularization
constraints such as smoothness into the computation of the
tensor approximation.

Summary/Outlook (Pajarola, 10min)
Finally, we will summarize the TA and its application in vi-
sualization and graphics and provide a brief outlook on fu-
ture challenges in the field.

2.3. Documentation
In addition to the full tutorial slide sets, additional docu-
mentation will be made available to the attendees in form
of summaries of related papers including dedicated links to
electronic online versions (see Sec. 3).

The presented tutorial is based on a number of articles and
papers on tensor approximation methods and their applica-
tions. The basic theory of tensor decomposition and approx-
imation methods are described in [dLdMV00a, dLdMV00b]

and [KB09], of which we follow the latter on notation and
formalism. A number of key applications of tensor methods
in visualization and graphics which we review in this tutorial
have been presented in [SZP10a,SIGM∗11], [RK09,RSK12,
TS06, TS12] and [WXC∗08]. Other resources are the PhD
thesis of Tsai ([Tsa09]) and Suter ([Sut13]).

Based on our extensive practical experience and work
with tensor methods, we will provide a number of
basic MATLAB examples, based on our own develop-
ment [vmm] (https://github.com/VMML/vmmlib)
as well as the MATLAB tensor toolbox [BK06] (http:
//www.sandia.gov/~tgkolda/TensorToolbox)
and the MATLAB N-way toolbox [AB00] (http:
//www.models.life.ku.dk/nwaytoolbox).
These practical examples including test datasets will be
made available to the attendees.

3. Summary of Related Papers
In the following, a selection of related papers are briefly
summarized. Besides the major contributions of the papers,
it is highlighted what tensor models are used in what con-
text. The first few articles represent good background litera-
ture in order to get started with tensor approximation. Then
we added a section with scientific visualization papers and a
section with papers in computer graphics.

3.1. Tensor Approximation Background Literature
3.1.1. Kolda and Bader, 2009
Kolda and Bader [KB09] present an in-depth survey on vari-
ous available higher-order tensor decomposition approaches.
Besides the well-known Tucker model and CP model, they
mention many other (hybrid) decomposition approaches.
Hence, this survey is a great introduction to the theory and
notations of tensor decompositions. It mentions most of the
relevant related background works and gives a summary
on the origins and development of tensor approximation. It
gives also an overview what different terms are used for the
same decomposition approaches, which were developed in
parallel for a similar purpose. Furthermore, the main tensor
decomposition algorithms are outlined.

With respect to applications, they mention several areas,
where TA was applied, however, they do not provide results
of own applications. Finally, they give an overview of soft-
ware for tensor computing that was available before 2009.
[KB09] http://epubs.siam.org/doi/pdf/10.
1137/07070111X

3.1.2. De Lathauwer et al, 2000a+b
De Lathauwer et al., introduce in [dLdMV00a] a general-
ization of many previously mentioned TA-like approaches.
Since tensor approximation originated in applied sciences
and in various areas in parallel, there was no clear general
notation and definition of the tensor approximation concepts
available for quite some time. De Lathauwer et al., name
the extension of the singular value decomposition (SVD) to
higher-orders the multilinear singular value decomposition.
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They give a clear overview on how the SVD can be extended
to higher orders and what properties can be maintained with
what model. The paper presents many definitions and nota-
tion for the multilinear SVD. Furthermore, the basic algo-
rithm to perform an SVD in higher orders is generalized.
This is the so-called higher order singular value decompo-
sition or in short the HOSVD. In that context, they explain
also the relationship between the SVD computation and the
symmetric eigenvalue decomposition, which can be used to
replace the SVD under certain constraints. If you look for
mathematical definition around computing with TA includ-
ing mathematical proofs, this is the paper to look at. The
concepts are mainly explained with the higher-order exten-
sion of the Tucker model. However, they briefly mention the
links between the Tucker model and a some other models.

In [dLdMV00b], De Lathauwer et al, present the general-
ization of the two main tensor decomposition algorithms: the
higher-order orthogonal iteration (HOOI) and the higher or-
der power-method (HOPM). Both algorithms belong to the
family of alternating least squares (ALS) algorithms, which
are applied to find a “best” approximation with a tensor de-
composition for given rank conditions. The HOOI is ap-
plied to arrive at the Tucker model, the HOPM is applied
to reach the CP model. Based on the concept of the ma-
trix rank and the tensor rank, a rank-(R1,R2 . . .RN ) approx-
imation is defined for the Tucker model and a rank-R ap-
proximation for the CP model. Besides the generalization of
the best rank-R and rank-(R1,R2 . . .RN ) approximation, they
given an overview on the ALS TA contributions that were
performed previously. Finally, they explain the limitations
of the truncation of tensor decompositions of higher orders.
[dLdMV00a] http://epubs.siam.org/doi/pdf/
10.1137/S0895479896305696
[dLdMV00b] http://epubs.siam.org/doi/pdf/
10.1137/S0895479898346995

3.1.3. Bader and Kolda, 2006
A good toolbox for computing with tensors was provided
with the MATLAB tensor toolbox by Bader and Kolda.
In [BK06], the main algorithms and their implementations
are elaborated for the MATLAB tensor classes. This article
provides helpful examples on how to compute with tensors
in higher orders. For example, they explain how to multi-
ply with tensors or how to rearrange a tensor into a matrix –
both being elementary operations when working with tensor
decompositions.
[BK06] http://delivery.acm.org/10.1145/
1190000/1186794/p635-bader.pdf

3.1.4. Tsai, 2009
The PhD thesis of Tsai [Tsa09] introduced two novel com-
pression algorithms, notably clustered tensor approximation
(CTA) and K-clustered tensor approximation (K-CTA). The
main applications are SRBFs and real-time data-driven ren-
dering. The dissertation gives a detailed explanation on how
the CTA and K-CTA work and how they are implemented.

The development of the new TA algorithms was triggered by
the fact that previous TA approaches are not compact enough
for efficient reconstruction on the GPU. Therefore, the focus
here is to introduce sparse representations and clustering to
multi-linear models such as TA. An improved compression
ratio with good image quality was achieved. Especially, K-
CTA helps to improve smoother boundaries between subten-
sors by exploiting inter-cluster coherence. CTA and K-CTA
seem to have some similarities with other matrix factoriza-
tions (e.g., two-stage SVD that exploits inter-block coher-
ence); however, previous approaches did not cover sparse
representations.
[Tsa09] http://www.cg.cse.yzu.edu.tw/
research/phd/prof/Prof_Tsai.pdf

3.1.5. Suter, 2013
In the PhD thesis of Suter [Sut13], tensor approximation was
chosen as the unique framework in scientific visualization
(a) to reduce the actual amount of data, (b) to extract rele-
vant features from the dataset, (c) to visualize the data di-
rectly from the mathematical frameworks’ coefficients for
compression-domain multiresolution direct volume render-
ing (DVR). Particularly, the Tucker model was used to rep-
resent and compress 3D volume datasets. However, there is
an overview of different TA models as well as TA notation
and general formulations, too.

The inherent TA bases properties such as spatial selectiv-
ity and spatial subsampling were used to model multiresolu-
tion data structures. Furthermore, it was shown that the ten-
sor rank can be used to steer feature visualization at different
scales (multiscalability). In fact, the tensor rank is a parame-
ter that adjusts (a) the amount of data used for the reconstruc-
tion, and (b) the scale of the features visualized in a certain
reconstruction. Using more ranks adds details as well as finer
scale features to a visualization, using only a few ranks visu-
alizes the most prominent data structure (main statistical di-
rection of the data distribution). Finally, the multiscalability
available through TA has been successfully combined with
the above mentioned multiresolution TA DVR models.

Moreover, this thesis includes a tensor specific quantiza-
tion scheme [SIGM∗11], which reduces the storage costs of
one of the selected multiresolution models to 15 percent of
the original data elements. In order to achieve interactive
frame rates, a parallel GPU-based tensor reconstruction was
developed [SIGM∗11]. In fact, it could be shown that the
tensor reconstruction overhead is marginal compared to the
overall rendering costs. The developed algorithms were ap-
plied to large volume datasets up to 68GB (floating point
values).

The theory part of the thesis on TA is available in the tu-
torial notes.

3.2. Scientific Visualization
3.2.1. Suter et al., 2010
In Suter et al. [SZP10a] tensor approximation was applied to
direct volume visualization. A volume is represented as 3rd-
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order Tucker tensor. The main idea of the paper is to use TA
to compress data and to extract relevant features. For this,
different rank-reduced (truncated) tensor reconstructions are
compared. The features that can be visualized from tensor
decompositions differ from other feature preserving decom-
position approaches such as wavelets. While wavelets pre-
serve an overall data distribution (or an averaged and down-
sampled version of the original), TA reveals the major data
directions differently. One observation was that TA could re-
veal features with lower number of coefficients, a second ob-
servation was that TA can preserve non-axis-aligned featuers
better than wavelets, and a third observation was that TA
makes it possible to show features at multiple spatial scales
via truncation. One application of the TA was growth struc-
tures in dental material, both, simulated samples and phase-
contrast synchrotron tomography scanned samples. The data
reduction levels are analyzed visually and in terms of rate-
distortion error based on the RMSE.
[SZP10a] http://diglib.eg.org/EG/DL/PE/
VMV/VMV10/203-210.pdf

3.2.2. Suter et al., 2011
In Suter et al. [SIGM∗11] the basic observation that TA
is a viable tool for multiscale volume feature visualiza-
tion [SZP10a], was extended to large volumes. The main
contributions are a tensor-specific quantization approach of
the tensor decomposition coefficients, a GPU-based ten-
sor reconstruction scheme, and the application of feature-
preserving volume visualization to large multiresolution
datasets. The Tucker model was used within a multires-
olution direct volume rendering setup where each octree
node was represented as a single tensor decomposition
(each original subvolume or brick of size 323 is represented
with a rank-(16,16,16) tensor decomposition). The results
show a real-time interactive rendering system of large vol-
umes (largest input tensor is of size 20483). Thanks to the
GPU tensor reconstruction scheme, the tensor reconstruc-
tion overhead became marginal compared to the overall ren-
dering costs. The observed multiscale feature visualization
property of TA observed in [SZP10a] could be further con-
firmed with examples.
[SIGM∗11] http://ieeexplore.ieee.org/
ielx5/2945/6064926/06064978.pdf

3.3. Computer Graphics
3.3.1. Vasilescu and Terzopoulos, 2002
Vasilescu and Terzopoulos present a technique, called Ten-
sorFaces [VT02], which computes a multi-linear extension
of the PCA for an image collections of human faces. They
use a set of registered photographs depicting faces of 28
male subjects in five head poses under three illuminations
and showing three different expressions. These images are
stored in a 5th-order tensor with the dimensions: subject,
pose, illumination, expression and pixel number. They uti-
lize the N-mode SVD, which computes a Tucker factoriza-
tion of this tensor via the application of an SVD along each

of the tensors modes. This factorization provides a multi-
linear extension of the PCA, which decomposes the dataset
into Eigenmodes. In contrast to the often employed PCA,
which only provides the global axes of variation for the
whole dataset, this technique is able to characterize the axes
of variation, ordered by their importance, along each of the
modes independently. Furthermore, by multiplying with the
corresponding factor matrices, it is possible to get the axes
of variation for specific persons, expressions, or poses.

[VT02] http://link.springer.com/chapter/
10.1007%2F3-540-47969-4_30

3.4. Furukawa et al., 2002
The paper [FKIS02] by Furukawa et. al is the first work
to apply tensor approximation to the compression of BTFs.
They evaluated two different tensor layouts, a 3rd order ten-
sor with the dimensions pixel index, view direction and light
direction and a 4th order tensor in which the light direction
is stored in two modes according to its polar angles. They
then utilize a CP decomposition to compress this tensor.
In contrast to most other works on BTF compression, they
compress the BTF for each triangle individually, resulting
in tensors, with a rather small spatial dimension compared
to other BTF compression approaches (the tensor sizes are
136×36×72 and 136×36×12×6). Since the correlation
between independent triangles is not exploited, the compact
representation of the angular behavior is more important in
this setting than for larger BTFs. Their evaluation shows that
in this case the tensor based compression is superior to an
SVD based approach and in particular that the 3rd order rep-
resentation is superior to a 4th order representation.

[FKIS02] http://diglib.eg.org/EG/DL/WS/
EGWR/EGWR02/257-266.pdf

3.5. Vasilescu et al., 2004
TensorTextures [VT04] by Vasilescu and Terzopulos is an
BTF compression technique based on the N-mode SVD.
They represent the BTF as a 3rd-order tensor with the dimen-
sions pixel index and color, view direction and light direc-
tion. To compress this tensor, an N-mode SVD is applied and
the resulting decomposition is then truncated along its view
and light modes, whereas the spatial mode is not reduced al-
lowing for reasonably fast random access. Though this rep-
resentation does not achieve better compression ratios com-
pared to the PCA, when measured under the RMSE, the au-
thors show that it provides higher flexibility to the user. Since
the truncated rank can be selected independently for view
and illumination, it is possible to create results which pre-
serve the view dependence well, neglecting illumination in-
formation, resulting in sharp images with few highlights and
shadows and results which preserve the illumination well, at
the cost of view dependent information, resulting in images
which are unsharp due to the parallax effects but reproduce
highlights more faithful. The PCA in contrast always offers
the best compromise between these aspects under the RMSE
giving the user no options to change the trade-off.
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[VT02] http://delivery.acm.org/10.1145/
1020000/1015725/p336-vasilescu.pdf

3.5.1. Vlasic et al., 2005
Vlasic et. al present a multi-linear model [VBPP05] for
3D face meshes and demonstrate its usefulness for the im-
putation of missing data, the synthesis of novel faces and
expressions and the tracking of faces in videos. They uti-
lize a database of 3D scans of human faces. After semi-
automatically registering the scans to obtain accurate ver-
tex correspondences, these are stored in a tensor. They in-
vestigate both a representation via a 3rd-order tensor (vertex
number, expression and subject) and a 4th-order tensor (ver-
tex number, viseme, expression and subject). A truncated N-
mode SVD is then utilized to obtain multi-linear models of
these datasets. In the following, they demonstrate several ap-
plications of this model. First, they impute missing data in
the tensor and show that this enables them to predict an ex-
pression, which was removed from the data set for some of
the subjects, based on the data for the other persons and ex-
pressions. They then demonstrate that it is possible to syn-
thesize novel expression and persons by modifying the pa-
rameters of the multi-linear model. Finally, the multi-linear
model is fitted to a video stream which enables the track-
ing of facial pose and expression parameters. This could be
utilized for the editing of videos, e.g., by modifying the ap-
pearance, age or performance of an actor.
[VBPP05] http://delivery.acm.org/10.1145/
1080000/1073209/p426-vlasic.pdf

3.5.2. Wang et al., 2005
Wang et al. [WWS∗05] focus in their paper on a tensor
decomposition algorithm, which works for input tensors
that do not fit into the main memory. They develop a so-
called out-of-core ALS and perform experiments for initial-
ization methods of the ALS. Since the computation of the
HOSVD, which is used in the ALS algorithms, is expensive,
they develop a block-based algorithm to perform a rank-
(R1,R2 . . .RN ) tensor decomposition. With respect to the
ALS initialization, they observed that a random initialization
results in the same decomposition as a HOSVD initializa-
tion; however, the random initialization was much cheaper.
In their experiments, they decompose datasets larger than
10GB on a PC with 1GB memory. Particular applications are
BTFs (4th-order tensor with the dimensions: row, column,
illumination, and view direction), time-varying BTFs (5th-
order tensor) and a 4D volume simulation sequence (4th-
order tensor with the spatial dimensions X,Y,Z and time).
The compression ratio is analyzed in terms of rate-distortion
error based on PSNR.
[WWS∗05] http://delivery.acm.org/10.1145/
1080000/1073224/p527-wang.pdf

3.5.3. Tsai and Shih, 2006
Tsai and Shih [TS06] present a new data representation
and compression approach for precomputed radiance trans-
fer (PRT) based on spherical radial basis functions (SRBFs).

They show experiments with clustered principal component
analysis and clustered tensor approximation (CTA). They or-
ganize the PRTs into clusters of multi-dimensional arrays,
which are iteratively updated in order to search for locally
optimal solutions. The CTA algorithm has three phases: (1)
initialization (obtain initial assignment of cluster members),
(2) clustering (iteratively re-classify vertices with the mini-
mum approximation error and repeat until convergence), and
(3) approximation (extract optimal basis matrices). Their
tensor is organized with the number of views of the BRDFs,
the number of SRBF light transfer functions and the num-
ber of vertices and is based on the Tucker model. They use
the block-based TA approach, as presented in [WWS∗05]. In
their experiments they compare their own results with OLS
projection on SH bases and wavelets.
[TS06] http://delivery.acm.org/10.1145/
1150000/1141981/p967-tsai.pdf

3.5.4. Wu et al., 2008
Wu et al. [WXC∗08] present a hierarchical tensor approxi-
mation approach with so-called tensor ensembles. At each
hierarchy level N subtensors of the current level are put into
an (N +1)th-order tensor. Then the tensor decomposition is
performed collectively in order to exploit more redundancy.
They receive one set of factor matrices and one core tensor
per hierarchy level, that is a sort of a hierarchical Tucker
model. The hierarchy is created by applying rank-reduced
TAs to the original tensor ensemble. The residual (error to
original), is then further tensor decomposed in the next hier-
archy level. Each next hierarchy level is divided into resid-
ual subtensors. The multilinear tensor rank (R1,R2 . . .RN ) is
given per hierarchy, where every next hierarchy level uses
half of the rank of the current level. Similar to multires-
olution analysis with wavelets, low-frequency components
are represented at higher hierarchy levels and and high-
frequency components are at lower levels. High-frequency
components have a smaller spatial support and can there-
fore be approximated with shorter bases vectors (that is why
subdivision of hierarchy levels is performed). With that pro-
cedure a progressive reconstruction over the hierarchies is
possible. Furthermore, they apply a thresholding of core ten-
sor coefficients and perform a uniform core tensor and factor
matrices quantization.

In their experiments, Wu et al. compare their hierarchical
TA with wavelets, packet wavelets and single-level TA. The
experiments are applied to medical and scientific multidi-
mensional datasets, data-driven rendering (e.g., BTFs) and
texture synthesis. The experiments are tested in terms of
rate-distortion error based on PSNR.
[WXC∗08] http://ieeexplore.ieee.org/
ielx5/2945/4384585/04359486.pdf

3.5.5. Ruiters and Klein, 2009
Ruiters and Klein propose a novel tensor compression tech-
nique, the sparse tensor decomposition [RK09], and demon-
strate the use of this technique for the compression of BTFs.
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They store the BTF in a 3rd order tensor, with light direction
and color channel together in the first mode, and then view
and pixel position in the other two modes. To compress this
tensor, they introduce a sparse tensor decomposition, which
utilizes the K-SVD [AEB06] to subdivide a tensor along one
of its modes into a smaller dictionary tensor and a sparse ten-
sor. By repeatedly performing this decomposition along all
of its modes, a tensor is finally decomposed into the prod-
uct of a 2nd order dictionary tensor and several sparse 3rd

tensors. They demonstrate that this decomposition achieves
compression ratios for BTFs which are superior to PCA, N-
mode SVD and per cluster factorization based techniques.
Furthermore, they show that, especially at very high com-
pression ratios, the sparsity of the tensors allows for fast
random access into the compressed tensor which results for
these cases in faster rendering timings than for PCA based
compression in a CPU implementation.

[RK09] http://diglib.eg.org/EG/DL/CGF/
volume28/issue2/PDF/v28i2pp513-522.pdf

3.5.6. Tsai and Shih, 2012
Tsai and Shih extend in their work the clustered TA
(CTA) [TS06] to K-clustered TA [TS12]. The CTA is ex-
tended by introducing inter-cluster coherence and working
with compact and sparse clustered TA. The inter-cluster co-
herence is exploited by assigning each subtensor to more
than one clusters, notably to exactly Km clusters. This ap-
proach controls the sparsity of the representation. The inter-
cluster coherence helped to improve the boundaries between
clusters. The K-CTA algorithm can be seen as a sparse ex-
tension of the CTA and a multilinear generalization of the
K-SVD. The applied tensor approximation is based on the
Tucker model. Since the K-CTA algorithm affects some or-
thogonality properties in the Tucker bases, an additional
SVD is applied to each cluster factor matrix. These post-
processed matrices are merged into a single global factor
matrix for each mode. The experiments show applications
with BTFs, BRTs, and VOTFs.

[TS12] http://delivery.acm.org/10.1145/
2170000/2167077/a19-tsai.pdf

3.5.7. Ruiters et al., 2012
Ruiters et al. propose an approach [RSK12] to directly fit a
spatially varying bidirection reflectance distribution function
(SVBRDF) represented as a sum of separable functions to a
sparse and irregular set of input samples, utilizing additional
smoothness and non-local spatial regularization. When ac-
quiring the spatially varying reflectance for an object with
curved surfaces, the variation of the local coordinate system
and occlusions result in an irregular and sparse sampling.
From these samples, the authors reconstruct an isotropic
SVBRDF in a Half/Diff parameterization at a high angular
resolution. This results in a five dimensional function with
the dimensions color, θh,θd ,φd and position on the surface.
Explicitly storing this function at the utilized high angular
samplings (90 × 90 × 180) for the full spatial resolutions

(256× 256 and 512× 512) would be completely infeasible
due to the enormous sizes of the resulting dataset. Instead
a representation as a sum of separable functions, which can
be regarded as the continuous analogue of a CP decomposi-
tion of the tabulated function, is fitted directly to the samples
via an alternating least squares approach. This avoids the ne-
cessity to store the full dataset to enable a tensor factoriza-
tion of the dataset. A regularization term is integrated into
the fitting to obtain smooth reconstructions and take advan-
tage of spatial self-similarity. In their evaluation, the authors
demonstrate that this technique allows to reconstruct specu-
lar highlights which could not be represented in a BTF due
to insufficient angular resolution and input sampling.

[RSK12] http://diglib.eg.org/EG/DL/CGF/
volume31/issue2/PDF/v31i2pp315-324.pdf

4. Available Software
We consider the three presented toolboxes as the most con-
venient ones for tensor approximation applications; how-
ever, there is more tensor software available, as summarized
in [KB09].

4.1. MATLAB N-Way Toolbox
The N-Way Toolbox [AB00] is a MATLAB toolbox which
provides functions for the computation of Tucker and CP
approximations of a tensor. The implementations of these al-
gorithms in the N-Way toolbox are very flexible and provide
the user with a large number of options. Several initialization
methods can be used, it is possible to specify orthogonality
and non-negativity constraints for each of the modes indi-
vidually and the imputation of missing values is supported.
Furthermore, the computation of weighted CP approxima-
tions is possible.

[AB00] http://www.models.life.ku.dk/
nwaytoolbox

4.2. MATLAB Tensor Toolbox
The MATLAB Tensor Toolbox [BK∗12] is a comprehen-
sive toolbox for tensor approximation applications. It offers
optimized decomposition algorithms for the Tucker model
as well as the CP model. The MATLAB tensor toolbox is
a generic implementation for any Nth-order tensor decom-
position and includes a well-documented help manual. The
toolbox supports compact and sparse tensors, tensor unfold-
ings into matrices, and tensor multiplications. The main al-
gorithms are published in [BK06]. This toolbox is a compre-
hensive tensor environment that is easy to use and extend in
MATLAB.

[BK∗12] http://www.sandia.gov/~tgkolda/
TensorToolbox

4.3. Vmmlib
The tensor classes that extend the vector and matrix math
library vmmlib [vmm], are a C++ implementation with tem-
plates. The tensor classes are mainly based on the 3rd-order
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implementation of tensors and algorithms; however, 4th-
order tensor algorithms are planned. The tensor classes im-
plement tensor unfoldings, tensor multiplications and ten-
sor decomposition approaches for the Tucker model, the CP
model and some hybrid block-based TA models. The ALS
can be applied using the HOSVD or the HOEIGS (higher-
order symmetric eigenvalue decomposition based on the co-
variance matrix of the unfolded input tensor). Vmmlib also
supports tensor memory-mapping in order to process large
input tensors. So far, only compact tensor decompositions
were considered, sparse implementations would need to be
added on top. Desired extensions can be integrated by any
developer since it is an open-source project.

[vmm] (https://github.com/VMML/vmmlib)

5. Lecturers Resumes
The tutorial is given by three experts on TA methods in vi-
sualization and computer graphics (two young and an ex-
perienced researcher). In the following, the lecturers’ back-
grounds and specializations are summarized.

Renato Pajarola

Professor, Dr. sc.-techn. ETH
Visualization and MultiMedia Lab (VMML)
University of Zürich, Switzerland
pajarola@acm.org
http://vmml.ifi.uzh.ch/people/current-staff/pajarola.html

Renato Pajarola received his Dipl. Inf-Ing ETH and Dr.
sc. techn. degrees in computer science from the Swiss Fed-
eral Institute of Technology (ETH) Zürich in 1994 and
1998 respectively. Subsequently he was a post-doctoral re-
searcher and lecturer in the Graphics, Visualization & Us-
ability (GVU) Center at Georgia Tech. In 1999 he joined the
the University of California Irvine (UCI) as an Assistant Pro-
fessor where he founded the Computer Graphics Lab. Since
2005 he has been leading the Visualization and MultiMedia
Lab (VMML) at the University of Zürich (UZH) as Professor
in the Department of Informatics. He is a member of ACM,
ACM SIGGRAPH, IEEE and Eurographics.

Dr. Pajarola’s research interests include real-time 3D
graphics, multiresolution modeling, point based graphics,
interactive large-scale scientific visualization, remote and
parallel rendering, volume visualization and compression.
He has published a wide range of internationally peer-
reviewed research articles in top journals and conferences.
He regularly serves on program committees, such as for
example the IEEE Visualization Conference (2004-06,09-
11), Eurographics (2010-11, 2013), Pacific Graphics (2002-
03,07-08), IEEE Pacific Visualization (2008-10) or Euro-
Vis (2001,2006-10, 2013). He chaired the 2010 EG Sym-
posium on Parallel Graphics and Visualization and was pa-
pers co-chair in 2011, as well as papers co-chair of the 2007
and 2008 IEEE/EG Symposium on Point-Based Computer
Graphics. He received a Eurographics Best Paper Award (as
co-author) in 2005, and an IADIS Best Paper Award in 2007.

Dr. Pajarola has previously participated in three quite suc-
cessful and well received tutorials at IEEE Visualization and
ACM SIGGRAPH Asia on out-of-core, interactive massive
model and parallel rendering methods in graphics and scien-
tific visualization [CESL∗03, DGM∗08, YMK∗09].

Our intensive research activities on large scale multires-
olution data representation, data reduction and interactive
visualization, in particular volume rendering, has led us to
the field of tensor approximation methods which are the
central topic of this tutorial. Experiences from our own re-
search on tensor approximations used in volume visualiza-
tion [SZP10b, SZP10a, SIGM∗11] as well as in-depth re-
views of other work on compact visual data representation
has triggered the proposal of this tutorial. Our current and fu-
ture areas of specialization in tensor approximation methods
is in the general context of novel multiresolution, hierarchi-
cal and out-of-core tensor decomposition models for large
scale volume data representation, multi-scale feature extrac-
tion and interactive visualization.

Susanne K. Suter
Research Assistant, PhD Candidate
Visualization and MultiMedia Lab (VMML)
University of Zürich, Switzerland
susuter@ifi.uzh.ch
http://vmml.ifi.uzh.ch/people/current-staff/suter.html

Susanne Suter is a PhD candidate and research assistant at
the University of Zürich, Switzerland. Her main scientific in-
terest is data reduction and data compression, feature extrac-
tion, automation, real-time interactive visualization as well
as linear algebra in visualization.

Susanne K. Suter’s PhD thesis matches the core topic of
the presented Eurographics tutorial. Her main focus in the
area is interactive visualization of tensor approximated data
from large micro-computed tomography or phase-contrast
synchrotron datasets, whereas the main challenge lies in
finding a mathematical framework to perform all tasks with
one tool. That is (a) to reduce the actual amount of data,
(b) to extract relevant features, and (c) to visualize from the
decomposed data in real-time. She contributed to the field
by showing that TA is practical for multiscale volume visu-
alization [SZP10b, SZP10a] and confirming that the online
hardware-accelerated reconstruction for interactive render-
ing is fast enough [SIGM∗11]. She is a student member of
IEEE and ACM.

Roland Ruiters
Research Assistant, PhD Candidate
Computer Graphics Group
University of Bonn, Germany
ruiters@cs.uni-bonn.de
http://cg.cs.uni-bonn.de/en/people/dipl-inform-roland-ruiters/

Roland Ruiters is a PhD student and research assistant at
the University of Bonn, Germany. His research focuses on
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the acquisition, representation and editing of reflectance data
in the form of BTFs.

As part of his doctoral studies, which he intends to finish
during the next year, he worked on tensor approximations for
SVBRDF and BTF data. He showed that a compact repre-
sentation, which still allows for efficient random access dur-
ing rendering, can be derived by decomposing a tensor into
the product of several sparse tensors [RK09]. He also de-
veloped techniques to directly derive a tensor approximation
from a sparse and irregular set of measured reflectance sam-
ples. This avoids the necessity to resample the measurements
into a dense tensor representation prior to the approxima-
tion and thus enables the processing of large datasets which
would be infeasible otherwise [RSK12].
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Appendix A: Acronyms
ALS Alternating least-squares algorithm
BTF Bidirectional texture function
BTF Biscale radiance transfer
BRDF Bidirectional reflectance distribution functions
CP CANDECOMP/PARAFAC
CTA Clustered tensor approximation
DCT Discrete cosine transform
DVR Direct volume rendering
FT Fourier transform
HOEIGS Higher-order symmetric eigenvalue decomposi-

tion
HOOI Higher-order orthogonal iteration
HOPM Higher-order power method
HOSVD Higher-order singular value decomposition
K-CTA K-clustered tensor approximation
OLS Ordinary least squares
PCA Principal component analysis
PRT Precomputed radiance transfer
PSNR Peak signal-to-noise ratio
RMSE Root mean square error
SVBRDF spatially varying bidirection reflectance distribu-

tion function
SVD Singular value decomposition
SH Spherical harmonics
TA Tensor approximation
TTM tensor times matrix
TTM1 tensor times matrix multiplication along mode 1
vmmlib Vector and matrix math library
VOTF View-dependent occlusion texture functions
VQ Vector quantization
WT Wavelet transform
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